CN114395573B - 一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法 - Google Patents

一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法 Download PDF

Info

Publication number
CN114395573B
CN114395573B CN202210085700.XA CN202210085700A CN114395573B CN 114395573 B CN114395573 B CN 114395573B CN 202210085700 A CN202210085700 A CN 202210085700A CN 114395573 B CN114395573 B CN 114395573B
Authority
CN
China
Prior art keywords
cada
acn
pcdfduet
tcada
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210085700.XA
Other languages
English (en)
Other versions
CN114395573A (zh
Inventor
陈可泉
李春秋
冯娇
曾金磊
周彩莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210085700.XA priority Critical patent/CN114395573B/zh
Publication of CN114395573A publication Critical patent/CN114395573A/zh
Application granted granted Critical
Publication of CN114395573B publication Critical patent/CN114395573B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01006Aconitate decarboxylase (4.1.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法,由擎科生物将玉米黑粉菌来源的反乌头酸脱羧酶(TcadA),优化合成,得到pETduet‑TcadA,与重组质粒pCDFduet‑acn‑cadA共转入大肠杆菌进行异源表达,采用全细胞催化法生产衣康酸,与出发菌株(pCDFduet‑acn‑cadA)相比,有效提高了衣康酸的产量。本发明生产衣康酸使用了全细胞催化法,与常规发酵相比,可以降低生产成本,缩短生产时间。此外,底物易于获得,生物转化产生的副产品较少,便于提纯,有效克服传统合成方法的产物复杂的缺点,并在工业生产中具有广泛的应用前景。

Description

一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的 方法
技术领域
本发明公开了一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法,属于分子生物学和基因工程领域。
背景技术
衣康酸(甲叉丁二酸、亚甲基琥珀酸)是一种不饱和二元羧酸,是化工领域的重要工业原料和添加剂,作为构造模块被广泛应用于生产塑料、化纤、超吸附剂、乳胶、防垢剂等方面。衣康酸作为一种可再生材料,已得到了越来越多的关注。2004年,衣康酸被美国能源部评选为最具发展潜力的12种生物基平台化合物之一。目前,全世界衣康酸的产能为5万吨/年,还面临至少3万吨的缺口,且衣康酸可以替代丙烯酸和甲基丙烯酸用于可降解塑料的生产,其未来需求量将会继续快速增长,是一种具有广阔应用前景的重要生物质来源有机酸。
目前,国内外工业化生产衣康酸的主导方法是土曲霉发酵法。然而,与其他有机酸发酵生产相比,目前国际上利用土曲霉发酵生产衣康酸的发酵单位仍然较低,其原因在于:1)土曲霉发酵时间长,时空产率不高;2)在真菌细胞中acn定位于线粒体中,而cadA则是定位于胞质中,两个酶定位的不同使两个酶的底物与中间产物的扩散和反应变得更为困难。因此,有研究者选择大肠杆菌作为生产衣康酸的宿主菌,其优点较多,然而,葡萄糖发酵转化率低,生产效率低,就效价和产量而言,大肠杆菌发酵在经济上仍不能与土曲霉发酵相媲美。
通过代谢途径改造提高大肠杆菌生产衣康酸的能力,采用全细胞催化法生产衣康酸,与常规发酵相比,可以降低生产成本,缩短生产时间。此外,底物易于获得,生物转化产生的副产品较少,这在提纯过程中是一个优势。这使得其有望克服传统合成法的缺点,并在工业生产中具有广泛的应用前景。
发明内容
针对现有技术的不足,本发明提供了一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法,与常规发酵相比,可以降低生产成本,缩短生产时间。此外,底物易于获得,生物转化产生的副产品较少,便于提纯,有效克服传统合成方法的产物复杂的缺点。本发明方法通过代谢途径改造使得大肠杆菌具有生产衣康酸的能力,再利用玉米黑粉菌来源的反乌头酸脱羧酶将反乌头酸转化为衣康酸,从而提高衣康酸的产量。
一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法,包括以下步骤:
步骤1,构建出发菌株pCDFduet-acn-cadA
来源于谷氨酸棒杆菌的顺乌头酸酶(acn)氨基酸序列,根据已报导的黑曲霉来源的顺乌头酸脱羧酶(cadA)氨基酸序列进行密码子优化后, 全基因合成优化后的序列,克隆到载体pCDF-duet1上,获得重组质粒pCDFduet-acn-cadA,将构建好的重组质粒pCDFduet-acn-cadA转化进入大肠杆菌表达宿主BL21(DE3),得到出发菌株pCDFduet-acn-cadA;
步骤2,构建重组菌株pCDFduet-acn-cadA/pETduet-Tcad)
根据已报导的玉米黑粉菌来源的反乌头酸脱羧酶(TcadA)的氨基酸序列进行密码子优化,全基因合成优化后的序列,克隆到载体pET-duet上,获得重组质粒pETduet-TcadA,将构建好的重组质粒pCDFduet-acn-cadA和pETduet-TcadA共转化进入大肠杆菌表达宿主BL21(DE3),得到重组菌株pCDFduet-acn-cadA/pETduet-TcadA;
步骤3,培养出发菌株pCDFduet-acn-cadA
挑取出发菌株pCDFduet-acn-cadA的单菌落,接种于LB培养基,37℃培养至OD值达到0.6-0.7,再加入0.25mM-1mM的IPTG,15-30℃培养16-24小时,离心收集出发菌株pCDFduet-acn-cadA;
步骤4,培养重组菌株pCDFduet-acn-cadA/pETduet-TcadA
挑取重组菌株pCDFduet-acn-cadA/pETduet-TcadA的单菌落,接种于LB培养基,37℃培养至OD值达到0.6-0.7,再加入0.25mM-1mM的IPTG,15-30℃培养16-24小时,离心收集重组菌株pCDFduet-acn-cadA/pETduet-TcadA;
步骤5,收集出发菌株pCDFduet-acn-cadA,4000-6000rpm,4℃,离心10-15min,除去上清,菌体用pH 6-11的PBS缓冲液重悬,4000-6000rpm,4℃,离心10-15min,获得出发菌株pCDFduet-acn-cadA,用分光光度计测定菌体浓度;
步骤6,收集重组菌株pCDFduet-acn-cadA/pETduet-TcadA,4000-6000rpm,4℃,离心10-15min,除去上清,菌体用pH 6-11的PBS缓冲液重悬,4000-6000rpm,4℃,离心10-15min,获得重组菌株pCDFduet-acn-cadA/pETduet-TcadA,用分光光度计测定菌体浓度;
步骤7,选取柠檬酸作为底物,Tween 80为表面活性剂,分别加入出发菌株pCDFduet-acn-cadA和重组菌株pCDFduet-acn-cadA/pETduet-TcadA,再添加PBS缓冲溶液,调节反应体系的pH至5-6,最后25-37℃反应0h-24h;
步骤8,完成催化反应,加入等体积比1mmol/L稀盐酸,12000rpm离心3min,采用1ml注射器吸取离心得到的上清液,并用0.22μm 滤膜除去杂质,将去除杂质的反应液注入1.5ml液相小瓶中,检测产物生成情况。
作为改进的是,步骤3中加入IPTG的量为 0.25mmol/L,诱导温度为18-30℃。
作为改进的是,步骤4中加入IPTG的量为 0.25mmol/L,诱导温度为18-30℃。
作为改进的是,步骤5和步骤6中PBS缓冲液为磷酸二氢钠和磷酸氢二钠的混合溶液。
作为改进的是,步骤7中柠檬酸的终浓度为10-300mmol/L、Tween 80的终浓度为0.1%-1%,出发菌株pCDFduet-acn-cadA与重组菌株pCDFduet-acn-cadA/pETduet-TcadA的终浓度均为OD60010-30。
进一步改进的是,步骤7中柠檬酸的终浓度为300 mmol/L、Tween 80的终浓度为0.5%,出发菌株pCDFduet-acn-cadA与重组菌株pCDFduet-acn-cadA/pETduet-TcadA的终浓度均为OD60020。
进一步改进的是,步骤7中该反应体系的反应温度35℃,反应pH为5.5。
有益效果:
与现有技术相比,本发明公开了一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法,通过构建重组质粒pCDFduet-acn-cadA,由擎科生物将玉米黑粉菌来源的反乌头酸脱羧酶(TcadA),优化合成,得到pETduet-TcadA,共转入大肠杆菌进行异源表达,采用全细胞催化法生产衣康酸,有效提高了衣康酸的产量。本发明生产衣康酸使用了全细胞催化法,与常规发酵相比,可以降低生产成本,缩短生产时间。此外,底物易于获得,生物转化产生的副产品较少,便于提纯,有效克服传统合成方法的产物复杂的缺点,并在工业生产中具有广泛的应用前景。
1、与出发菌株(pCDFduet-acn-cadA)相比,本发明引入玉米黑粉菌来源的反乌头酸脱羧酶(TcadA)的重组菌株(pCDFduet-acn-cadA/pETduet-TcadA)产衣康酸的产量更高,更加适合工业化生产的需要。
2、所涉及的实验操作过程简单易操作,且实验过程较为温和,对环境、设备及操作人员均无害。
附图说明
图1为本发明产物衣康酸标准品的高效液相色谱图;
图2为本发明产物衣康酸的定量标准曲线图;
图3为本发明底物柠檬酸标准品的高效液相色谱图;
图4为本发明反应液中产物以及底物的高效液相色谱图,(a)为出发菌株(pCDFduet-acn-cadA)反应液反应液中产物以及底物的高效液相色谱图;(b)为重组菌株反应液中产物以及底物的高效液相色谱图;
图5为出发菌株pCDFduet-acn-cadA与重组菌株pCDFduet-acn-cadA/pETduet-TcadA在相同条件下产衣康酸的情况对比图。
具体实施方式
以下通过具体实施方式的描述对本发明作进一步说明,但这并非是对本发明的限制,本领域技术人员根据本发明的基本思想,可以做出各种修改或改进,但是只要不脱离本发明的基本思想,均在本发明的范围之内。
实施例中未提及到的技术均为本领域常规技术,另外,使用的大肠杆菌BL21(DE3)、pCDF-duet1、FastPfu DNA Polymerase、dNTPs等材料都是商业化产品,可直接购买。
实施例中所用PBS缓冲液pH为7.0。
实施例中,所述的柠檬酸等试剂的浓度均指的是该体系中的终浓度。
实施例中, LB培养基的配方:10g/L蛋白胨,5g/L酵母粉,5g/L氯化钠;实施例中所采用的试剂均为常规试剂。
实施例1
步骤1,构建出发菌株pCDFduet-acn-cadA
来源于谷氨酸棒杆菌的顺乌头酸酶(acn)氨基酸序列,
序列如SEQ NO.1所示:
MELTVTESKNSFNAKSTLEVGDKSYDYFALSAVPGMEKLPYSLKVLGENLLRTEDGANITNEHIEAIANWDASSDPSIEIQFTPARVLMQDFTGVPCVVDLATMREAVAALGGDPNDVNPLNPAEMVIDHSVIVEAFGRPDALAKNVEIEYERNEERYQFLRWGSESFSNFRVVPPGTGIVHQVNIEYLARVVFDNEGLAYPDTCIGTDSHTTMENGLGILGWGVGGIEAEAAMLGQPVSMLIPRVVGFKLTGEIPVGVTATDVVLTITEMLRDHGVVQKFVEFYGSGVKAVPLANRATIGNMSPEFGSTCAMFPIDEETTKYLRLTGRPEEQVALVEAYAKAQGMWLDEDTVEAEYSEYLELDLSTVVPSIAGPKRPQDRILLSEAKEQFRKDLPTYTDDAVSVDTSIPATRMVNEGGGQPEGGVEADNYNASWAGSGESLATGAEGRPSKPVTVASPQGGEYTIDHGMVAIASITSCTNTSNPSVMIGAGLIARKAAEKGLKSKPWVKTICAPGSQVVDGYYQRADLWKDLEAMGFYLSGFGCTTCIGNSGPLPEEISAAINEHDLTATAVLSGNRNFEGRISPDVKMNYLASPIMVIAYAIAGTMDFDFENEALGQDQDGNDVFLKDIWPSTEEIEDTIQQAISRELYEADYADVFKGDKQWQELDVPTGDTFEWDENSTYIRKAPYFDGMPVEPVAVTDIQGARVLAKLGDSVTTDHISPASSIKPGTPAAQYLDEHGVERHDYNSLGSRRGNHEVMMRGTFANIRLQNQLVDIAGGYTRDFTQEGAPQAFIYDASVNYKAAGIPLVVLGGKEYGTGSSRDWAAKGTNLLGIRAVITESFERIHRSNLIGMGVVPLQFPAGESHESLGLDGTETFDITGLTALNEGETPKTVKVTATKENGDVVEFDAVVRIDTPGEADYYRHGGILQYVLRQMAASSK
根据已报导的黑曲霉来源的顺乌头酸脱羧酶氨基酸序列进行密码子优化后全基因合成的序列cadA,
序列如SEQ NO.2所示:
MTKQSADSNAKSGVTSEICHWASNLATDDIPSDVLERAKYLILDGIACAWVGARVPWSEKYVQATMSFEPPGACRVIGYGQKLGPVAAAMTNSAFIQATELDDYHSEAPLHSASIVLPAVFAASEVLAEQGKTISGIDVILAAIVGFESGPRIGKAIYGSDLLNNGWHCGAVYGAPAGALATGKLLGLTPDSMEDALGIACTQACGLMSAQYGGMVKRVQHGFAARNGLLGGLLAHGGYEAMKGVLERSYGGFLKMFTKGNGREPPYKEEEVVAGLGSFWHTFTIRIKLYACCGLVHGPVEAIENLQGRYPELLNRANLSNIRHVHVQLSTASNSHCGWIPEERPISSIAGQMSVAYILAVQLVDQQCLLSQFSEFDDNLERPEVWDLARKVTSSQSEEFDQDGNCLSAGRVRIEFNDGSSITESVEKPLGVKEPMPNERILHKYRTLAGSVTDESRVKEIEDLVLGLDRLTDISPLLELLNCPVKSPLV
委托擎科生物科技有限公司(南京)全基因合成优化后的序列,克隆到载体pCDF-duet1上,获得重组质粒pCDFduet-acn-cadA,将构建好的重组质粒pCDFduet-acn-cadA转化进入大肠杆菌表达宿主BL21(DE3),得到出发菌株pCDFduet-acn-cadA;
步骤2,构建重组菌株pCDFduet-acn-cadA/pETduet-TcadA
根据已报导的玉米黑粉菌来源的反乌头酸脱羧酶TcadA的氨基酸序列进行密码子优化,
序列如SEQ NO.3所示:
CTGCAGATGGCACCTGCACTGAACGCAAACCCGACCACAAAACGCGATGAACTGAGCGCACCGAGCGCAAGTCATAAACTGGGCATGAGCAGCATGGCAAGCCGCGCAGCAGGTGGTGGTCTGAAACTGACTGGTCTGCCAGATCTGAGCGATAGCGCAGGTACCCTGTCTGATATTTTTGGTACACCGCAGATGCGTGAAATTTGGAGCGATCAGAATCGTGTTGCGTGTTATCTGGAAATTGAAGCAGCACTGGCAATTGTTCAGGCAGATCTGGGTATTATTCCTAAAAACGCCGCACATGAAATTGTTGAACATTGTCGTGTGCAGGAAATCGATTGGGCACTGTATAAACAGAAAACAGAACTGATTGGTTATCCGGTTCTGGGTATTGTGCAGCAGCTGGTGGCAAATTGTAAAGATGGTCTGGGTGAATATTGTCATTGGGGTGCAACCACCCAGGATATTACAGATACAGCAACCGTTATGCAGATTCGTCAGAGCCTGACCCTGGTTAAACAGCGTCTGGATAGCATCGTGAGTAGCCTGGAACATCTGGCAGAACAGCATCGCAACGTACCGATGGCAGCACGTAGCAACCTGAAACAGGCAGTTCCAATTACCTTTGGTTTTAAAATGGCACGTTTTCTGGCAACCTTTCGTCGTCATCAGCAGCGTCTGGTAGAACTGGAAAAACGTGTGTATACCCTGGAATTTGGTGGTGCAGCAGGTAATCTGAGCTCCCTGGGTGATCAGGGTATTGCGACCCATGATGCACTGGCAAAAATGCTGGATCTGGCGCCGGCAGAAATCGCATGGCATACAGAACATGATCGTTTTGCAGAAGTTGGTACCTTTCTGGGTCTGCTGACAGGTACCCTGGCAAAACTGGCAACCGATATCAAACTGATGAGCCAGACCGAAGTGGGTGAAGTGGGTGAACCGTTTATTAGTAATCGTGGTAGTAGTAGCACCATGCCGCAGAAAAACAATCCGATTAGTTGCGTTTATATCCATGCATGCGCAGCAAATGTACGCCAGGGTGCTGCCGCTCTGCTGGATGCAATGCAGTCAGATCATGAACGTGGTACCGGTCCGTGGGAAATTATTTGGGTTCAGCTGCCTCTGATGATGAACTGGACAAGTGCAGCACTGAATAATGCAGATTTTGTTCTGCGTGGTCTGCAAGTTTTTCCGGATGCAATGCAGCATAATCTGGATCTGAGCAAAGGTCTGATTGTTAGCGAAGCCGTGATGATGGGTCTGGGTAATACCCTGGGTCGTCAGTATGCCCATGATGCAGTTTATGAATGTTGTCGTACCGCATTTGTGCAGGATCGTCCGCTGCTGGATGTTCTGCTGGAAAATCATGAAATTGCGAGCAAACTGGATCGTACAGAACTGGAAAAACTGTGTGATCCGGCCAATTATCTGGGTCAGTGTAGCCAGTGGATTGATCGTGTTCTGAGCCGTCCTTCTAGCGCATAAAAGCTT
委托擎科生物科技有限公司(南京)全基因合成优化后的序列,克隆到载体pET-duet上,获得重组质粒pETduet-TcadA,将构建好的重组质粒pCDFduet-acn-cadA和pETduet-TcadA共转化进入大肠杆菌表达宿主BL21(DE3),得到重组菌株pCDFduet-acn-cadA/pETduet-TcadA;
步骤3,培养出发菌株pCDFduet-acn-cadA
挑取出发菌株pCDFduet-acn-cadA的单菌落,接种于LB培养基,37℃培养至OD值达到0.6-0.7,再加入0.25mM-1mM的IPTG,15-30℃培养16-24小时,离心收集出发菌株pCDFduet-acn-cadA;
步骤4,培养重组菌株pCDFduet-acn-cadA/pETduet-TcadA
挑取重组菌株pCDFduet-acn-cadA/pETduet-TcadA的单菌落,接种于LB培养基,37℃培养至OD值达到0.6-0.7,再加入0.25mM-1mM的IPTG,15-30℃培养16-24小时,离心收集重组菌株pCDFduet-acn-cadA/pETduet-TcadA;
步骤5,收集出发菌株pCDFduet-acn-cadA,4000-6000rpm,4℃,离心10-15min,除去上清,菌体用pH 6-11的PBS缓冲液重悬,4000-6000rpm,4℃,离心10-15min,获得出发菌株pCDFduet-acn-cadA,用分光光度计测定菌体浓度;
步骤6,收集重组菌株pCDFduet-acn-cadA/pETduet-TcadA,4000-6000rpm,4℃,离心10-15min,除去上清,菌体用pH 6-11的PBS缓冲液重悬,4000-6000rpm,4℃,离心10-15min,获得重组菌株pCDFduet-acn-cadA/pETduet-TcadA,用分光光度计测定菌体浓度;
步骤7,选取柠檬酸作为底物,Tween 80为表面活性剂,分别加入出发菌株pCDFduet-acn-cadA和重组菌株pCDFduet-acn-cadA/pETduet-TcadA,再添加PBS缓冲溶液,调节反应体系的pH至5-6,最后25-37℃反应0h-24h;
步骤8,完成催化反应,加入等体积比1mmol/L稀盐酸,12000rpm离心3min,采用1ml注射器吸取离心得到的上清液,并用0.22 μm 滤膜除去杂质,将去除杂质的反应液注入1.5ml液相小瓶中,检测产物生成情况。
实施例2
催化产衣康酸,具体操作步骤为:
反应体系为2ml,取柠檬酸终浓度为300mmol/L、Tween 80终浓度为0.5%,再分别加入出发菌株pCDFduet-acn-cadA和重组菌株pCDFduet-acn-cadA/pETduet-TcadA,终浓度均为OD60020,用PBS缓冲液调节体系至2ml,pH5.5,35℃下反应24h。
反应结束后,利用高效液相色谱法,Aminex HPX-87H型色谱柱(300×7.8 mm,9μm),流动相为0.008 mol/L硫酸;流速0.6mL·min-1;检测波长为210nm;柱温箱温度为60℃。经高效液相色谱方法检测后,所得结果如图4所示。
经计算得到重组菌株pCDFduet-acn-cadA/pETduet-TcadA所产衣康酸较出发菌株pCDFduet-acn-cadA提高了18.8%。,结果如图5所示,衣康酸产量是用建立的标准曲线计算得到,摩尔转化率即生成的衣康酸摩尔数与消耗的顺乌头酸摩尔数之比,相对产量是把出发菌株pCDFduet-acn-cadA设为参照计算得出。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。
序列表
<110> 南京工业大学
<120> 一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 943
<212> PRT
<213> 氨基酸序列(Amino acid Sequence)
<400> 1
Met Glu Leu Thr Val Thr Glu Ser Lys Asn Ser Phe Asn Ala Lys Ser
1 5 10 15
Thr Leu Glu Val Gly Asp Lys Ser Tyr Asp Tyr Phe Ala Leu Ser Ala
20 25 30
Val Pro Gly Met Glu Lys Leu Pro Tyr Ser Leu Lys Val Leu Gly Glu
35 40 45
Asn Leu Leu Arg Thr Glu Asp Gly Ala Asn Ile Thr Asn Glu His Ile
50 55 60
Glu Ala Ile Ala Asn Trp Asp Ala Ser Ser Asp Pro Ser Ile Glu Ile
65 70 75 80
Gln Phe Thr Pro Ala Arg Val Leu Met Gln Asp Phe Thr Gly Val Pro
85 90 95
Cys Val Val Asp Leu Ala Thr Met Arg Glu Ala Val Ala Ala Leu Gly
100 105 110
Gly Asp Pro Asn Asp Val Asn Pro Leu Asn Pro Ala Glu Met Val Ile
115 120 125
Asp His Ser Val Ile Val Glu Ala Phe Gly Arg Pro Asp Ala Leu Ala
130 135 140
Lys Asn Val Glu Ile Glu Tyr Glu Arg Asn Glu Glu Arg Tyr Gln Phe
145 150 155 160
Leu Arg Trp Gly Ser Glu Ser Phe Ser Asn Phe Arg Val Val Pro Pro
165 170 175
Gly Thr Gly Ile Val His Gln Val Asn Ile Glu Tyr Leu Ala Arg Val
180 185 190
Val Phe Asp Asn Glu Gly Leu Ala Tyr Pro Asp Thr Cys Ile Gly Thr
195 200 205
Asp Ser His Thr Thr Met Glu Asn Gly Leu Gly Ile Leu Gly Trp Gly
210 215 220
Val Gly Gly Ile Glu Ala Glu Ala Ala Met Leu Gly Gln Pro Val Ser
225 230 235 240
Met Leu Ile Pro Arg Val Val Gly Phe Lys Leu Thr Gly Glu Ile Pro
245 250 255
Val Gly Val Thr Ala Thr Asp Val Val Leu Thr Ile Thr Glu Met Leu
260 265 270
Arg Asp His Gly Val Val Gln Lys Phe Val Glu Phe Tyr Gly Ser Gly
275 280 285
Val Lys Ala Val Pro Leu Ala Asn Arg Ala Thr Ile Gly Asn Met Ser
290 295 300
Pro Glu Phe Gly Ser Thr Cys Ala Met Phe Pro Ile Asp Glu Glu Thr
305 310 315 320
Thr Lys Tyr Leu Arg Leu Thr Gly Arg Pro Glu Glu Gln Val Ala Leu
325 330 335
Val Glu Ala Tyr Ala Lys Ala Gln Gly Met Trp Leu Asp Glu Asp Thr
340 345 350
Val Glu Ala Glu Tyr Ser Glu Tyr Leu Glu Leu Asp Leu Ser Thr Val
355 360 365
Val Pro Ser Ile Ala Gly Pro Lys Arg Pro Gln Asp Arg Ile Leu Leu
370 375 380
Ser Glu Ala Lys Glu Gln Phe Arg Lys Asp Leu Pro Thr Tyr Thr Asp
385 390 395 400
Asp Ala Val Ser Val Asp Thr Ser Ile Pro Ala Thr Arg Met Val Asn
405 410 415
Glu Gly Gly Gly Gln Pro Glu Gly Gly Val Glu Ala Asp Asn Tyr Asn
420 425 430
Ala Ser Trp Ala Gly Ser Gly Glu Ser Leu Ala Thr Gly Ala Glu Gly
435 440 445
Arg Pro Ser Lys Pro Val Thr Val Ala Ser Pro Gln Gly Gly Glu Tyr
450 455 460
Thr Ile Asp His Gly Met Val Ala Ile Ala Ser Ile Thr Ser Cys Thr
465 470 475 480
Asn Thr Ser Asn Pro Ser Val Met Ile Gly Ala Gly Leu Ile Ala Arg
485 490 495
Lys Ala Ala Glu Lys Gly Leu Lys Ser Lys Pro Trp Val Lys Thr Ile
500 505 510
Cys Ala Pro Gly Ser Gln Val Val Asp Gly Tyr Tyr Gln Arg Ala Asp
515 520 525
Leu Trp Lys Asp Leu Glu Ala Met Gly Phe Tyr Leu Ser Gly Phe Gly
530 535 540
Cys Thr Thr Cys Ile Gly Asn Ser Gly Pro Leu Pro Glu Glu Ile Ser
545 550 555 560
Ala Ala Ile Asn Glu His Asp Leu Thr Ala Thr Ala Val Leu Ser Gly
565 570 575
Asn Arg Asn Phe Glu Gly Arg Ile Ser Pro Asp Val Lys Met Asn Tyr
580 585 590
Leu Ala Ser Pro Ile Met Val Ile Ala Tyr Ala Ile Ala Gly Thr Met
595 600 605
Asp Phe Asp Phe Glu Asn Glu Ala Leu Gly Gln Asp Gln Asp Gly Asn
610 615 620
Asp Val Phe Leu Lys Asp Ile Trp Pro Ser Thr Glu Glu Ile Glu Asp
625 630 635 640
Thr Ile Gln Gln Ala Ile Ser Arg Glu Leu Tyr Glu Ala Asp Tyr Ala
645 650 655
Asp Val Phe Lys Gly Asp Lys Gln Trp Gln Glu Leu Asp Val Pro Thr
660 665 670
Gly Asp Thr Phe Glu Trp Asp Glu Asn Ser Thr Tyr Ile Arg Lys Ala
675 680 685
Pro Tyr Phe Asp Gly Met Pro Val Glu Pro Val Ala Val Thr Asp Ile
690 695 700
Gln Gly Ala Arg Val Leu Ala Lys Leu Gly Asp Ser Val Thr Thr Asp
705 710 715 720
His Ile Ser Pro Ala Ser Ser Ile Lys Pro Gly Thr Pro Ala Ala Gln
725 730 735
Tyr Leu Asp Glu His Gly Val Glu Arg His Asp Tyr Asn Ser Leu Gly
740 745 750
Ser Arg Arg Gly Asn His Glu Val Met Met Arg Gly Thr Phe Ala Asn
755 760 765
Ile Arg Leu Gln Asn Gln Leu Val Asp Ile Ala Gly Gly Tyr Thr Arg
770 775 780
Asp Phe Thr Gln Glu Gly Ala Pro Gln Ala Phe Ile Tyr Asp Ala Ser
785 790 795 800
Val Asn Tyr Lys Ala Ala Gly Ile Pro Leu Val Val Leu Gly Gly Lys
805 810 815
Glu Tyr Gly Thr Gly Ser Ser Arg Asp Trp Ala Ala Lys Gly Thr Asn
820 825 830
Leu Leu Gly Ile Arg Ala Val Ile Thr Glu Ser Phe Glu Arg Ile His
835 840 845
Arg Ser Asn Leu Ile Gly Met Gly Val Val Pro Leu Gln Phe Pro Ala
850 855 860
Gly Glu Ser His Glu Ser Leu Gly Leu Asp Gly Thr Glu Thr Phe Asp
865 870 875 880
Ile Thr Gly Leu Thr Ala Leu Asn Glu Gly Glu Thr Pro Lys Thr Val
885 890 895
Lys Val Thr Ala Thr Lys Glu Asn Gly Asp Val Val Glu Phe Asp Ala
900 905 910
Val Val Arg Ile Asp Thr Pro Gly Glu Ala Asp Tyr Tyr Arg His Gly
915 920 925
Gly Ile Leu Gln Tyr Val Leu Arg Gln Met Ala Ala Ser Ser Lys
930 935 940
<210> 2
<211> 490
<212> PRT
<213> 氨基酸序列(Amino acid Sequence)
<400> 2
Met Thr Lys Gln Ser Ala Asp Ser Asn Ala Lys Ser Gly Val Thr Ser
1 5 10 15
Glu Ile Cys His Trp Ala Ser Asn Leu Ala Thr Asp Asp Ile Pro Ser
20 25 30
Asp Val Leu Glu Arg Ala Lys Tyr Leu Ile Leu Asp Gly Ile Ala Cys
35 40 45
Ala Trp Val Gly Ala Arg Val Pro Trp Ser Glu Lys Tyr Val Gln Ala
50 55 60
Thr Met Ser Phe Glu Pro Pro Gly Ala Cys Arg Val Ile Gly Tyr Gly
65 70 75 80
Gln Lys Leu Gly Pro Val Ala Ala Ala Met Thr Asn Ser Ala Phe Ile
85 90 95
Gln Ala Thr Glu Leu Asp Asp Tyr His Ser Glu Ala Pro Leu His Ser
100 105 110
Ala Ser Ile Val Leu Pro Ala Val Phe Ala Ala Ser Glu Val Leu Ala
115 120 125
Glu Gln Gly Lys Thr Ile Ser Gly Ile Asp Val Ile Leu Ala Ala Ile
130 135 140
Val Gly Phe Glu Ser Gly Pro Arg Ile Gly Lys Ala Ile Tyr Gly Ser
145 150 155 160
Asp Leu Leu Asn Asn Gly Trp His Cys Gly Ala Val Tyr Gly Ala Pro
165 170 175
Ala Gly Ala Leu Ala Thr Gly Lys Leu Leu Gly Leu Thr Pro Asp Ser
180 185 190
Met Glu Asp Ala Leu Gly Ile Ala Cys Thr Gln Ala Cys Gly Leu Met
195 200 205
Ser Ala Gln Tyr Gly Gly Met Val Lys Arg Val Gln His Gly Phe Ala
210 215 220
Ala Arg Asn Gly Leu Leu Gly Gly Leu Leu Ala His Gly Gly Tyr Glu
225 230 235 240
Ala Met Lys Gly Val Leu Glu Arg Ser Tyr Gly Gly Phe Leu Lys Met
245 250 255
Phe Thr Lys Gly Asn Gly Arg Glu Pro Pro Tyr Lys Glu Glu Glu Val
260 265 270
Val Ala Gly Leu Gly Ser Phe Trp His Thr Phe Thr Ile Arg Ile Lys
275 280 285
Leu Tyr Ala Cys Cys Gly Leu Val His Gly Pro Val Glu Ala Ile Glu
290 295 300
Asn Leu Gln Gly Arg Tyr Pro Glu Leu Leu Asn Arg Ala Asn Leu Ser
305 310 315 320
Asn Ile Arg His Val His Val Gln Leu Ser Thr Ala Ser Asn Ser His
325 330 335
Cys Gly Trp Ile Pro Glu Glu Arg Pro Ile Ser Ser Ile Ala Gly Gln
340 345 350
Met Ser Val Ala Tyr Ile Leu Ala Val Gln Leu Val Asp Gln Gln Cys
355 360 365
Leu Leu Ser Gln Phe Ser Glu Phe Asp Asp Asn Leu Glu Arg Pro Glu
370 375 380
Val Trp Asp Leu Ala Arg Lys Val Thr Ser Ser Gln Ser Glu Glu Phe
385 390 395 400
Asp Gln Asp Gly Asn Cys Leu Ser Ala Gly Arg Val Arg Ile Glu Phe
405 410 415
Asn Asp Gly Ser Ser Ile Thr Glu Ser Val Glu Lys Pro Leu Gly Val
420 425 430
Lys Glu Pro Met Pro Asn Glu Arg Ile Leu His Lys Tyr Arg Thr Leu
435 440 445
Ala Gly Ser Val Thr Asp Glu Ser Arg Val Lys Glu Ile Glu Asp Leu
450 455 460
Val Leu Gly Leu Asp Arg Leu Thr Asp Ile Ser Pro Leu Leu Glu Leu
465 470 475 480
Leu Asn Cys Pro Val Lys Ser Pro Leu Val
485 490
<210> 3
<211> 1494
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ctgcagatgg cacctgcact gaacgcaaac ccgaccacaa aacgcgatga actgagcgca 60
ccgagcgcaa gtcataaact gggcatgagc agcatggcaa gccgcgcagc aggtggtggt 120
ctgaaactga ctggtctgcc agatctgagc gatagcgcag gtaccctgtc tgatattttt 180
ggtacaccgc agatgcgtga aatttggagc gatcagaatc gtgttgcgtg ttatctggaa 240
attgaagcag cactggcaat tgttcaggca gatctgggta ttattcctaa aaacgccgca 300
catgaaattg ttgaacattg tcgtgtgcag gaaatcgatt gggcactgta taaacagaaa 360
acagaactga ttggttatcc ggttctgggt attgtgcagc agctggtggc aaattgtaaa 420
gatggtctgg gtgaatattg tcattggggt gcaaccaccc aggatattac agatacagca 480
accgttatgc agattcgtca gagcctgacc ctggttaaac agcgtctgga tagcatcgtg 540
agtagcctgg aacatctggc agaacagcat cgcaacgtac cgatggcagc acgtagcaac 600
ctgaaacagg cagttccaat tacctttggt tttaaaatgg cacgttttct ggcaaccttt 660
cgtcgtcatc agcagcgtct ggtagaactg gaaaaacgtg tgtataccct ggaatttggt 720
ggtgcagcag gtaatctgag ctccctgggt gatcagggta ttgcgaccca tgatgcactg 780
gcaaaaatgc tggatctggc gccggcagaa atcgcatggc atacagaaca tgatcgtttt 840
gcagaagttg gtacctttct gggtctgctg acaggtaccc tggcaaaact ggcaaccgat 900
atcaaactga tgagccagac cgaagtgggt gaagtgggtg aaccgtttat tagtaatcgt 960
ggtagtagta gcaccatgcc gcagaaaaac aatccgatta gttgcgttta tatccatgca 1020
tgcgcagcaa atgtacgcca gggtgctgcc gctctgctgg atgcaatgca gtcagatcat 1080
gaacgtggta ccggtccgtg ggaaattatt tgggttcagc tgcctctgat gatgaactgg 1140
acaagtgcag cactgaataa tgcagatttt gttctgcgtg gtctgcaagt ttttccggat 1200
gcaatgcagc ataatctgga tctgagcaaa ggtctgattg ttagcgaagc cgtgatgatg 1260
ggtctgggta ataccctggg tcgtcagtat gcccatgatg cagtttatga atgttgtcgt 1320
accgcatttg tgcaggatcg tccgctgctg gatgttctgc tggaaaatca tgaaattgcg 1380
agcaaactgg atcgtacaga actggaaaaa ctgtgtgatc cggccaatta tctgggtcag 1440
tgtagccagt ggattgatcg tgttctgagc cgtccttcta gcgcataaaa gctt 1494

Claims (5)

1.一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法,其特征在于,包括以下步骤:
步骤1,构建出发菌株pCDFduet-acn-cadA
来源于谷氨酸棒杆菌的顺乌头酸酶,根据已报导的黑曲霉来源的顺乌头酸脱羧酶氨基酸序列进行密码子优化后,全基因合成优化后的序列,克隆到载体pCDF-duet1上,获得重组质粒pCDFduet-acn-cadA,将构建好的重组质粒pCDFduet-acn-cadA转化进入大肠杆菌表达宿主BL21(DE3),得到出发菌株pCDFduet-acn-cadA,其中,顺乌头酸酶的氨基酸序列如SEQNO.1所示,顺乌头酸脱羧酶的氨基酸序列如SEQ NO.2所示;
步骤2,构建重组菌株pCDFduet-acn-cadA/pETduet-TcadA
根据已报导的玉米黑粉菌来源的反乌头酸脱羧酶的氨基酸序列进行密码子优化后,全基因合成优化后的序列,克隆到载体pET-duet上,获得重组质粒pETduet-TcadA,将构建好的重组质粒pCDFduet-acn-cadA和pETduet-TcadA共转化进入大肠杆菌表达宿主BL21(DE3),得到重组菌株pCDFduet-acn-cadA/pETduet-TcadA,其中,反乌头酸脱羧酶TcadA的氨基酸序列进行密码子优化后的序列如SEQ NO.3所示;
步骤3,培养出发菌株pCDFduet-acn-cadA
挑取出发菌株pCDFduet-acn-cadA的单菌落,接种于LB培养基,37℃培养至OD值达到0.6-0.7,再加入0.25mM-1mM的IPTG,18-30℃培养16-24小时,离心收集出发菌株pCDFduet-acn-cadA;
步骤4,培养重组菌株pCDFduet-acn-cadA/pETduet-TcadA
挑取重组菌株pCDFduet-acn-cadA/pETduet-TcadA的单菌落,接种于LB培养基,37℃培养至OD值达到0.6-0.7,再加入0.25mM-1mM的IPTG,18-30℃培养16-24小时,离心收集重组菌株pCDFduet-acn-cadA/pETduet-TcadA;
步骤5,收集出发菌株pCDFduet-acn-cadA,4000-6000rpm,4℃,离心10-15min,除去上清,菌体用pH 6-11的PBS缓冲液重悬,4000-6000rpm,4℃,离心10-15min,获得出发菌株pCDFduet-acn-cadA,用分光光度计测定菌体浓度;
步骤6,收集重组菌株pCDFduet-acn-cadA/pETduet-TcadA,4000-6000rpm,4℃,离心10-15min,除去上清,菌体用pH 6-11的PBS缓冲液重悬,4000-6000rpm,4℃,离心10-15min,获得重组菌株pCDFduet-acn-cadA/pETduet-TcadA,用分光光度计测定菌体浓度;
步骤7,选取柠檬酸作为底物,Tween 80为表面活性剂,分别加入出发菌株pCDFduet-acn-cadA和重组菌株pCDFduet-acn-cadA/pETduet-TcadA,再添加PBS缓冲溶液,调节反应体系的pH至5.5,最后35℃反应24h,其中,柠檬酸的终浓度为10-300mmol/L、Tween 80的终浓度为0.1%-1%,出发菌株pCDFduet-acn-cadA与重组菌株pCDFduet-acn-cadA/pETduet-TcadA的终浓度均为OD60010-30;
步骤8,完成催化反应,加入等体积比1mmol/L稀盐酸,12000rpm离心3min,采用1ml注射器吸取离心得到的上清液,并用0.22μm 滤膜除去杂质,将去除杂质的反应液注入1.5ml液相小瓶中,检测产物生成情况。
2.根据权利要求1所述的一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法,其特征在于,步骤3中加入IPTG的量为 0.25mmol/L。
3.根据权利要求1所述的一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法,其特征在于,步骤4中加入IPTG的量为 0.25mmol/L。
4.根据权利要求1所述的一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法,其特征在于,步骤5和步骤6中PBS缓冲液为磷酸二氢钠和磷酸氢二钠的混合溶液。
5.根据权利要求1所述的一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法,其特征在于,步骤7中柠檬酸的终浓度为300 mmol/L、Tween 80的终浓度为0.5%,出发菌株pCDFduet-acn-cadA与重组菌株pCDFduet-acn-cadA/pETduet-TcadA的终浓度均为OD60020。
CN202210085700.XA 2022-01-25 2022-01-25 一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法 Active CN114395573B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210085700.XA CN114395573B (zh) 2022-01-25 2022-01-25 一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210085700.XA CN114395573B (zh) 2022-01-25 2022-01-25 一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法

Publications (2)

Publication Number Publication Date
CN114395573A CN114395573A (zh) 2022-04-26
CN114395573B true CN114395573B (zh) 2024-02-13

Family

ID=81233369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210085700.XA Active CN114395573B (zh) 2022-01-25 2022-01-25 一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法

Country Status (1)

Country Link
CN (1) CN114395573B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944706A (zh) * 2020-08-06 2020-11-17 中国科学院青岛生物能源与过程研究所 一种产衣康酸的重组土曲霉菌株及其构建方法与应用
CN113481136A (zh) * 2021-07-19 2021-10-08 天津大学 重组嗜盐单胞菌及构建方法及催化柠檬酸制备衣康酸的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10738333B2 (en) * 2018-04-30 2020-08-11 Ut-Battelle, Llc Production of itaconic acid and related molecules from aromatic compounds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944706A (zh) * 2020-08-06 2020-11-17 中国科学院青岛生物能源与过程研究所 一种产衣康酸的重组土曲霉菌株及其构建方法与应用
CN113481136A (zh) * 2021-07-19 2021-10-08 天津大学 重组嗜盐单胞菌及构建方法及催化柠檬酸制备衣康酸的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Junyoung Kim等.Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli.Scientific Reports.2017,1-9. *

Also Published As

Publication number Publication date
CN114395573A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
CN111269900A (zh) 一种l-氨基酸脱氨酶突变体的制备及其应用
CN107384847B (zh) 一种高效转化木糖生产乙二醇的重组菌及其应用
CN112662709A (zh) 一种双酶偶联合成(r)-香茅醇的方法
CN110964708A (zh) 一种枯草芽孢杆菌L-天冬氨酸α-脱羧酶突变体及其应用
CN113337495B (zh) 一种提高唾液酸产量的方法与应用
CN111996157B (zh) 一种高效生产1,3-丙二醇的基因工程菌及其构建方法与应用
CN114395573B (zh) 一种利用反乌头酸脱羧酶提高全细胞催化产衣康酸产量的方法
CN113151135A (zh) 一种食品安全级枯草芽孢杆菌及其在生产几丁二糖脱乙酰酶中的应用
CN107513525B (zh) 一种d-扁桃酸脱氢酶、基因、基因工程菌及其应用
CN116445390A (zh) 一种全细胞催化生产1,4-丁二醇的方法及其应用
CN110577940A (zh) 马克斯克鲁维酵母醛酮还原酶KmAKR突变体及其应用
CN105593368B (zh) 2,3-丁二醇的生成能力得到增加的重组微生物及利用其的2,3-丁二醇的生产方法
CN110643556A (zh) 一种共表达烯醛还原酶和葡萄糖脱氢酶的重组基因工程菌及其应用
CN115011536B (zh) 一株双厌氧启动子诱导产高光学纯d-乳酸的工程菌及其制备方法与应用
CN106086082A (zh) 一种改良重组大肠杆菌生产9‑癸烯醇的方法
CN114381412B (zh) 一种合成3-羟基丙酸的重组菌及其构建方法与应用
CN111575258B (zh) 一种羰基还原酶EbSDR8突变体及其构建方法和应用
CN113025546B (zh) 一种多酶级联转化l-酪氨酸生产酪醇的方法
CN110343653B (zh) 一种敲除大肠杆菌醛脱氢酶基因提高1,2,4-丁三醇产量的方法
CN113999807B (zh) 一种重组菌株的构建方法及其在产衣康酸上的应用
CN113151204B (zh) 邻苯二酚1,2-双加氧酶突变体及其应用
CN115322975B (zh) 路德维希肠杆菌氧化还原酶的突变体及其应用
CN113355312B (zh) 大肠杆菌l-谷氨酸脱羧酶突变体的制备及应用
KR102253701B1 (ko) 하이브리드형 해당 경로
CN114854717B (zh) 一种脂肪酶及其编码基因与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant