CN108110090A - 一种n型双面电池制备方法 - Google Patents

一种n型双面电池制备方法 Download PDF

Info

Publication number
CN108110090A
CN108110090A CN201810027591.XA CN201810027591A CN108110090A CN 108110090 A CN108110090 A CN 108110090A CN 201810027591 A CN201810027591 A CN 201810027591A CN 108110090 A CN108110090 A CN 108110090A
Authority
CN
China
Prior art keywords
type double
boron
cell preparation
side cell
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810027591.XA
Other languages
English (en)
Other versions
CN108110090B (zh
Inventor
瞿辉
汤佳丽
徐春
曹玉甲
李淑娟
潘鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Shunfeng New Energy Technology Co ltd
Original Assignee
Jiangsu Shunfeng Photovoltaic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Shunfeng Photovoltaic Technology Co Ltd filed Critical Jiangsu Shunfeng Photovoltaic Technology Co Ltd
Priority to CN201810027591.XA priority Critical patent/CN108110090B/zh
Publication of CN108110090A publication Critical patent/CN108110090A/zh
Application granted granted Critical
Publication of CN108110090B publication Critical patent/CN108110090B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种N型双面电池制备方法,包括如下步骤:①制绒;②采用旋涂法在制绒后硅片的正反面进行硼、磷共扩;③HF清洗;④正面AlOx、PECVD沉积钝化膜;⑤背面PECVD沉积钝化膜;⑥丝网印刷和烧结;⑦激光边缘隔离;⑧电池光热处理。本发明的制备方法解决了目前硼、磷扩散的难点,其有效简化了工艺流程,避免硼、磷元素的交叉污染,提升电池转换效率。

Description

一种N型双面电池制备方法
技术领域
本发明属于太阳能电池领域,具体涉及一种N型双面电池制备方法。
背景技术
随着传统能源的日趋匮乏及环境破坏严重的双重压力,寻找清洁的可再生能源成为解决能源问题的长期战略目标。在各种新型的清洁能源中,太阳能被认为最具发展前景的清洁能源之一,太阳能电池在能源结构中将占有重要的战略电位,并成为一种主要能源形式。其中晶硅太阳能电池是发展速度最快、大量应用于大型电站的太阳能电池,主要表现为P型晶硅电池的产业化生产,但是随着N型晶硅电池的相关难题逐渐被攻克,P型晶硅电池效率提升空间已经接近上限,而N型硅因其少子寿命高、光致衰减低的特性,具有更高的研究价值和前景。
N型双面电池的制备方法包括以下几个步骤:①制绒;②硼、磷扩散;③HF清洗;④正面AlOx、PECVD沉积钝化膜;⑤背面PECVD沉积钝化膜;⑥丝网印刷和烧结;⑦激光边缘隔离;⑧电池光热处理;即可得到N型双面电池。
上述步骤②中硼、磷扩散的方法分为以下几种:(1)硼扩散,背面清洗、刻蚀,磷扩散;但该方法电池制作流程长,不利于工艺控制,背面清洗易引入杂质,经二次高温磷扩散形成复合中心,降低硅片少子寿命。(2)硼浆涂覆、烘干,进炉管高温推进,不出炉管POCl3扩散;该流程只需进一次炉管即可完成硼、磷共扩,省去了流程(1)中间背面清洗、刻蚀的步骤,但该方法仍需经过两次高温影响硅片少子寿命,且使用POCl3气体扩散,易造成硼扩散面掺杂入磷元素而影响PN结质量,降低电性能。
另外,双面采用PECVD沉积形成含硼/磷二氧化硅层,再双面共扩散,该方法获得的硼、磷扩散方阻均匀性差,且所使用的PECVD沉积含硼/磷二氧化硅层设备与传统PECVD设备不兼容,需要另外投资,该设备为了满足二氧化硅层中掺杂硼/磷源,需要特殊材质的炉管和舟,因此该设备造价昂贵且维护成本高。
故目前,对于硼、磷扩散步骤来说,在N型双面电池制备方法中具有更高的研究价值和前景。
发明内容
为了克服上述缺陷,本发明提供一种N型双面电池制备方法,解决目前硼、磷扩散的难点,其有效简化了工艺流程,避免硼、磷元素的交叉污染,提升电池转换效率。
为了达到上述发明的目的,本发明采用的技术方案是:
一种N型双面电池制备方法,包括如下步骤:
①制绒;
②采用旋涂法在制绒后硅片的正反面进行硼、磷共扩;
③HF清洗;
④正面AlOx、PECVD沉积钝化膜;
⑤背面PECVD沉积钝化膜;
⑥丝网印刷和烧结;
⑦激光边缘隔离;
⑧电池光热处理。
作为本发明的进一步改进阐述,步骤②的具体操作包括如下步骤:
S1:在制绒后硅片的正面涂覆预湿液后旋涂硼源浆料,再进行预处理;
S2:在制绒后硅片的反面涂覆预湿液后旋涂磷源浆料,再进行预处理;
S3:共同在氧气氛围内进行高温处理以形成硼、磷扩散层。
作为本发明的进一步改进:步骤S1中预处理具体为:在50-200℃温度下烘干处理20-60s。
作为本发明的进一步改进:步骤S2中预处理具体为:在80-200℃温度下烘干处理20-80s。
作为本发明的进一步改进:步骤S3中所述退火处理为:炉管先升温至500-800℃,通入氧气50-500sccm在该条件下保持10-60min;
将硅片表面有机残留物完全去除后升温至900-1000℃,先在氮气氛围下保持30-60min,然后在氮气和氧气混合氛围下保持20-120 min,硼扩散方阻为50-100ohm/sq,磷扩散方阻为20-60ohm/sq。
本步骤中先控制温度和氧气通入量保证在相对低温条件下将旋涂液内含有的有机物质清除。本步骤中氧气的流量偏低会导致硅片表面有机物质残留造成污染,氧气流量偏低或偏高均会导致氧气与旋涂液反应不均匀,从而表现为方阻均匀性偏低。
本发明在除杂升温后,先在氮气氛围下保持30-60min从而保证方阻控制在目标范围内;再在在氮气和氧气混合氛围下保持30-150min从而控制硼、磷素在硅片中掺杂的浓度和结深。
作为本发明的进一步改进:所述正反面涂覆的硼源浆料与磷源浆料之比为1:1.2-2。本发明严格控制硼源浆料、磷源浆料的涂覆用量配比,从而保证两者能在炉管内相同工艺条件实现共扩,即在相同炉温、氧气流量条件下,同时满足硼扩散和磷扩散方阻要求,又能获得理想结型及反向包含电流J0。
作为本发明的进一步改进:步骤S1中涂覆预湿液的量为1-2mL,硼源浆料量为0.4-1.2mL,上述涂覆量适用于硅片规格为(156-160)mm*(156-160)mm。
作为本发明的进一步改进:步骤S2中涂覆预湿液的量为1-2mL,磷源浆料量为0.5-1.5mL。
本发明严格控制预湿液、硼源浆料和磷源浆料的涂覆量,避免出现涂覆量大小问题,保证了硼源和磷源能均匀涂覆于硅片表面,提高产品形成后的PN结质量,从而提高产品的电性能。例如如果预湿液小于1mL、硼源浆料量小于0.4mL,就无法在硅片上涂覆均匀和完全。如果预湿液大于2mL、硼源浆料量大于1.2mL,一方面预湿液过量会导致硅片表面有机质残留过量,另一方面硼源过量会导致死层的增加和BRL产生,BRL采用常规手段无法清除干净,死层和BRL对电性能均具有较大的影响。
作为本发明的进一步改进:所述烘干处理采用逐步分段加热工艺,其依次在50℃、100℃、150℃、200℃环境下逐级烘干。
作为本发明的进一步改进:所述烘干处理采用逐步分段加热工艺,其依次在80℃、120℃、150℃、180℃、200℃环境下逐级烘干。
本发明的有益效果为:
本发明在硼、磷共扩步骤中采用先旋涂法预涂覆硼、磷浆料,再经高温共扩的方法,其与传统的气相扩散相比,该方法导致硼磷交叉污染的概率较低;传统气相磷扩法、喷淋法均会造成正面不同程度的绕扩,影响N型正面PN结质量,增加漏电。
本发明在硼、磷共扩步骤中取代了传统的先硼扩、清洗、再磷扩的步骤,有利于降低生产成本以及中间过程引入的污染风险。
本发明可在低温下预先采用旋涂法在硅片表面正、反面涂覆浆料,使得硅片表面浆料的均匀性提高。
本发明的加工方法中经一次高温即完成硼、磷扩散,节省了工艺时间,避免了POCl3气体扩散对正面PN结的影响,提升电池转换效率。
具体实施方式
下面将结合本实施例,对本发明的技术方案进行清楚、完整地描述。
实施例1:本发明涉及一种N型双面电池制备方法,硅片规格为158mm*158mm,选用N型硅进行如下操作:①制绒;②旋涂法硼磷共扩;③HF清洗;④正面AlOx、PECVD沉积钝化膜;⑤背面PECVD沉积钝化膜;⑥丝网印刷和烧结;⑦激光边缘隔离;⑧电池光热处理;得到N型双面电池。
本实施例中步骤②的具体工艺流程为:使用1.5mL预湿液先涂覆,再使用0.5mL的硼源进行旋涂,预湿液的作用是将硼源更快更有效地铺展到整个硅片表面,本实施例中预湿液型号PW-1,硼源型号DS-2。经过逐步分段加热工艺依次在50℃、100℃、150℃、200℃分别烘干8s时间,从而让源液更好地受热均匀,防止因受热不均导致有机质蒸发不均匀,以及影响源液凝固速率不均。再使用1.5mL预湿液和0.9mL的磷源进行旋涂。经过逐步分段加热工艺依次在80℃、120℃、150℃、180℃、200℃环境下分别烘干7s;将硅片硼扩散面与硼扩散面相对放置双插入石英舟,在炉管温度700℃条件下进入炉管,氧气200sccm条件下保持30min,用于表面氧化层的形成,去除硅片表面残留有机质;再氮气氛围下升温至960℃,保持45min,再在氮气和氧气混合氛围下保持30 min,然后降低炉温至750℃硅片出炉管,从而获得目标方阻,以及控制掺杂物在硅片中的浓度分布。该工艺条件下正面硼扩散方阻为65ohm/sq,磷扩散方阻为29ohm/sq。
本发明在退火处理中采用两段加热的方法,且控制不同的氛围,原理为:在低温过程中加入氧气有利于表面氧化层的形成,防止硼、磷素因第二步高温导致大量死层进入硅片更深处,从而影响PN结质量;在低温过程中,通入氧气的量不宜过高,防止因氧气量过大导致反应速度不均,表面氧化层厚度不均,从而造成方阻均匀性变差,即硅片表面整体掺杂不均匀;由于硼、磷素特性,需要更高温度才能进行有效掺杂,高温的过程即掺杂的过程,由于该步骤温度较高,氧气对硅片造成的影响非常明显且不利,因此需要调节气体氛围。
经检测和对比两种N型双面电池制备方法电性能参数如下:
本表格中所述常规工艺为:①制绒;②硼浆旋涂法扩散;③背面清洗、刻蚀;④背面常压POCl3扩散;⑤HF清洗;⑥正面AlOx、PECVD沉积钝化膜;⑦背面PECVD沉积钝化膜;⑧丝网印刷和烧结;⑨激光边缘隔离;⑩电池光热处理;得到N型双面电池。
由此可见,本发明制备的N型双面电池,正面效率与常规工艺基本持平,背面效率提升0.16%。
本发明简化了工艺流程,节省工艺时间,同时提升了电池背面转换效率,而且本发明使用设备均为常规硼/磷扩散设备,不会增加额外投资成本。
显然,上述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (10)

1.一种N型双面电池制备方法,其特征在于,包括如下步骤:
①制绒;
②采用旋涂法在制绒后硅片的正反面进行硼、磷共扩;
③HF清洗;
④正面AlOx、PECVD沉积钝化膜;
⑤背面PECVD沉积钝化膜;
⑥丝网印刷和烧结;
⑦激光边缘隔离;
⑧电池光热处理。
2.根据权利要求1所述的N型双面电池制备方法,其特征在于,步骤②的具体操作包括如下步骤:
S1:在制绒后硅片的正面涂覆预湿液后旋涂硼源浆料,再进行预处理;
S2:在制绒后硅片的反面涂覆预湿液后旋涂磷源浆料,再进行预处理;
S3:在共同氛围内进行高温处理以形成硼、磷扩散层。
3.根据权利要求2所述的N型双面电池制备方法,其特征在于,步骤S1中预处理具体为:在50-200℃温度下烘干处理20-60s。
4.根据权利要求2所述的N型双面电池制备方法,其特征在于,步骤S2中预处理具体为:在80-200℃温度下烘干处理20-80s。
5.根据权利要求2所述的N型双面电池制备方法,其特征在于,步骤S3中所述退火处理为:炉管先升温至500-800℃,通入氧气50-500sccm在该条件下保持10-60min;
将硅片表面有机残留物完全去除后升温至900-1000℃,先在氮气氛围下保持30-60min,然后在氮气和氧气混合氛围下保持20-120min,硼扩散方阻为50-100ohm/sq,磷扩散方阻为20-60ohm/sq。
6.根据权利要求2所述的N型双面电池制备方法,其特征在于,所述正反面涂覆的硼源浆料与磷源浆料之比为1:1.2-2。
7.根据权利要求6所述的N型双面电池制备方法,其特征在于,步骤S1中涂覆预湿液的量为1-2mL,硼源浆料量为0.4-1.2mL,上述涂覆量适用于硅片规格为(156-160)mm*(156-160)mm。
8.根据权利要求7所述的N型双面电池制备方法,其特征在于,步骤S2中涂覆预湿液的量为1-2mL,磷源浆料量为0.5-1.5mL。
9.根据权利要求3所述的N型双面电池制备方法,其特征在于,所述烘干处理采用逐步分段加热工艺,其依次在50℃、100℃、150℃、200℃环境下逐级烘干。
10.根据权利要求4所述的N型双面电池制备方法,其特征在于,所述烘干处理采用逐步分段加热工艺,其依次在80℃、120℃、150℃、180℃、200℃环境下逐级烘干。
CN201810027591.XA 2018-01-11 2018-01-11 一种n型双面电池制备方法 Active CN108110090B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810027591.XA CN108110090B (zh) 2018-01-11 2018-01-11 一种n型双面电池制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810027591.XA CN108110090B (zh) 2018-01-11 2018-01-11 一种n型双面电池制备方法

Publications (2)

Publication Number Publication Date
CN108110090A true CN108110090A (zh) 2018-06-01
CN108110090B CN108110090B (zh) 2020-03-06

Family

ID=62219380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810027591.XA Active CN108110090B (zh) 2018-01-11 2018-01-11 一种n型双面电池制备方法

Country Status (1)

Country Link
CN (1) CN108110090B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742172A (zh) * 2019-01-08 2019-05-10 华东理工大学 旋涂硼源激光掺杂制作n型选择性发射极双面电池的方法
CN110197855A (zh) * 2019-05-29 2019-09-03 西安理工大学 用于Topcon电池制作的poly-Si绕镀的去除方法
CN114464700A (zh) * 2022-01-17 2022-05-10 常州时创能源股份有限公司 N型晶硅电池的选择性硼掺杂方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061492A (zh) * 1990-10-24 1992-05-27 无比太阳能公司 在太阳能电池基片上形成扩散结的方法和设备
CN104600151A (zh) * 2013-10-31 2015-05-06 东京应化工业株式会社 预湿用组合物
CN104600152A (zh) * 2013-10-31 2015-05-06 东京应化工业株式会社 太阳能电池的制造方法
CN105390374A (zh) * 2015-10-28 2016-03-09 华东理工大学 一种改善n型晶硅双面太阳电池硼旋涂方法
CN105624795A (zh) * 2016-03-09 2016-06-01 中国科学院上海微系统与信息技术研究所 一种n型硅片热处理方法
CN107068804A (zh) * 2017-03-30 2017-08-18 山东力诺太阳能电力股份有限公司 一种在n型硅衬底上制备太阳能电池的方法
CN107195543A (zh) * 2017-04-20 2017-09-22 华东理工大学 一种晶硅太阳能电池用液态硼源及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061492A (zh) * 1990-10-24 1992-05-27 无比太阳能公司 在太阳能电池基片上形成扩散结的方法和设备
CN104600151A (zh) * 2013-10-31 2015-05-06 东京应化工业株式会社 预湿用组合物
CN104600152A (zh) * 2013-10-31 2015-05-06 东京应化工业株式会社 太阳能电池的制造方法
CN105390374A (zh) * 2015-10-28 2016-03-09 华东理工大学 一种改善n型晶硅双面太阳电池硼旋涂方法
CN105624795A (zh) * 2016-03-09 2016-06-01 中国科学院上海微系统与信息技术研究所 一种n型硅片热处理方法
CN107068804A (zh) * 2017-03-30 2017-08-18 山东力诺太阳能电力股份有限公司 一种在n型硅衬底上制备太阳能电池的方法
CN107195543A (zh) * 2017-04-20 2017-09-22 华东理工大学 一种晶硅太阳能电池用液态硼源及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742172A (zh) * 2019-01-08 2019-05-10 华东理工大学 旋涂硼源激光掺杂制作n型选择性发射极双面电池的方法
CN110197855A (zh) * 2019-05-29 2019-09-03 西安理工大学 用于Topcon电池制作的poly-Si绕镀的去除方法
CN114464700A (zh) * 2022-01-17 2022-05-10 常州时创能源股份有限公司 N型晶硅电池的选择性硼掺杂方法及其应用

Also Published As

Publication number Publication date
CN108110090B (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
CN106057980B (zh) 一种晶体硅太阳能电池的磷扩散方法
EP3246954B1 (en) Manufacturing method of an n-type bifacial cell
CN102263159A (zh) 一种利用硼磷共扩散制备n型太阳电池的工艺
CN105895738A (zh) 一种钝化接触n型太阳能电池及制备方法和组件、系统
CN105609594B (zh) N型双面太阳能电池的制备方法
CN103500774B (zh) 一种利用p型硅球作为硼源制备局部背场的方法
CN108110090A (zh) 一种n型双面电池制备方法
CN101950781A (zh) 一种承载硅片的载具及选择性发射极太阳电池的掩膜工艺
CN104404626B (zh) 物理冶金多晶硅太阳能电池的磷扩散方法
CN106653942A (zh) 一种n型单晶硅双面电池的制作方法
CN104157740B (zh) 一种n型双面太阳能电池的制备方法
CN106098860A (zh) 一种太阳能电池片的生产工艺
CN103050581A (zh) 一种激光掺杂选择性发射结的扩散工艺
CN101950780A (zh) 选择性发射极太阳电池的制备方法
CN102280519A (zh) 一种利用硼磷共扩散制备高效全背电极n型太阳电池的工艺
CN110323304A (zh) 低压扩散低温氧化吸杂工艺
CN114975643A (zh) N-TOPCon光伏太阳能电池制备方法及太阳能电池
CN110212057B (zh) 一种p型钝化接触晶体硅太阳能电池的制备方法
CN102263153A (zh) 一种改进太阳能电池的扩散方法
CN102709389B (zh) 一种双面背接触太阳能电池的制备方法
CN104064623B (zh) 一种提升太阳电池转换效率的后处理方法
CN109545673B (zh) 一种晶体硅太阳电池用无氧扩散方法
CN104269466B (zh) 一种硅片的硼掺杂方法
CN208336240U (zh) 太阳能电池及太阳能电池组件
CN102864436A (zh) 一种改良的晶硅太阳能电池氮化硅减反膜制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220513

Address after: 213123 No.99, Yanghu Road, Wujin high tech Industrial Development Zone, Changzhou City, Jiangsu Province

Patentee after: JIANGSU SHUNFENG NEW ENERGY TECHNOLOGY Co.,Ltd.

Address before: 213164 No.99, Yanghu Road, Wujin high tech Industrial Development Zone, Changzhou City, Jiangsu Province

Patentee before: JIANGSU SHUNFENG PHOTOVOLTAIC TECHNOLOGY Co.,Ltd.