CN114410347B - 一种环烷基馏分油中压加氢制低芳变压器油的方法 - Google Patents

一种环烷基馏分油中压加氢制低芳变压器油的方法 Download PDF

Info

Publication number
CN114410347B
CN114410347B CN202111514646.8A CN202111514646A CN114410347B CN 114410347 B CN114410347 B CN 114410347B CN 202111514646 A CN202111514646 A CN 202111514646A CN 114410347 B CN114410347 B CN 114410347B
Authority
CN
China
Prior art keywords
oil
catalyst
hydrogenation
content
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111514646.8A
Other languages
English (en)
Other versions
CN114410347A (zh
Inventor
张国辉
刘雪军
张景成
舒畅
夏飞
马志远
宋国良
南军
肖寒
朱金剑
张尚强
王春雷
李世松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Offshore Oil Corp CNOOC
CNOOC Tianjin Chemical Research and Design Institute Co Ltd
China Offshore Bitumen Co Ltd
Original Assignee
China National Offshore Oil Corp CNOOC
CNOOC Tianjin Chemical Research and Design Institute Co Ltd
China Offshore Bitumen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Offshore Oil Corp CNOOC, CNOOC Tianjin Chemical Research and Design Institute Co Ltd, China Offshore Bitumen Co Ltd filed Critical China National Offshore Oil Corp CNOOC
Priority to CN202111514646.8A priority Critical patent/CN114410347B/zh
Publication of CN114410347A publication Critical patent/CN114410347A/zh
Application granted granted Critical
Publication of CN114410347B publication Critical patent/CN114410347B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种环烷基馏分油中压加氢制低芳变压器油的方法,该方法包括:1)环烷基馏分油进入第一加氢反应器,经过加氢精制反应区和深度脱芳反应区,实现油品中硫、氮化合物的加氢脱除和芳烃的加氢饱和;2)反应物流进入第二反应器,分别经过选择性开环反应区、异构降凝反应区和补充精制反应区,实现多环化合物的选择性开环、链烷烃(支链)的异构及裂解烯烃的饱和;3)反应产物经过气液分离和精馏分离得到低芳变压器油馏分和清洁轻质油馏分。该方法适用于环烷基原油、煤基油品馏分提质增值加工变压器油基础油,具有工艺流程简单、装置投资规模小、操作安全性高的特点,且变压器油基础油收率高、产品质量好,以及环境友好等技术优势。

Description

一种环烷基馏分油中压加氢制低芳变压器油的方法
技术领域
本发明属于石油化工领域,具体涉及一种环烷基馏分油中压加氢制低芳变压器油的方法。
背景技术
近年来,随着国家电网建设的需求发展,西电东输、南北互供和全国联网等项目快速推进,输变电设备对变压器油的质量要求越来越高。出于对击穿电压、介损、粘度、抗析气性能及低温流动性等指标因素的综合考量,国家电网规定110~550KV高压输电须使用环烷基变压器油(碳型组成中CP值小于50%),但环烷基油原料存在杂质含量高、芳烃高等特点,若不能有效脱除硫、碱氮、环烷酸等腐蚀性杂质及影响氧化安定性的芳烃化合物,则会对变压器油的长期使用产生不利影响,结合IEC60296-2012标准中U类变压器油的指标要求,目前高品质变压器油对碳型组成中CA值的要求在4%以下为宜。现有的环烷基馏分油加工变压器油技术主要有两大类,一类加氢脱酸-糠醛精制-白土补充精制的“老三套”工艺;另一类是高压加氢处理或裂化-高压临氢降凝或异构脱蜡-高压补充精制的高压全氢工艺技术。“老三套”工艺用于生产低芳变压器油由于糠醛、白土用量大,易产生环境污染废弃物,因此成为落后工艺逐步被企业淘汰,而高压全氢技术可实现芳烃深度脱除,所生产变压器油产品性质更好,且加工原料范围更宽,石蜡基重馏分油如减压蜡油亦可作为加工原料,但装置工艺流程复杂、一次投资规模较大,且对操作安全性要求高,对于加工规模较小的炼厂来说适用性不高,尤其加工原料馏程范围不高于360℃时,高压加氢技术易导致原料的过度加工造成资源和能源的浪费。
专利CN10675355A公开了一种高压加氢制备低凝点变压器油的方法,将环烷基油和经过硫化钝化处理后的加氢催化剂加入反应釜中,通入氢气,升温进行氢化裂解反应,反应结束后再进行气液分离,加入临氢降凝催化剂,通入氢气,升温进行择型裂解反应,反应结束后再进行气液分离,再加入活性白土进行精制,制得低凝变压器油。该工艺技术采用釜式高压加氢处理环烷基油制变压器油,由于釜式反应属于间歇操作,难以满足炼厂大规模、连续化生产的要求,且工艺中仅适用裂解、降凝类催化剂进行处理,裂解产生的不饱和组分需通过白土吸附处理,白土消耗量巨大,易产生固废。
专利CN112625773A公开了一种变压器油基础油的制备方法,将原料油依次经过临氢降凝反应、加氢补充精制反应,得到变压器油基础油。其临氢降凝反应和补充精制反应的操作压力均为10~20MPa,与目前高压全氢技术的相比,该工艺没有加氢预处理反应工段,且临氢降凝催化剂选用NiO和/或CuO作为加氢活性金属组分,因此其加工原料受限,不能处理常减压装置直接生产的含有硫、氮等金属毒物的馏分油原料,另外,装置操作压力高,投资规模大,操作条件苛刻。
专利CN106833740A公开了一种变压器油基础油的制备方法,该方法步骤包括:将环烷基馏分油先经过加氢精制得到加氢精制生成油,再将加氢精制生成油经过加氢异构得到异构生成油,再将加氢异构生成油经过加氢补充精制得到三段加氢生产,经过常减压分馏得到变压器油基础油。本发明提供的方法采用中压加氢工艺,可在中压条件下不加金属钝化剂的情况下,生产变压器油基础油,可获得较高的抗氧化安定性,并保留环烷基油特性。但该工艺加氢异构和补充精制段均采用了Pt和/或Pd作为加氢活性金属的催化剂,由于贵金属催化剂对硫、氮等毒物非常敏感,因此加氢精制段处理后的产物必须经过汽提或分馏系统出去H2S、NH3等气体,以及轻烃中的硫醇等腐蚀性硫化合物,导致装置设计为多段操作,工艺流程复杂,且由于贵金属价格昂贵,导致装置的加工成本大幅增加。
专利CN103436289B公开了一种煤焦油生产环烷基变压器油基础油的方法,该方法通过将煤焦油经加氢处理(包括加氢精制-催化脱蜡)得到加氢产物,再经过产品分馏得到加氢石脑油、加氢柴油、变压器油馏分和渣油,变压器油馏分再通过溶剂精制-白土精制得到合格的变压器油基础油产品。该工艺方法利用了煤基馏分油原料进行变压器油的加工,所产变压器油亦可具有明显的环烷基油特性,但由于所加工煤焦油品质差、馏程重,加氢段催化剂没有有效级配,未能有效实现原料中芳烃等组分的深度脱除,仍不能规避后续溶剂精制和白土精制等传统落后手段。
发明内容
针对现有技术的不足,本发明提供一种环烷基馏分油中压加氢制低芳变压器油的方法,通过对劣质环烷基馏分油的精制除杂提高品质及降芳降凝提升低温性能、氧化安定性和电性能等,产出优质变压器油基础油,同时实现劣质环烷基馏分油的增值利用。
本发明的一种环烷基馏分油中压加氢制低芳变压器油的方法,包括以下步骤:
a.环烷基馏分油原料与氢气进行油气混合后,进入第一加氢反应器,经过加氢保护剂除杂后,首先在上部加氢精制反应区内与预精制催化剂接触,进行含硫、含氮化合物的脱除及芳烃的部分加氢饱和反应;再经下部深度脱芳反应区与加氢脱芳催化剂接触进行芳烃化合物的深度加氢饱和;其中,第一加氢反应器中两种主催化剂的装填体积比为,加氢脱芳催化剂占20~70%,其余为预精催化剂;操作条件为氢分压6.0~9.9MPa、预精制反应温度260~380℃,加氢脱芳反应温度280~400℃,体积空速0.2~2.5h-1、氢烃体积比200~1500;
b.步骤a的流出物直接进入第二加氢反应器,与上部选择性开环催化剂接触,进行多环化合物的选择性开环反应;再经过中部异构降凝反应区与异构降凝催化剂接触,进行链烃或支链的异构化反应,对油品烃类组成分布进行改善优化;最后经过下部补充精制反应区,对少量裂解烯烃进行饱和;其中,第二加氢反应器中三种催化剂的装填体积比为,选择性开环催化剂占10~60%,异构降凝催化剂占30~80%,其余为后精制剂;操作条件为氢分压6.0~9.9MPa、选择性开环反应温度280~400℃,异构降凝反应温度280~420℃,补充精制反应温度290~450℃,体积空速0.1~3.0h-1、氢烃体积比为200~1500;
c.步骤b的流出物经气液分离后,液体产物进入精馏塔进行馏分分离,分离后从塔顶采出<280℃的轻质馏分油副产品;侧线采出>280℃变压器油基础油产品;
所述的预精制催化剂由大孔拟薄水铝石经成型、焙烧制备载体,负载过渡金属Ni、Mo的可溶性盐前驱体后经高温焙烧制成,催化剂中NiO含量为1~12wt%、MoO3含量为8~25wt%;所述的加氢脱芳催化剂由过渡金属Ni、Mo、W经前驱体共沉淀后与改性大孔拟薄水铝石共同成型,再经高温焙烧制成,催化剂中NiO含量为2~20wt%、MoO3含量为5~40wt%、WO3含量为5~40wt%;
所述的加氢选择性开环催化剂是由Y、β、HY、Hβ分子筛和无定型硅铝、大孔拟薄水铝石中的一种或几种作为载体负载过渡金属Ni、W的可溶性盐前驱体后经高温焙烧制成,催化剂中NiO含量为1~15wt%、WO3含量为6~20wt%;所述的加氢异构降凝催化剂是由ZSM-5、ZSM-22、ZSM-23、SAPO-34、MCM-41分子筛、无定型硅铝和大孔拟薄水铝石中的一种或几种作为载体负载过渡金属Ni、W的可溶性盐前驱体后经高温焙烧制成,催化剂中NiO含量为1~15wt%、WO3含量为6~20wt%;所述的后精制催化剂由大孔拟薄水铝石经成型、焙烧制备载体,负载过渡金属Ni、W的可溶性盐前驱体后经高温焙烧制成,催化剂中NiO含量为1~10wt%、WO3含量为6~25wt%。
本发明方法上述技术方案中,所述的大孔拟薄水铝石优选孔容≥1.0cm3·g-1、比表面≥320m2·g-1
所述的第一、第二反应器中装填的不同功能的加氢催化剂,均需进行常规预硫化处理后,方可引入加工原料使用。
所述的环烷基馏分油原料优选为海上环烷基原油经炼厂常减压装置所加工的常二线、常三线、减一线、减二线馏分油,或具有环烷基油特点的煤液化柴油馏分。
所述的轻质馏分油副产品为馏程<280℃的塔顶采出产品;当原料馏程较轻时,所述的变压器油基础油产品为>280℃的塔底采出产品,当原料馏程较重时,所述的变压器油基础油产品为280~360℃的侧线采出产品,>360℃的重质馏分经塔底循环回反应系统。
所述的变压器油基础油产品除满足国标GB 2536-2011对变压器油的基本要求外,还可实现倾点低于-50℃,硫含量≤10ppm,氮含量≤5ppm,芳烃含量≤12%,CA值≤4%等性质指标。
与现有技术相比,本发明提供的重芳烃加氢轻质化方法具有如下特点:
1、通过不同功能的高活性催化剂级配,实现中压工况下的变压器油全氢加工工艺,避免选用高压加氢装置增加设备投资和操作苛刻度,与现有高压加氢预处理-异构脱蜡工艺相比,具有操作安全、氢耗低的特点。
2、具有中压下深度降芳的技术特点,所加工的变压器油基础油产品在不使用糠醛处理、白土精制的情况下达到较好的氧化安定性指标、电性能指标及倾点等低温流动性指标,与传统工艺相比具有环境友好的特点。
附图说明
图1为本发明环烷基馏分油中压加氢制低芳变压器油的工艺流程示意图。
图2为本发明实施例连续运行90天每24h变压器油馏分芳烃含量周期性数据图。
图中:1-环烷基馏分油与新氢混合原料,2-第一加氢反应器,3-第二加氢反应器,4-混合加氢产物,5-气液分离器,6-循环氢气,7-液体产物,8-精馏分离塔,9-不凝气,10-轻质油馏分(采出),11-变压器油基础油(采出),12-塔底重馏分(循环反应),13-塔底重馏分(外甩)
具体实施方式
下面通过具体实施例结合附图进一步说明本发明的方法所涉及的具体过程。
首先,各反应区所使用催化剂的制备工艺如下,1、加氢预精制催化剂:首先将大孔拟薄水铝石与成型助剂、稀酸溶液混合,在捏合机中捏合后,挤条成型,经120℃干燥和600℃焙烧制成γ-Al2O3载体,然后将金属Ni、Mo的可溶盐配成的浸渍液以等体积浸渍法负载于γ-Al2O3载体中,再经过120℃干燥和400℃焙烧得到成品催化剂;2、加氢深度脱芳催化剂:首先将Ni的可溶盐配成酸性溶液,将W、Mo的可溶盐配成碱性溶液,并流加入反应釜中进行沉淀反应,并在反应釜中搅拌老化4h,后过滤、洗涤得到湿滤饼,将湿滤饼与大孔拟薄水铝石混合,捏合、挤条成型,经120℃干燥和500℃焙烧得到成品催化剂;3、加氢选择性开环催化剂:首先将Y、β、HY、Hβ分子筛、无定型硅铝、大孔拟薄水铝石中的一种或几种与成型助剂、稀酸溶液混合,在捏合机中捏合成块状后,挤条成型,经120℃干燥和600℃焙烧制成载体,然后将金属Ni、W的可溶盐配成的浸渍液以等体积浸渍法负载于载体中,再经过120℃干燥和500℃焙烧得到成品催化剂;4、异构降凝催化剂:首先将ZSM-5、ZSM-22、ZSM-23、SAPO-34、MCM-41分子筛、无定型硅铝、大孔拟薄水铝石中的一种或几种与成型助剂、稀酸溶液混合,在捏合机中捏合后,挤条成型,经120℃干燥和600℃焙烧制成载体,然后将金属Ni、W的可溶盐配成的浸渍液以等体积浸渍法负载于载体中,再经过120℃干燥和500℃焙烧得到成品催化剂;5、后精制催化剂:首先将大孔拟薄水铝石与成型助剂、稀酸溶液混合,在捏合机中捏合后,挤条成型,经120℃干燥和600℃焙烧制成γ-Al2O3载体,然后将金属Ni、W的可溶盐配成的浸渍液以等体积浸渍法负载于γ-Al2O3载体中,再经过120℃干燥和400℃焙烧得到成品催化剂。
本方法的工艺流程如图1所示,各反应区催化剂经过预硫化后,将环烷基馏分油原料与新氢的混合物料1由计量泵打入第一加氢反应器2,先后与加氢预精制反应区剂和加氢脱芳反应区内的催化剂接触,完成脱硫、脱氮和芳烃饱反应;再进入第二加氢反应器3,分别与加氢选择性开环反应区、异构降凝反应区和后精制反应区的催化剂接触,完成多环化合物的选择性开环、链烃异构和裂解产物补充精制反应;反应生成物混合加氢产物4进入气液分离器5分离出循环氢气6循环回反应系统,液体产物7进入精馏分离塔8,经精馏分离从塔顶得到轻质油馏分10,塔底侧线采出变压器油基础油产品11,根据所加工原料的重质化情况,少部分塔底重馏分12经塔底循环回反应系统,一部分塔底重馏分(外甩)13外甩出系统另做他用。
下面的实施例将对本发明作进一步说明。
以下实施例中实验所采用的催化剂均按照上述催化剂制备工艺进行制备,所涉及催化剂的物理性质如表1所示。
实施例1
以取自某炼厂常减压装置加工海上环烷基原油所产的常二线馏分油为原料,原料性质见表2。原料与氢气混合后依次通过第一加氢反应器和第二加氢反应器,进料体积空速1.0h-1,氢油体积比800:1,系统氢分压为9.5MPa,其中,第一反应器中预精制催化剂和加氢脱芳催化剂的装填体积比为2:1,两种催化剂的平均反应温度分别为340℃和350℃,第二反应器中选择性开环催化剂、异构降凝催化剂和后精制催化剂的装填体积比为3:6:1,三种催化剂的平均反应温度分别为350℃、360℃和360℃,产物气液分离和精馏分离后,从塔顶采出280℃前轻质油馏分,塔底采出280℃后变压器油基础油馏分,产物分析数据见表3。
实施例2
以取自某炼厂常减压装置加工海上环烷基原油所产的减一线馏分油为原料,原料性质见表2。原料与氢气混合后依次通过第一加氢反应器和第二加氢反应器,进料体积空速1.0h-1,氢油体积比800:1,系统氢分压为9.5MPa,其中,第一反应器中预精制催化剂和加氢脱芳催化剂的装填体积比为1:1,两种催化剂的平均反应温度分别为350℃和360℃,第二反应器中选择性开环催化剂、异构降凝催化剂和后精制催化剂的装填体积比为4:5:1,三种催化剂的平均反应温度分别为350℃、360℃和365℃,产物气液分离和精馏分离后,从塔顶采出280℃前轻质油馏分,塔底采出280℃后变压器油基础油馏分,产物分析数据见表3。
实施例3
以取自某企业煤直接液化装置所加工煤液化重柴油馏分油为原料,原料性质见表2。原料与氢气混合后依次通过第一加氢反应器和第二加氢反应器,进料体积空速0.5h-1,氢油体积比1200:1,系统氢分压为9.5MPa,其中,第一反应器中预精制催化剂和加氢脱芳催化剂的装填体积比为1:2,两种催化剂的平均反应温度分别为360℃和370℃,第二反应器中选择性开环催化剂、异构降凝催化剂和后精制催化剂的装填体积比为5:4:1,三种催化剂的平均反应温度分别为360℃、365℃和375℃,产物气液分离和精馏分离后,从塔顶采出280℃前轻质油馏分,侧线采出280~360℃变压器油基础油馏分,产物分析数据见表3,塔底少量重质馏分油循环回第一加氢反应器。
实施例4
以实施例2相同原料、工艺流程和操作工况进行实验,装置连续运行90天,每24h对变压器油产物进行取样分析变压器油馏分芳烃含量,得出周期性数据如图2所示。
由图2可知,该加氢工艺及其配套催化剂具有长周期运转稳定性。
结合表1中催化剂分析数据、表2中加工原料分析数据和表3中变压器油产品分析数据可见,采用本发明提供的加氢方法,在多种非贵金属加氢功能催化剂的级配组合工艺下,可实现有效馏程范围内的环烷基劣质馏分油的提质转化,产出满足GB 2536-2011指标,低芳、低凝、无腐蚀及良好电性能的优质变压器油基础油。
表1
Figure BDA0003405936520000081
注“*”:活性组分以金属氧化物计
表2
Figure BDA0003405936520000082
表3
Figure BDA0003405936520000091

Claims (6)

1.一种环烷基馏分油中压加氢制低芳变压器油的方法,包括如下步骤:
a. 环烷基馏分油原料与氢气进行油气混合后,进入第一加氢反应器,经过加氢保护剂除杂后,首先在上部加氢精制反应区内与预精制催化剂接触,进行含硫、含氮化合物的脱除及芳烃的部分加氢饱和反应;再经下部深度脱芳反应区与加氢脱芳催化剂接触进行芳烃化合物的深度加氢饱和;其中,第一加氢反应器中两种主催化剂的装填体积比为:加氢脱芳催化剂占20~70%,其余为预精制催化剂;操作条件为氢分压6.0~9.9MPa、预精制反应温度260~380℃,加氢脱芳反应温度280~400℃,体积空速0.2~2.5h-1、氢烃体积比200~1500;
b. 步骤a的流出物直接进入第二加氢反应器,与上部选择性开环催化剂接触,进行多环化合物的选择性开环反应;再经过中部异构降凝反应区与异构降凝催化剂接触,进行链烃的异构化反应,对油品烃类组成分布进行改善优化;最后经过下部补充精制反应区,对少量裂解烯烃进行饱和;其中,第二加氢反应器中三种催化剂的装填体积比为:选择性开环催化剂占10~60%,异构降凝催化剂占30~80%,其余为后精制催化剂;操作条件为氢分压6.0~9.9MPa、选择性开环反应温度280~400℃,异构降凝反应温度280~420℃,补充精制反应温度290~450℃,体积空速0.1~3.0h-1、氢烃体积比为200~1500;
c. 步骤b的流出物经气液分离后,液体产物进入精馏塔进行馏分分离,得到变压器油基础油产品和轻质馏分油副产品;
所述的预精制催化剂由大孔拟薄水铝石经成型、焙烧制备载体,负载过渡金属Ni、Mo的可溶性盐前驱体后经高温焙烧制成,催化剂中NiO含量为1~12wt%、MoO3含量为8~25wt%;所述的加氢脱芳催化剂由过渡金属Ni、Mo、W经前驱体共沉淀后与大孔拟薄水铝石共同成型,再经高温焙烧制成,催化剂中NiO含量为2~20wt%、MoO3含量为5~40wt%、WO3含量为5~40wt%;
所述的选择性开环催化剂是由Y、β、HY、Hβ分子筛、无定型硅铝和大孔拟薄水铝石中的一种或几种作为载体负载过渡金属Ni、W的可溶性盐前驱体后经高温焙烧制成,催化剂中NiO含量为1~15wt%、WO3含量为6~20wt%;所述的异构降凝催化剂是由ZSM-5、ZSM-22、ZSM-23、SAPO-34、MCM-41分子筛、无定型硅铝和大孔拟薄水铝石中的一种或几种作为载体负载过渡金属Ni、W的可溶性盐前驱体后经高温焙烧制成,催化剂中NiO含量为1~15wt%、WO3含量为6~20wt%;所述的后精制催化剂由大孔拟薄水铝石经成型、焙烧制备载体,负载过渡金属Ni、W的可溶性盐前驱体后经高温焙烧制成,催化剂中NiO含量为1~10wt%、WO3含量为6~25wt%。
2.按照权利要求1所述的方法,其特征在于,所述的加氢脱芳催化剂、选择性开环催化剂、异构降凝催化剂和后精制催化剂的大孔拟薄水铝石的孔容均≥1.0 cm3∙g-1、比表面均≥320m2∙g-1
3.按照权利要求1所述的方法,其特征在于:所述的环烷基馏分油原料为海上环烷基原油经炼厂常减压装置所加工的常二线、常三线、减一线、减二线馏分油,或具有环烷基油特点的煤液化柴油馏分。
4.按照权利要求1所述的方法,其特征在于,所述的轻质馏分油副产品为馏程<280℃的塔顶采出产品;当环烷基馏分油原料馏程较轻时,所述的变压器油基础油产品为>280℃的塔底采出产品,当环烷基馏分油原料馏程较重时,所述的变压器油基础油产品为280~360℃的侧线采出产品,>360℃的重质馏分经塔底循环回反应系统。
5.按照权利要求1所述的方法,其特征在于,所述的变压器油基础油产品除满足国标GB2536-2011对变压器油的基本要求外,还具有如下性质:倾点低于-50℃,硫含量≤10ppm,氮含量≤5ppm,芳烃含量≤12%,CA值≤4%。
6.按照权利要求1所述的方法,其特征在于,所述b.步骤a的流出物直接进入第二加氢反应器,与上部选择性开环催化剂接触,进行多环化合物的选择性开环反应;再经过中部异构降凝反应区与异构降凝催化剂接触,进行支链的异构化反应,对油品烃类组成分布进行改善优化;最后经过下部补充精制反应区,对少量裂解烯烃进行饱和。
CN202111514646.8A 2021-12-13 2021-12-13 一种环烷基馏分油中压加氢制低芳变压器油的方法 Active CN114410347B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111514646.8A CN114410347B (zh) 2021-12-13 2021-12-13 一种环烷基馏分油中压加氢制低芳变压器油的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111514646.8A CN114410347B (zh) 2021-12-13 2021-12-13 一种环烷基馏分油中压加氢制低芳变压器油的方法

Publications (2)

Publication Number Publication Date
CN114410347A CN114410347A (zh) 2022-04-29
CN114410347B true CN114410347B (zh) 2023-05-09

Family

ID=81265766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111514646.8A Active CN114410347B (zh) 2021-12-13 2021-12-13 一种环烷基馏分油中压加氢制低芳变压器油的方法

Country Status (1)

Country Link
CN (1) CN114410347B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404102A (zh) * 2022-09-23 2022-11-29 中国海洋石油集团有限公司 一种变压器油基础油及其制备方法
CN115646540B (zh) * 2022-10-24 2023-08-11 山东公泉化工股份有限公司 复合加氢裂化催化剂、其制备方法及变压器油的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105462614B (zh) * 2015-11-27 2017-09-26 中国海洋石油总公司 低凝高环烷碳含量的变压器油基础油及其制备方法
CN106833740B (zh) * 2015-12-04 2018-09-04 中国石油天然气股份有限公司 一种变压器油基础油的制备方法
CN110540872B (zh) * 2018-05-29 2021-05-04 中国石油化工股份有限公司 一种环烷基油的处理工艺
CN113234483B (zh) * 2021-05-12 2023-05-16 山东京博石油化工有限公司 一种含芳烃变压器油基础油的制备方法

Also Published As

Publication number Publication date
CN114410347A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
CN114410347B (zh) 一种环烷基馏分油中压加氢制低芳变压器油的方法
CN103897731B (zh) 一种催化裂化柴油和c10+馏分油混合生产轻质芳烃的方法
CN109722303A (zh) 一种高硫重油生产低硫船用燃料油调和组分的方法
EP0090437A1 (en) Process for the production of hydrocarbon oil distillates
CN105462614B (zh) 低凝高环烷碳含量的变压器油基础油及其制备方法
CN105694966A (zh) 一种由催化裂化柴油生产石脑油和清洁汽油的方法
CN110607191B (zh) 渣油加氢处理和光亮油生产组合工艺
CN104862006A (zh) 变压器油抗析气添加剂及其制备方法
CN104910959B (zh) 一种变压器油抗析气添加剂及其制备方法
CN104277879A (zh) 一种中低温煤焦油的两级浆态床加氢工艺
CN110540871A (zh) 一种环烷基油的加工方法
CN115851313B (zh) 费托加氢裂化尾油制备润滑油基础油的方法
CN112725031B (zh) 适用于生产针状焦的油质物料及其制备方法和系统
CN113663617A (zh) 一种低粘度冷冻机油基础油及其制备方法和应用
CN116987527B (zh) 高粘度指数的润滑油异构原料及其制备方法
CN107163984B (zh) 一种劣质柴油生产高辛烷值汽油的方法
CN108239555B (zh) 劣质催化裂化原料的加工方法
CN113122324A (zh) 一种催化油浆加氢生产特种油品的方法
CN110540873A (zh) 一种环烷基油的处理方法
CN115646540B (zh) 复合加氢裂化催化剂、其制备方法及变压器油的制备方法
CN112251256B (zh) 渣油加氢处理和光亮油以及芳香基矿物油生产组合工艺
CN114437804B (zh) 一种高氮原料油的加氢裂化方法
CN113969186B (zh) 一种生产冷冻机油的方法
CN109852417A (zh) 一种环烷基特种油品的生产方法
CN113969187B (zh) 一种生产冷冻机油并兼产变压器油的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant