CN114436638A - 一种铁掺杂磷酸锆锂陶瓷型固体电解质及其制备方法 - Google Patents
一种铁掺杂磷酸锆锂陶瓷型固体电解质及其制备方法 Download PDFInfo
- Publication number
- CN114436638A CN114436638A CN202210079033.4A CN202210079033A CN114436638A CN 114436638 A CN114436638 A CN 114436638A CN 202210079033 A CN202210079033 A CN 202210079033A CN 114436638 A CN114436638 A CN 114436638A
- Authority
- CN
- China
- Prior art keywords
- ceramic powder
- ceramic
- solid electrolyte
- powder
- drying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/447—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种铁掺杂磷酸锆锂陶瓷型固体电解质及其制备方法。该固体电解质的化学结构式为Li1+xFexZr2‑x(PO4)3,其中0<x≤0.1。所述制备方法将原料搅拌均匀后,烘干,将烘干的块状物磨细,装入坩埚中,升温加热熔融,然后经空气淬火后制得陶瓷粉末,将陶瓷粉末先进行研磨,然后采用湿法球磨,干燥后制得陶瓷粉;将陶瓷粉末称取定量装入压机模具中,压成片,在常压空气中用坩埚盛装压好的片,加热使陶瓷粉晶化,通过控制升温速率、合成温度与保温时间等工艺参数来制备具有优异性能的陶瓷型固体电解质,其电导率达到1×10‑4S/cm。
Description
技术领域
本发明涉及电池材料技术领域,尤其涉及一种铁掺杂磷酸锆锂陶瓷型固体电解质及其制备方法。
背景技术
全固体电池由于热稳定性高、安全性能好近年来受到广泛关注,被认为是下一代锂离子电池的重点发展方向。全固体电池的核心是固体电解质,而固体电解质的重点问题在于其相对较低的离子导电率,一般可将之分为氧化物固体电解质和硫化物固体电解质。硫化物固体电解质常具有较高的离子导电率,但由于具有较高的吸湿性,其环境稳定性较差,对于实际商业化应用仍有很大一段距离。目前研究较多的是氧化物固体电解质体系,其中具有NASICON结构的陶瓷型LiZr2(PO4)3(LZP)由于较广的电化学窗口、较高的离子导电率而受到广泛关注。
传统制备LiZr2(PO4)3的溶胶凝胶法和固相法使得难以得到高离子电导的菱方结构,在室温下通常为低离子电导率的三斜相,且烧结时间太长,得到的样品电导率也不高,文献中报道三斜相LiZr2(PO4)3的离子电导率仅为10-8S/cm。
发明内容
本发明的目的在于,针对现有技术的上述不足,提出一种致密度高,室温离子电导率高的铁掺杂磷酸锆锂陶瓷型固体电解质及其制备方法。
本发明的一种铁掺杂磷酸锆锂陶瓷型固体电解质,该固体电解质的化学结构式为Li1+xFexZr2-x(PO4)3,其中0<x≤0.1。
上述的铁掺杂磷酸锆锂固体电解质的制备方法,包括以下步骤:
S1:称取Li2OH·H2O、Fe2O3、ZrO2粉料以及量取H3PO4,各原料的摩尔百分比的比例为:(1~1.1):(0~0.1):(2~1.9):1,将Fe2O3、ZrO2先进行干燥,然后再Li2OH·H2O研磨,依次将Fe2O3、ZrO2和研磨后的Li2OH ·H2O加入到H3PO4中,边加入边搅拌;
S2:将混在一起的原料搅拌均匀后,装入培养皿中,在常压条件下烘干,将烘干的块状物磨细,装入坩埚中,在1125~1250℃条件下熔融4~ 6h然后经空气淬火后制得陶瓷粉末,将陶瓷粉末先进行研磨,然后采用湿法球磨后干燥;
S3:将步骤S2处理得到的陶瓷粉末称取定量装入压机模具中,加压5~ 10MPa压成片,在常压空气中用坩埚盛装压好的片,并用该陶瓷粉末包埋,以1~3℃/min的升温速率加热至1150~1250℃,在该温度下保温6~10h,使陶瓷粉晶化,即可制得陶瓷型固体电解质。
进一步的,步骤S1中先将Fe2O3溶于装有H3PO4烧杯中,随后加入纳米ZrO2,最后加入Li2OH·H2O,放在磁力搅拌器上搅拌24~48h。
进一步的,步骤S1中,将Fe2O3、ZrO2进行干燥的温度为150~180℃,干燥时间为3~7天。
进一步的,步骤S2中将陶瓷粉末先手动研磨5~10min,球磨机中球磨介质为氧化锆球体,溶剂为无水乙醇,球体与陶瓷粉末的质量比为3:1,球磨时间10~14h。
进一步的,氧化锆球体为两种不同直径的氧化锆球体,直径分别为2 mm和5mm,两者质量比为1:1。
进一步的,步骤S2中所述坩埚为纯度不小于99%的氧化铝坩埚。
本发明方法通过Fe掺杂可以有效降低烧结温度,同时减少烧结时间,在室温下能够保持高离子电导的菱方相;利用本发明Fe掺杂制备出的产品的致密度较高,包埋后能有效阻止偏析相的产生,经测试其室温下电导率最高可达10-4S/cm。
附图说明
图1为本发明实施例4所制备的产物的X射线衍射图谱;
图2为本发明实施例4所制备的产物的扫描电镜图;
图3为本发明实施例4所制备的产物的交流阻抗测试图;
图4为对比例1的所制备的X射线衍射图谱;
图5为对比例3的所制备的X射线衍射图谱。
具体实施方式
下面结合附图对本发明做详细具体的说明,但是本发明的保护范围并不局限于以下实施例。
实施例1
称取0.0202molLi2OH·H2O、0.0002molFe2O3、0.0398molZrO2粉料以及量取0.06molH3PO4,将干燥后的ZrO2粉体加入H3PO4中,同时用磁力搅拌机搅拌,均匀后在加入Fe2O3,研磨后的Li2OH·H2O,搅拌24h后放入干燥箱,180℃下干燥7天。将烘干后块体放入玛瑙研钵,手动研磨30min。将研磨后的粉料装入纯度为99%的氧化铝坩埚进行高温熔融。使温度升温至 1250℃下保温6h,经空气淬火后得到所需陶瓷粉末,将陶瓷粉末先手动研磨5min,再利用湿法球磨可得到陶瓷粉,球磨介质为直径为2mm和5mm 的氧化锆球体两种,质量比为1:1,溶剂为无水乙醇,球体与陶瓷质量比为 3:1,球磨时间10h。将陶瓷粉末称取定量装入压机模具中,加压10MPa压成片,用坩埚盛装压好的片,并用母粉包埋,用马弗炉在常压空气中以1~ 3℃/min的升温速率加热至1250℃,在该温度下保温24h,使陶瓷粉晶化,最后得到本发明所制备的陶瓷型固体电解质。交流阻抗测试可得其电导率为6.04×10-5S/cm。
实施例2
称取0.0208molLi2OH·H2O、0.0008molFe2O3、0.0392molZrO2粉料以及量取0.06molH3PO4,将干燥后的ZrO2粉体加入H3PO4中,同时用磁力搅拌机搅拌,均匀后在加入Fe2O3,研磨后的Li2OH·H2O,搅拌24h后放入干燥箱,180℃下干燥7天。将烘干后块体放入玛瑙研钵,手动研磨30min。将研磨后的的粉料装入纯度为99%的氧化铝坩埚进行高温熔融。使温度升温至1175℃下保温6h,经空气淬火后得到所需陶瓷粉末,将陶瓷粉末先手动研磨5min,再利用湿法球磨可得到陶瓷粉,球磨介质为直径为2mm和5mm 的氧化锆球体两种,质量比为1:1,溶剂为无水乙醇,球体与陶瓷质量比为 3:1,球磨时间24h。将陶瓷粉称取定量装入压机模具中,加压10MPa压成片,用坩埚盛装压好的片,并用母粉包埋,用马弗炉在常压空气中以1~ 3℃/min的升温速率加热至1175℃,在该温度下保温10h,使陶瓷粉晶化,最后得到本发明所制备的陶瓷型固体电解质。经交流阻抗测试可得其电导率为8.56×10-5S/cm。
实施例3
称取0.021molLi2OH·H2O、0.001molFe2O3、0.039molZrO2粉料以及量取0.06molH3PO4,将干燥后的ZrO2粉体加入H3PO4中,同时用磁力搅拌机搅拌,均匀后在加入Fe2O3,研磨后的Li2OH·H2O,搅拌24h后放入干燥箱, 180℃下干燥7天。将烘干后块体放入玛瑙研钵,手动研磨30min。将研磨后的的粉料装入纯度为99%的氧化铝坩埚进行高温熔融。使温度升温至1150℃下保温6h,经空气淬火后得到所需陶瓷粉末,将陶瓷粉末先手动研磨5min,再利用湿法球磨可得到陶瓷粉,球磨介质为直径为2mm和5mm 的氧化锆球体两种,质量比为1:1,溶剂为无水乙醇,球体与陶瓷质量比为 3:1,球磨时间24h。将陶瓷粉称取定量装入压机模具中,加压10MPa压成片,用坩埚盛装压好的片,并用母粉包埋,用马弗炉在常压空气中以1~ 3℃/min的升温速率加热至1150℃,在该温度下保温12h,使陶瓷粉晶化,最后得到本发明所制备的陶瓷型固体电解质。经交流阻抗测试其电导率为1.03×10-4S/cm。
实施例4
称取0.0212molLi2OH·H2O、0.0012molFe2O3、0.0388molZrO2粉料以及量取0.06molH3PO4,将干燥后的ZrO2粉体加入H3PO4中,同时用磁力搅拌机搅拌,均匀后在加入Fe2O3,研磨后的Li2OH·H2O,搅拌24h后放入干燥箱,180℃下干燥7天。将烘干后块体放入玛瑙研钵,手动研磨30min。将研磨后的的粉料装入纯度为99%的氧化铝坩埚进行高温熔融。使温度升温至1150℃下保温6h,经空气淬火后得到所需陶瓷粉末,将陶瓷粉末先手动研磨5min,再利用湿法球磨可得到陶瓷粉,球磨介质为直径为2mm和5mm 的氧化锆球体两种,质量比为1:1,溶剂为无水乙醇,球体与陶瓷质量比为 3:1,球磨时间24h。将陶瓷粉称取定量装入压机模具中,加压10MPa压成片,用坩埚盛装压好的片,并用母粉包埋,用马弗炉在常压空气中以1~ 3℃/min的升温速率加热至1150℃,在该温度下保温10h,使陶瓷粉晶化,最后得到本发明所制备的陶瓷型固体电解质。经交流阻抗测试其电导率为 7.15×10-5S/cm。
实施例5
称取0.022molLi2OH·H2O、0.002molFe2O3、0.038molZrO2粉料以及量取0.06molH3PO4,将干燥后的ZrO2粉体加入H3PO4中,同时用磁力搅拌机搅拌,均匀后在加入Fe2O3,研磨后的Li2OH·H2O,搅拌24h后放入干燥箱, 180℃下干燥7天。将烘干后块体放入玛瑙研钵,手动研磨30min。将研磨后的的粉料装入纯度为99%的氧化铝坩埚进行高温熔融。使温度升温至1150℃下保温12h,经空气淬火后得到所需陶瓷粉末,将陶瓷粉末先手动研磨5min,再利用湿法球磨可得到陶瓷粉,球磨介质为直径为2mm和5mm 的氧化锆球体两种,质量比为1:1,溶剂为无水乙醇,球体与陶瓷质量比为 3:1,球磨时间24h。将陶瓷粉称取定量装入压机模具中,加压10MPa压成片,用坩埚盛装压好的片,并用母粉包埋,用马弗炉在常压空气中以1~3℃/min的升温速率加热至1150℃,在该温度下保温10h,使陶瓷粉晶化,最后得到本发明所制备的陶瓷型固体电解质。经交流阻抗测试其电导率为 4.37×10-5S/cm。
对比例1
称取0.02molLi2OH·H2O、0.04molZrO2粉料以及量取0.06molH3PO4,将干燥后的ZrO2粉体加入H3PO4中,同时用磁力搅拌机搅拌,均匀后加入研磨后的Li2OH·H2O,搅拌24h后放入干燥箱,180℃下干燥7天。将烘干后块体放入玛瑙研钵,手动研磨30min。将研磨后的的粉料装入纯度为99%的氧化铝坩埚进行高温熔融。使温度升温至1150℃下保温12h,经空气淬火后得到所需陶瓷粉末,将陶瓷粉末先手动研磨5min,再利用湿法球磨可得到陶瓷粉,球磨介质为直径为2mm和5mm的氧化锆球体两种,质量比为1:1,溶剂为无水乙醇,球体与陶瓷质量比为3:1,球磨时间24h。将陶瓷粉称取定量装入压机模具中,加压10MPa压成片,用坩埚盛装压好的片,并用母粉包埋,用马弗炉在常压空气中以1~3℃/min的升温速率加热至1150℃,在该温度下保温24h,使陶瓷粉晶化,最后得到陶瓷型固体电解质,烧结出来是三斜相,烧结出来的样品如4图,离子电导率仅为10-8S/cm。
对比例2
称取0.02molLi2OH·H2O、0.04molZrO2粉料以及量取0.06molH3PO4,将干燥后的ZrO2粉体加入H3PO4中,同时用磁力搅拌机搅拌,均匀后加入研磨后的Li2OH·H2O,搅拌24h后放入干燥箱,180℃下干燥7天。将烘干后块体放入玛瑙研钵,手动研磨30min。将研磨后的的粉料装入纯度为99%的氧化铝坩埚进行高温熔融。使温度升温至1350℃下保温12h,经空气淬火后得到所需陶瓷粉末,将陶瓷粉末先手动研磨5min,再利用湿法球磨可得到陶瓷粉,球磨介质为直径为2mm和5mm的氧化锆球体两种,质量比为1:1,溶剂为无水乙醇,球体与陶瓷质量比为3:1,球磨时间24h。将陶瓷粉称取定量装入压机模具中,加压10MPa压成片,用坩埚盛装压好的片,并用母粉包埋,用马弗炉在常压空气中以1~3℃/min的升温速率加热至1350℃,在该温度下保温24h,使陶瓷粉晶化,在1350℃烧结能够成为纯菱方相,最后得到陶瓷型固体电解质,离子电导率仅为6.31×10-6S/cm。
对比例3
称取0.0224molLi2OH·H2O、0.0024molFe2O3、0.0376molZrO2粉料以及量取0.06molH3PO4,将干燥后的ZrO2粉体加入H3PO4中,同时用磁力搅拌机搅拌,均匀后在加入Fe2O3,研磨后的Li2OH·H2O,搅拌24h后放入干燥箱,180℃下干燥7天。将烘干后块体放入玛瑙研钵,手动研磨30min。将研磨后的的粉料装入纯度为99%的氧化铝坩埚进行高温熔融。使温度升温至1150℃下保温12h,经空气淬火后得到所需陶瓷粉末,将陶瓷粉末先手动研磨5min,再利用湿法球磨可得到陶瓷粉,球磨介质为直径为2mm和 5mm的氧化锆球体两种,质量比为1:1,溶剂为无水乙醇,球体与陶瓷质量比为3:1,球磨时间24h。将陶瓷粉称取定量装入压机模具中,加压10MPa 压成片,用坩埚盛装压好的片,并用母粉包埋,用马弗炉在常压空气中以1~ 3℃/min的升温速率加热至1150℃,在该温度下保温24h,使陶瓷粉晶化,最后得到本发明所制备的陶瓷型固体电解质。但是由于Fe掺杂过多,导致物相结构发生了变化,如图5所示,离子电导率仅为9.52×10-6S/cm。
以上未涉及之处,适用于现有技术。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围,本发明所属技术领域的技术人员可以对所描述的具体实施例来做出各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的方向或者超越所附权利要求书所定义的范围。本领域的技术人员应该理解,凡是依据本发明的技术实质对以上实施方式所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。
Claims (7)
1.一种铁掺杂磷酸锆锂陶瓷型固体电解质,其特征在于:该固体电解质的化学结构式为Li1+xFexZr2-x(PO4)3,其中0<x≤0.1。
2.一种如权利要求1所述的铁掺杂磷酸锆锂固体电解质的制备方法,其特征在于:包括以下步骤:
S1:称取Li2OH·H2O、Fe2O3、ZrO2粉料以及量取H3PO4,各原料的摩尔百分比的比例为(1~1.1):(0~0.1):(2~1.9):1,将Fe2O3、ZrO2先进行干燥,然后再Li2OH·H2O研磨,依次将Fe2O3、ZrO2和研磨后的Li2OH·H2O加入到H3PO4中,边加入边搅拌;
S2:将混在一起的原料搅拌均匀后,装入培养皿中,在常压条件下烘干,将烘干的块状物磨细,装入坩埚中,在1125~1250℃条件下熔融4~6h然后经空气淬火后制得陶瓷粉末,将陶瓷粉末先进行研磨,然后采用湿法球磨后干燥;
S3:将步骤S2处理得到的陶瓷粉末称取定量装入压机模具中,加压5~10MPa压成片,在常压空气中用坩埚盛装压好的片,并用该陶瓷粉末包埋,以1~3℃/min的升温速率加热至1150~1250℃,在该温度下保温6~10h,使陶瓷粉晶化,即可制得陶瓷型固体电解质。
3.根据权利要求2所述的制备方法,其特征在于:步骤S1中先将Fe2O3溶于装有H3PO4烧杯中,随后加入纳米ZrO2,最后加入Li2OH·H2O,放在磁力搅拌器上搅拌24~48h。
4.根据权利要求1所述的陶瓷型固体电解质的制备方法,其特征在于:步骤S1中,将Fe2O3、ZrO2进行干燥的温度为150~180℃,干燥时间为3~7天。
5.根据权利要求1所述的制备方法,其特征在于:步骤S2中将陶瓷粉末先手动研磨5~10min,球磨机中球磨介质为氧化锆球体,溶剂为无水乙醇,球体与陶瓷粉末的质量比为3:1,球磨时间为10-14h。
6.根据权利要求5所述的制备方法,其特征在于:氧化锆球体为两种不同直径的氧化锆球体,直径分别为2mm和5mm,两者质量比为1:1。
7.根据权利要求1所述的制备方法,其特征在于:步骤S2中所述坩埚为纯度不小于99%的氧化铝坩埚。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210079033.4A CN114436638B (zh) | 2022-01-24 | 2022-01-24 | 一种铁掺杂磷酸锆锂陶瓷型固体电解质及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210079033.4A CN114436638B (zh) | 2022-01-24 | 2022-01-24 | 一种铁掺杂磷酸锆锂陶瓷型固体电解质及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114436638A true CN114436638A (zh) | 2022-05-06 |
CN114436638B CN114436638B (zh) | 2023-04-07 |
Family
ID=81369061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210079033.4A Active CN114436638B (zh) | 2022-01-24 | 2022-01-24 | 一种铁掺杂磷酸锆锂陶瓷型固体电解质及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114436638B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115073162A (zh) * | 2022-04-06 | 2022-09-20 | 东风汽车集团股份有限公司 | 一种陶瓷型固体电解质及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146349A1 (ja) * | 2012-03-30 | 2013-10-03 | 戸田工業株式会社 | リチウムイオン伝導体の製造法 |
CN106505248A (zh) * | 2016-10-26 | 2017-03-15 | 中国地质大学(武汉) | 一种玻璃陶瓷型固体电解质的制备方法 |
CN108206276A (zh) * | 2016-12-19 | 2018-06-26 | 天津国安盟固利新材料科技股份有限公司 | 一种复合包覆的锂离子正极材料及其制备方法 |
US20200369521A1 (en) * | 2017-08-24 | 2020-11-26 | Sumita Optical Glass, Inc. | Precursor glass of lithium phosphorus complex oxide and method of producing same, method of producing precursor crystallized glass of lithium phosphorus complex oxide, and lithium phosphorus complex oxide powder and method of producing same |
-
2022
- 2022-01-24 CN CN202210079033.4A patent/CN114436638B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146349A1 (ja) * | 2012-03-30 | 2013-10-03 | 戸田工業株式会社 | リチウムイオン伝導体の製造法 |
CN106505248A (zh) * | 2016-10-26 | 2017-03-15 | 中国地质大学(武汉) | 一种玻璃陶瓷型固体电解质的制备方法 |
CN108206276A (zh) * | 2016-12-19 | 2018-06-26 | 天津国安盟固利新材料科技股份有限公司 | 一种复合包覆的锂离子正极材料及其制备方法 |
US20200369521A1 (en) * | 2017-08-24 | 2020-11-26 | Sumita Optical Glass, Inc. | Precursor glass of lithium phosphorus complex oxide and method of producing same, method of producing precursor crystallized glass of lithium phosphorus complex oxide, and lithium phosphorus complex oxide powder and method of producing same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115073162A (zh) * | 2022-04-06 | 2022-09-20 | 东风汽车集团股份有限公司 | 一种陶瓷型固体电解质及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN114436638B (zh) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112467198B (zh) | 一种锂离子电池用氧化物固态电解质及其制备方法 | |
US5169811A (en) | Beneficiated lanthanum chromite for low temperature firing | |
CN108793987B (zh) | 一种锂离子传导氧化物固体电解质及其制备方法 | |
CN109626996A (zh) | 一种铝铁共掺杂石榴石型Li7La3Zr2O12锂离子导体材料及其制备方法 | |
CN110128140A (zh) | 一种镱铝共掺杂石榴石型Li7La3Zr2O12锂离子导体材料及其制备方法 | |
CN115275329A (zh) | 一种石榴石型固态电解质的制备方法及应用 | |
CN112531204A (zh) | 一种塑晶-陶瓷复合固体电解质及其低温热压制备方法 | |
CN114436638B (zh) | 一种铁掺杂磷酸锆锂陶瓷型固体电解质及其制备方法 | |
Li et al. | Rapid synthesis of garnet-type Li7La3Zr2O12 solid electrolyte with superior electrochemical performance | |
CN114230342B (zh) | 一种稀土氧化物掺杂改性Ga-LLZO固体电解质及其制备方法 | |
CN117049871B (zh) | 一种氧化铋基中低熵氧离子导体材料及其制备方法 | |
CN115010491A (zh) | 一种高熵稀土钽酸盐陶瓷材料及其制备方法 | |
CN115642300A (zh) | 一种均匀致密石榴石型无机固态电解质薄膜材料的制备方法 | |
CN114835492A (zh) | 一种稀土基锆铪复合陶瓷材料及其制备方法和应用 | |
CN114421002A (zh) | 石榴石氧化物/配位硼氮氢化物复合的固态电解质及其制备方法和应用 | |
CN113964390A (zh) | 卤素离子掺杂llzo固体电解质及制备方法 | |
CN110797570B (zh) | 一种简易制备钠快离子导体Na3Zr2PSi2O12粉体的方法 | |
CN113735145A (zh) | 一种阴阳离子共掺杂的富钠相反钙钛矿型固态电解质材料及其制备方法和全固态钠电池 | |
CN112279643A (zh) | 一种快速合成Li7La3Zr2O12基化合物以及固体电解质的方法 | |
CN110391455B (zh) | 一种钇稳定二氧化锆-低熔点玻璃粉复合物及其制备方法 | |
CN115417660B (zh) | 一种Eu2O3掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料及其制备方法 | |
CN115417667B (zh) | 一种Nd2O3掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料及其制备方法 | |
CN115073162A (zh) | 一种陶瓷型固体电解质及其制备方法和应用 | |
CN114243004B (zh) | 一种有效抑制锂枝晶的石榴石型固体电解质及制备方法 | |
KR101067448B1 (ko) | 지르코늄 인산염 고체산과 프로톤-베타-알루미나를 이용한 초양성자전도성 하이브리드 멤브레인 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |