CN114464700A - N型晶硅电池的选择性硼掺杂方法及其应用 - Google Patents

N型晶硅电池的选择性硼掺杂方法及其应用 Download PDF

Info

Publication number
CN114464700A
CN114464700A CN202210046732.9A CN202210046732A CN114464700A CN 114464700 A CN114464700 A CN 114464700A CN 202210046732 A CN202210046732 A CN 202210046732A CN 114464700 A CN114464700 A CN 114464700A
Authority
CN
China
Prior art keywords
boron
slurry
bsg
laser
crystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210046732.9A
Other languages
English (en)
Inventor
汤佳丽
史卓群
潘琦
杨立功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Shichuang Energy Co Ltd
Original Assignee
Changzhou Shichuang Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Shichuang Energy Co Ltd filed Critical Changzhou Shichuang Energy Co Ltd
Priority to CN202210046732.9A priority Critical patent/CN114464700A/zh
Publication of CN114464700A publication Critical patent/CN114464700A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种N型晶硅电池的选择性硼掺杂方法,包括如下步骤:对制绒后的N型硅片进行硼扩散,形成硼的浅掺杂,且硼扩面上形成BSG;然后按照金属电极图形,在硼扩面上印刷能与BSG反应的腐蚀浆料,形成覆浆区域;然后通过加热使腐蚀浆料与覆浆区域的BSG发生反应,将覆浆区域的BSG转变为硼硅化合物;然后对覆浆区域进行激光推进,使覆浆区域形成硼的重掺杂。本发明还提供一种N型晶硅电池的制备工艺,其应用上述的选择性硼掺杂方法。本发明利用腐蚀浆料与BSG发生反应,降低了硼源进入硅基底中所需的激光能量,保护硅片表面的金字塔绒面不受到激光破坏,形成高表面浓度深结的重掺杂区,达到选择性硼掺杂的目的。

Description

N型晶硅电池的选择性硼掺杂方法及其应用
技术领域
本发明涉及光伏领域,具体涉及一种N型晶硅电池的选择性硼掺杂方法及其应用。
背景技术
随着太阳能光伏技术的研究和发展,以晶硅为衬底的光伏技术已然占据了市场主流位置。晶硅分为P型和N型硅两种,随着P型晶硅电池量产化转换效率逐渐趋于理论上限,而N型晶硅电池由于其硅片特性,具有更高的少子寿命,适合更为复杂的电池工艺并得到更高的电池转换效率。
N型晶硅电池技术中,通过硼掺杂形成发射极,而选择性硼掺杂有利于在浅掺杂区域保持良好的表面复合,以及在重掺杂区域保持良好的欧姆接触、降低金属复合。而基于P型晶硅电池量产技术方案,采用先磷扩散形成PSG再激光得到重掺杂的技术路线无法直接应用于N型硼掺杂,这是由于BSG作为扩散硼源具有完全不同于PSG作为磷源的特性,直接将已经非常成熟的选择性激光磷扩散技术显然是无法实现的。申请号为201910017046.7的中国专利公开了一种旋涂硼源激光掺杂制作N型选择性发射极双面电池的方法,其正面的重掺杂发射极采用BSG激光掺杂法完成,选用的激光波长为355nm或532nm,光斑采用方形光斑,激光功率在20W-50W之间,基频为100KHz-360KHz;该专利忽视了激光在晶硅金字塔绒面造成的不可逆转的损伤,随着N型晶硅电池效率不断提高,由于激光损伤导致复合增加的问题逐渐凸显,选择性硼掺杂带来的提效也会大打折扣。申请号为201910578339.2的中国专利公开了一种激光硼掺杂选择性发射极TOPCon结构电池及其制备方法,其先形成高硼表面浓度的P++层,不进行氧化,再采用激光对所需区域进行掺杂推进,经过清洗后放回扩散炉进行氧化以达到形成选择性发射极的目的;该专利需要经过两次高温,两次高温均控制在700℃~1200℃,且时间长,无疑此种操作会降低部分硅片体少子寿命,而激光先掺杂虽然可以达到不同掺杂深度的目的,但共氧化会缩小重掺杂和轻掺杂之间近表面浓度的差异,这不利于降低金属电极与重掺杂区域的欧姆接触。
发明内容
为解决现有技术的缺陷,本发明提供一种N型晶硅电池的选择性硼掺杂方法,包括如下步骤:
对制绒后的N型硅片进行硼扩散,形成硼的浅掺杂,且硼扩面上形成BSG;
然后按照金属电极图形,在硼扩面上印刷能与BSG反应并将BSG反应转变为硼硅化合物的腐蚀浆料,形成与金属电极图形一致的覆浆区域;
然后通过加热使腐蚀浆料与覆浆区域的BSG发生反应,将覆浆区域的BSG转变为硼硅化合物;
然后对覆浆区域进行激光推进,使覆浆区域形成硼的重掺杂。
优选的,硼扩散形成的浅掺杂区,其方阻为100~300Ω/□,表面复合J0<30fA/cm2
优选的,腐蚀浆料为含硼腐蚀浆料或不含硼腐蚀浆料。
优选的,加热腐蚀浆料的温度为50~700℃,时间为1~60min。
优选的,激光推进采用脉冲激光或连续激光。
优选的,激光推进所用激光的能量密度为0.05~50J/cm2,光束为圆形或方形,光束内激光能量均匀分布。
本发明还提供一种N型晶硅电池的制备工艺,其应用上述的选择性硼掺杂方法。
优选的,所述N型晶硅电池的制备工艺,其包括如下步骤:
1)N型硅片制绒、清洗;
2)硼扩散,形成低复合的浅掺杂区,且硼扩面上形成BSG;
3)按照金属电极图形,在硼扩面上印刷能与BSG反应的腐蚀浆料,形成与金属电极图形一致的覆浆区域;然后通过加热使腐蚀浆料与覆浆区域的BSG发生反应,将覆浆区域的BSG转变为硼硅化合物;
4)对覆浆区域进行激光推进,使覆浆区域形成硼的重掺杂;
5)沉积绝缘介质层;
6)清洗背面,去除BSG,磷扩散形成背场;
7)清洗,去除PSG和绝缘介质层;
8)双面沉积减反射钝化膜;
9)印刷金属电极,烧结。
优选的,绝缘介质层为SiNx层、SiOx层、SiONx层、AlOx层中的一层或几层叠加。
优选的,绝缘介质层的厚度为2~200nm。
本发明的优点和有益效果在于:提供一种N型晶硅电池的选择性硼掺杂方法及其应用,本发明利用腐蚀浆料与BSG发生反应,降低了硼源进入硅基底中所需的激光能量,保护硅片表面的金字塔绒面不受到激光破坏,形成高表面浓度深结的重掺杂区,达到选择性硼掺杂的目的。
本发明采用能与BSG反应的腐蚀浆料,该浆料可以与含硼氧化硅发生反应,但不与硅反应,该浆料常温下不具有化学活性,便于储存和印刷,经加温后材料激活与BSG反应可生成含硼硅化物,浆料中含有的有机/无机溶剂以及反应生产的副产物经加热后挥发,以保证激光作用区域仅为硼硅化合物。
腐蚀浆料常温下不与BSG反应,升温激活后腐蚀BSG,与BSG(含硼氧化硅)发生反应但不与Si发生反应,从而将BSG转变为硼硅化合物,且对硅基底表面绒面不产生破坏和腐蚀。
对于SiO2/Si界面硼的分凝系数>1,在高温情况下,硼元素受热推进的过程中,一部分硼也会向SiO2层中扩散,导致硅基表面的硼浓度进一步下降,这就是常规激光硼掺杂无法或者很难达到高表面浓度的原因。本发明中,硼硅化合物与硅基底(近表面已掺硼区域)的材料属性基本一致,受热影响后硼元素从高浓度(硼硅化合物)向低浓度(硅基底中掺硼区域)扩散,从而达到高表面浓度以及深结的目的。
本发明还具有如下特点:
1)本发明由于硼硅化合物与硅基底材料特性基本一致,因此可大大降低硼元素推进所需的能量,即作用其表面的激光能量,从而最大程度地减小因激光损伤产生的复合;
2)本发明的高表面硼浓度与金属电极接触,有利于降低金属接触电阻,减小金属复合。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明提供一种N型晶硅电池的制备工艺,其包括如下步骤:
1)N型硅片制绒、清洗;
2)对制绒后的N型硅片进行硼扩散,形成硼的浅掺杂,且硼扩面上形成BSG;硼扩散形成的浅掺杂区,其方阻为100~300Ω/□,表面复合J0<30fA/cm2
3)按照金属电极图形,在硼扩面上印刷能与BSG反应并将BSG反应转变为硼硅化合物的含硼或不含硼腐蚀浆料,形成与金属电极图形一致的覆浆区域;然后通过加热使腐蚀浆料与覆浆区域的BSG发生反应,将覆浆区域的BSG转变为硼硅化合物;加热腐蚀浆料的温度为50~700℃,时间为1~60min;
4)对覆浆区域进行激光推进,使覆浆区域形成硼的重掺杂;激光推进采用脉冲激光或连续激光;激光推进所用激光的能量密度为0.05~50J/cm2,光束为圆形或方形,光束内激光能量均匀分布;
5)沉积绝缘介质层;绝缘介质层为SiNx层、SiOx层、SiONx层、AlOx层中的一层或几层叠加;绝缘介质层的厚度为2~200nm;
6)清洗背面,去除BSG,磷扩散形成背场;
7)清洗,去除PSG和绝缘介质层;
8)双面沉积减反射钝化膜;
9)印刷金属电极,烧结。
本发明的具体实施例如下:
实施例1
N型硅片制绒后硼扩散,扩散方阻为200Ω/□;然后在扩散面按照金属化电极印刷不含硼元素的腐蚀浆料;然后将硅片置于加热台烘干,烘干温度250℃,烘干时间2.5min;然后激光作用于浆料上,扫描速度10m/s,功率30W,激光作用后方阻90Ω/□;然后沉积SiNx膜50nm;然后清洗背面,去除BSG,磷扩散形成背场;然后双面清洗并覆盖减反射钝化膜;然后印刷电极、烧结制备得到N型电池。
经测试,实施例1的硼浅掺杂区域表面浓度为9.8E18 atoms/cm3,结深为0.4 μm;激光后硼重掺杂区域表面浓度6.5E+19 atoms/cm3,结深0.8 μm。
实施例2
N型硅片制绒后硼扩散,扩散方阻为250Ω/□;然后在扩散面按照金属化电极印刷含硼元素的腐蚀浆料(浆料中硼含量为10wt%);然后将硅片置于加热台烘干,烘干温度300℃,烘干时间10min,然后激光作用于浆料上,扫描速度15m/s,功率20W,激光作用后方阻75Ω/□;然后沉积SiNx膜50nm;然后清洗背面,去除BSG,磷扩散形成背场;然后双面清洗并覆盖减反射钝化膜;然后印刷电极、烧结制备得到N型电池。
经测试,实施例2的硼浅掺杂区域表面浓度为8.3E18 atoms/cm3,结深为0.35 μm,激光后硼重掺杂区域表面浓度9.2E+19 atoms/cm3,结深0.76 μm。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.N型晶硅电池的选择性硼掺杂方法,其特征在于,包括如下步骤:
对制绒后的N型硅片进行硼扩散,形成硼的浅掺杂,且硼扩面上形成BSG;
然后按照金属电极图形,在硼扩面上印刷能与BSG反应的腐蚀浆料,形成覆浆区域;
然后通过加热使腐蚀浆料与覆浆区域的BSG发生反应,将覆浆区域的BSG转变为硼硅化合物;
然后对覆浆区域进行激光推进,使覆浆区域形成硼的重掺杂。
2.根据权利要求1所述的N型晶硅电池的选择性硼掺杂方法,其特征在于,硼扩散形成的浅掺杂区,其方阻为100~300Ω/□,表面复合J0<30fA/cm2
3.根据权利要求1所述的N型晶硅电池的选择性硼掺杂方法,其特征在于,腐蚀浆料为含硼腐蚀浆料或不含硼腐蚀浆料。
4.根据权利要求1所述的N型晶硅电池的选择性硼掺杂方法,其特征在于,加热腐蚀浆料的温度为50~700℃,时间为1~60min。
5.根据权利要求1所述的N型晶硅电池的选择性硼掺杂方法,其特征在于,激光推进采用脉冲激光或连续激光。
6.根据权利要求1所述的N型晶硅电池的选择性硼掺杂方法,其特征在于,激光推进所用激光的能量密度为0.05~50J/cm2,光束为圆形或方形,光束内激光能量均匀分布。
7.N型晶硅电池的制备工艺,其特征在于,其应用权利要求1至6中任一项所述的选择性硼掺杂方法。
8.根据权利要求7所述的N型晶硅电池的制备工艺,其特征在于,其包括如下步骤:
1)N型硅片制绒、清洗;
2)硼扩散,形成低复合的浅掺杂区;
3)按照金属电极图形,在硼扩面上印刷能与BSG反应的腐蚀浆料,形成覆浆区域;然后通过加热使腐蚀浆料与覆浆区域的BSG发生反应,将覆浆区域的BSG转变为硼硅化合物;
4)对覆浆区域进行激光推进,使覆浆区域形成硼的重掺杂;
5)沉积绝缘介质层;
6)清洗背面,去除BSG,磷扩散形成背场;
7)清洗,去除PSG和绝缘介质层;
8)双面沉积减反射钝化膜;
9)印刷金属电极,烧结。
9.根据权利要求8所述的N型晶硅电池的制备工艺,其特征在于,绝缘介质层为SiNx层、SiOx层、SiONx层、AlOx层中的一层或几层叠加。
10.根据权利要求8所述的N型晶硅电池的制备工艺,其特征在于,绝缘介质层的厚度为2~200nm。
CN202210046732.9A 2022-01-17 2022-01-17 N型晶硅电池的选择性硼掺杂方法及其应用 Pending CN114464700A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210046732.9A CN114464700A (zh) 2022-01-17 2022-01-17 N型晶硅电池的选择性硼掺杂方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210046732.9A CN114464700A (zh) 2022-01-17 2022-01-17 N型晶硅电池的选择性硼掺杂方法及其应用

Publications (1)

Publication Number Publication Date
CN114464700A true CN114464700A (zh) 2022-05-10

Family

ID=81409983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210046732.9A Pending CN114464700A (zh) 2022-01-17 2022-01-17 N型晶硅电池的选择性硼掺杂方法及其应用

Country Status (1)

Country Link
CN (1) CN114464700A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115911186A (zh) * 2023-01-30 2023-04-04 通威太阳能(眉山)有限公司 一种太阳电池及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070015632A (ko) * 1999-08-10 2007-02-05 가부시키가이샤 히타치세이사쿠쇼 반도체 집적 회로 장치의 제조 방법
CN104091842A (zh) * 2014-07-07 2014-10-08 常州天合光能有限公司 分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法
CN105051867A (zh) * 2013-01-11 2015-11-11 荷兰能源建设基金中心 在基板中提供硼掺杂区域的方法以及使用该基板的太阳能电池
WO2016078365A1 (zh) * 2014-11-19 2016-05-26 上海神舟新能源发展有限公司 高效n型双面太阳电池
CN108110090A (zh) * 2018-01-11 2018-06-01 江苏顺风光电科技有限公司 一种n型双面电池制备方法
CN109742172A (zh) * 2019-01-08 2019-05-10 华东理工大学 旋涂硼源激光掺杂制作n型选择性发射极双面电池的方法
CN112670353A (zh) * 2020-12-17 2021-04-16 浙江正泰太阳能科技有限公司 一种硼掺杂选择性发射极电池及其制备方法
CN113782423A (zh) * 2021-08-25 2021-12-10 中国科学院宁波材料技术与工程研究所 杂质扩散方法和太阳能电池制造方法
WO2023124254A1 (zh) * 2021-06-01 2023-07-06 常州时创能源股份有限公司 一种硼掺杂选择性发射极的制备方法及应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070015632A (ko) * 1999-08-10 2007-02-05 가부시키가이샤 히타치세이사쿠쇼 반도체 집적 회로 장치의 제조 방법
CN105051867A (zh) * 2013-01-11 2015-11-11 荷兰能源建设基金中心 在基板中提供硼掺杂区域的方法以及使用该基板的太阳能电池
CN104091842A (zh) * 2014-07-07 2014-10-08 常州天合光能有限公司 分布式局域硼掺杂的双面感光晶体硅太阳电池及其制备方法
WO2016078365A1 (zh) * 2014-11-19 2016-05-26 上海神舟新能源发展有限公司 高效n型双面太阳电池
CN108110090A (zh) * 2018-01-11 2018-06-01 江苏顺风光电科技有限公司 一种n型双面电池制备方法
CN109742172A (zh) * 2019-01-08 2019-05-10 华东理工大学 旋涂硼源激光掺杂制作n型选择性发射极双面电池的方法
CN112670353A (zh) * 2020-12-17 2021-04-16 浙江正泰太阳能科技有限公司 一种硼掺杂选择性发射极电池及其制备方法
WO2023124254A1 (zh) * 2021-06-01 2023-07-06 常州时创能源股份有限公司 一种硼掺杂选择性发射极的制备方法及应用
CN113782423A (zh) * 2021-08-25 2021-12-10 中国科学院宁波材料技术与工程研究所 杂质扩散方法和太阳能电池制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
庞恒强;周雨;贺茂双;王凯辉;常辉东;卞涛;薛凯;: "背面局域点接触对PERC太阳电池性能的影响", 太阳能, no. 10, pages 45 - 54 *
王冬冬;杨超;张敏;李得银;: "N型晶硅电池硼源扩散技术研究进展", 电子技术与软件工程, no. 12, pages 80 - 81 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115911186A (zh) * 2023-01-30 2023-04-04 通威太阳能(眉山)有限公司 一种太阳电池及其制备方法

Similar Documents

Publication Publication Date Title
CN101331614B (zh) 背接触式光伏电池
CN103794679B (zh) 一种背接触太阳能电池的制备方法
JP7082235B1 (ja) 太陽電池及びその製造方法、太陽電池モジュール
CN1155104C (zh) 制造具有可选择扩散区域的半导体器件的方法以及所制成的伏打器件
JP2010521824A (ja) 太陽電池
US20050189013A1 (en) Process for manufacturing photovoltaic cells
WO2010135153A2 (en) Back contact solar cells with effective and efficient designs and corresponding patterning processes
CN111106188B (zh) N型电池及其选择性发射极的制备方法、以及n型电池
WO2021012710A1 (zh) 一种n型晶体硅电池的制备方法
NL2023003B1 (en) Method for preparing full back-contact electrode cell with efficient light trapping and selective doping
CN113809205B (zh) 太阳能电池的制备方法
CN106653942A (zh) 一种n型单晶硅双面电池的制作方法
JP7368653B2 (ja) 太陽電池及び光起電力モジュール
CN102569522A (zh) 一种高效晶体硅太阳电池局部背接触结构的制备方法
CN102487105A (zh) 一种制备立体结构高效太阳能电池的方法
WO2023124254A1 (zh) 一种硼掺杂选择性发射极的制备方法及应用
Singh et al. Fabrication of c-Si solar cells using boric acid as a spin-on dopant for back surface field
CN102916087B (zh) 太阳能电池及其制作方法
CN114464700A (zh) N型晶硅电池的选择性硼掺杂方法及其应用
KR20120062224A (ko) 태양전지의 제조방법
JP6426486B2 (ja) 太陽電池素子の製造方法
CN113594299A (zh) 一种n型硅片p++结构的制作工艺
CN108172637A (zh) 一种多晶掺镓背钝化太阳电池及其制备方法
CN116864548A (zh) 一种p型背结TOPCon电池及其制备方法
JP2005136081A (ja) 太陽電池の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination