CN114391062A - 发动机控制装置及发动机控制方法 - Google Patents

发动机控制装置及发动机控制方法 Download PDF

Info

Publication number
CN114391062A
CN114391062A CN202080063565.8A CN202080063565A CN114391062A CN 114391062 A CN114391062 A CN 114391062A CN 202080063565 A CN202080063565 A CN 202080063565A CN 114391062 A CN114391062 A CN 114391062A
Authority
CN
China
Prior art keywords
cam
cam signal
cylinder
value
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080063565.8A
Other languages
English (en)
Inventor
佐藤翔
窪田晓仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Publication of CN114391062A publication Critical patent/CN114391062A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/06Testing internal-combustion engines by monitoring positions of pistons or cranks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

在正反判定位置,根据从凸轮角传感器输出的凸轮信号设定凸轮信号读取值。另外,在正反判定位置,如果凸轮信号读取值交替变化为1(低电平)及2(高电平),则将凸轮信号读取值设定成凸轮信号期待值,如果凸轮信号读取值不交替变化为1(低电平)及2(高电平),则使上一次的控制周期中的凸轮信号期待值反转而设定凸轮信号期待值。而且,在凸轮信号读取值和凸轮信号期待值相等的情况下,使用凸轮信号读取值来判别气缸,在凸轮信号读取值和凸轮信号期待值不同的情况下,使用凸轮信号期待值来判别气缸。

Description

发动机控制装置及发动机控制方法
技术领域
本发明涉及使用曲柄角传感器及凸轮角传感器的输出信号判别气缸的发动机控制装置及发动机控制方法。
背景技术
在控制发动机的情况下,需要如特开2006-183593号公报(专利文献1)中所记载那样,使用曲柄角传感器及凸轮角传感器的输出信号判别气缸。这种气缸判别结果用于控制例如每个气缸的燃料喷射及点火。
现有技术文献
专利文献
专利文献1:日本特开2006-183593号公报
发明内容
发明所要解决的问题
但是,在判别气缸时,如果由于一些原因而对凸轮信号叠加噪声,则凸轮信号变得不正常,因此,气缸判别精度会降低。如果在这种状态下进行燃料喷射控制及点火控制,则会对与最初不同的气缸进行燃料喷射及点火,例如会导致发动机输出的降低等。
因此,本发明的目的在于,提供即使对凸轮角传感器的输出信号叠加噪声,也能够抑制气缸判别精度降低的发动机控制装置及发动机控制方法。
用于解决问题的技术方案
因此,在关于发动机控制装置的发明中,发动机控制装置具备曲柄角传感器、凸轮角传感器及电子控制单元。随着曲轴的旋转,曲柄角传感器输出包含每规定角度的角度位置信号、及每曲柄角度360°的基准位置信号的曲柄信号。随着凸轮轴的旋转,凸轮角传感器输出在曲柄信号的正的基准位置和反的基准位置不同的电平的凸轮信号。电子控制单元根据凸轮信号的变化状态求得期待值,在凸轮信号和期待值相等的情况下,使用凸轮信号判别气缸,在凸轮信号和期待值不同的情况下,使用期待值判别气缸。
另外,在关于发动机控制方法的发明中,电子控制单元可读入曲柄角传感器和凸轮角传感器的各输出信号,其中曲柄角传感器随着曲轴的旋转,输出包含每规定角度的角度位置信号、以及每曲柄角度360°的基准位置信号的曲柄信号,凸轮角传感器随着凸轮轴的旋转,输出在曲柄信号的正的基准位置和反的基准位置不同的电平的凸轮信号。而且,电子控制单元根据凸轮信号的变化状态求得期待值,在凸轮信号和期待值相等的情况下,使用凸轮信号判别气缸,在凸轮信号和期待值不同的情况下,使用期待值判别气缸。
发明效果
根据本发明,即使在凸轮角传感器的输出信号中叠加噪声,也能够抑制气缸判别精度的降低。
附图说明
图1是表示四冲程发动机的控制系统的一例的概略图。
图2是表示曲柄板的一例的俯视图。
图3是表示凸轮板的一例的俯视图。
图4是表示现有技术中的正常时的气缸判别方法的说明图。
图5是表示现有技术中的异常时的气缸判别方法的说明图。
图6是表示本实施方式的概要的气缸判别方法的说明图。
图7是表示气缸判别处理的主例程的一例的流程图。
图8是表示子例程形式的曲柄位置识别处理的一例的流程图。
图9是表示子例程形式的凸轮位置识别处理的一例的流程图。
图10是表示子例程形式的凸轮位置预测处理的一例的流程图。
图11是表示子例程形式的凸轮位置预测处理的一例的流程图。
图12是表示子例程形式的气缸判别位置计数器更新处理的一例的流程图。
图13是表示子例程形式的判别处理的一例的流程图。
图14是表示四气缸发动机中凸轮信号单次地异常的事例的说明图。
图15是表示四气缸发动机中凸轮角传感器断路的事例的说明图。
图16是表示四气缸发动机中凸轮信号连续两次异常的事例的说明图。
图17是表示四气缸发动机中凸轮信号连续三次异常的事例的说明图。
图18是表示四气缸发动机中单次地不能进行缺齿探测的事例的说明图。
图19是表示三气缸发动机中凸轮信号单次地异常的事例的说明图。
具体实施方式
以下,参照添加的附图详细叙述用于实施本发明的实施方式。
图1表示四冲程发动机的控制系统的一例。
发动机100具备气缸体110、活塞120、曲轴130、连杆140、气缸盖150。在气缸体110中形成有供活塞120可往返运动地嵌插的气缸筒110A。在气缸体110的下部,经由未图示的轴承,相对于气缸体110可相对旋转地配置有曲轴130。而且,活塞120经由连杆140可相对旋转地与曲轴130连结。
在气缸盖150上分别形成有导入进气的进气口150A和排出废气的排气口150B。而且,通过将气缸盖150紧固于气缸体110的上表面,由气缸体110的气缸筒110A、活塞120的冠面及气缸盖150的下表面划分的区域作为燃烧室160发挥作用。在面向燃烧室160的进气口150A的开口端配设有由进气凸轮轴170进行开闭驱动的进气阀180。另外,在面向燃烧室160的排气口150B的开口端配设有由排气凸轮轴190进行开闭驱动的排气阀200。
在面向燃烧室160的气缸盖150的规定部位分别安装有向燃烧室160喷射燃料的电磁式的燃料喷射阀210、将燃料和进气的混合气体进行点火的火花塞220。此外,燃料喷射阀210不限于向燃烧室160直接喷射燃料的结构,也可以为向进气口150A喷射燃料的结构。
在曲轴130的端部安装有曲柄板230。如图2所示,曲柄板230是将圆板形状的板部230A、和从板部230A的外周端向半径外方每任意的规定角度延伸的多个齿部230B一体化的被探测部件。另外,在曲柄板230上,通过切下齿部230B的一部分,形成规定每曲柄角度360°的基准位置的缺齿部230C。在此,缺齿部230C通过切下两个齿部230B而形成,但也可以切下任意数量的齿部230B而形成缺齿部230C。在四气缸的发动机100的情况下,曲柄板230例如将规定角度设为6°,具有58个齿部230B和将两个齿部230B切下的达到18°的缺齿部230C。此外,曲柄板230也可以具有两个以上的缺齿部230C。
在气缸体110的下部,且与曲柄板230的外周端对面的规定部位安装有探测曲柄板230的齿部230B并输出脉冲信号的曲柄角传感器240。因此,随着曲轴130的旋转,曲柄角传感器240输出包含探测到齿部230B的每规定角度的角度位置信号和探测到缺齿部230C的每曲柄角度360°的基准位置信号的曲柄信号。
在进气凸轮轴170的端部安装有凸轮板250。如图3所示,凸轮板250为将圆板形状的板部250A和从板部250A的外周端的一部分向半径外方延伸的圆弧形状的被探测部250B一体化的被探测部件。
另外,在气缸盖150的上部,且与凸轮板250的外周端对面的规定部位安装有探测凸轮板250的被探测部250B并输出矩形形状的信号的凸轮角传感器260。在曲轴130旋转两圈的期间,在曲柄角传感器240探测到曲柄板230的缺齿部230C的两处缺齿位置,安装凸轮板250的被探测部250B,使得凸轮角传感器260在例如第一圈的缺齿位置输出低电平(LOW)信号,在第二圈的缺齿位置输出高电平(HIGH)信号。因此,凸轮角传感器260根据是否探测到凸轮板250的被探测部250B,输出不同电平的凸轮信号。因此,通过监视这种凸轮信号,对于以进气凸轮轴170的2倍转速进行旋转的曲轴130,能够区别是表示为与进气凸轮轴170的0°~180°对应的第一圈(0°~360°)的旋转中的正的基准位置、还是表示为与进气凸轮轴170的180°~360°对应的第二圈(360°~720°)的旋转中的反的基准位置。总之,能够在进气凸轮轴170旋转一圈的期间,区别是表示曲轴130为第一圈的旋转中的正的基准位置、还是表示曲轴130为第二圈的旋转中的反的基准位置。此外,凸轮板250及凸轮角传感器260不限于设置于进气凸轮轴170,也可以设置于排气凸轮轴190。另外,凸轮板250不限于图3所示的形状,只要能够在第一圈的缺齿位置和第二圈的缺齿位置输出不同电平的信号,则也可以具有任意形状。
曲柄角传感器240的曲柄信号、及凸轮角传感器260的凸轮信号被输入到内置了微型计算机的发动机控制模块(ECM)270。另外,在ECM270中,除了曲柄角传感器240及凸轮角传感器260的各输出信号之外,还输入检测发动机100的转速Ne的转速传感器280、检测发动机100的负荷Q的负荷传感器290、检测发动机100的水温Tw的水温传感器300、及检测排气中的空燃比A/F的空燃比传感器310的各输出信号。在此,作为发动机100的负荷Q,例如能够使用进气流量、进气负压、增压压力、油门开度、节气门开度等与请求扭矩紧密相关的状态量。此外,作为电子控制单元的一例,可举出ECM270。
ECM270通过执行储存于微型计算机的非易失性存储器的应用程序,如下那样根据曲柄角传感器240、凸轮角传感器260、转速传感器280、负荷传感器290、水温传感器300及空燃比传感器310的各输出信号,分别电子控制燃料喷射阀210及火花塞220。
ECM270从转速传感器280及负荷传感器290分别读入转速Ne及负荷Q,基于这些数据运算与发动机运转状态对应的基本燃料喷射量。另外,ECM270从水温传感器300读入水温Tw,运算用水温Tw校正了基本燃料喷射量的燃料喷射量。然后,ECM270在与发动机运转状态对应的定时,将与燃料喷射量对应的控制信号输出至燃料喷射阀210,从燃料喷射阀210向燃烧室160喷射燃料。进而,ECM270在与燃料喷射后的发动机运转状态对应的定时,向火花塞220输出工作信号,将燃料和进气的混合气体点火。此时,ECM270从空燃比传感器310读入空燃比A/F,对燃料喷射阀210进行反馈控制,使得排气中的空燃比A/F接近理想空燃比。
在ECM270控制发动机100时,如下所示,进行各气缸的燃料喷射及点火。
如图4所示,曲柄角传感器240的曲柄信号在探测到曲柄板230的齿部230B时成为脉冲状的高电平,在未探测到曲柄板230的齿部230B时,即探测到其缺齿部230C时成为低电平。另一方面,就凸轮角传感器260的凸轮信号而言,在其为正常的情况下,在探测到凸轮板250的被探测部250B时成为高电平,在未探测到凸轮板250的被探测部250B时成为低电平。如果根据曲柄信号的周期比探测到缺齿位置,则在之后的正反判定位置读取凸轮信号,如果凸轮信号为低电平,则将凸轮信号读取值设定为1(低电平),如果凸轮信号为高电平,则将凸轮信号读取值设定为2(高电平)。而且,如果凸轮信号读取值为1(低电平),则将气缸判别值设定为表示第一气缸的“1”,然后,如果曲轴130旋转360°,则将气缸判别值内插为表示第三气缸的“3”。另外,如果凸轮信号读取值为2(高电平),则将气缸判别值设定为表示第四气缸的“4”,然后,如果曲轴130旋转360°,则将气缸判别值内插为表示第二气缸的“2”。ECM270使用这样设定的气缸判别值,对作为控制对象的气缸进行燃料喷射及点火。
但是,在火花塞220中,由未图示的点火装置形成的高电压在中心电极和接地电极之间流动,因此,容易在凸轮角传感器260的凸轮信号中叠加噪声。例如,如图5所示,在判定是正的基准位置还是反的基准位置的正反判定位置中,如果在应成为高电平的凸轮信号中叠加噪声而成为低电平,则与其对应的凸轮信号读取值会成为1(低电平)。在该情况下,在对凸轮信号叠加噪声的前后的控制周期中,凸轮信号读取值不会变化,接下来设定的气缸判别值仍会成为“1”的状态。如果在这种状态下进行燃料喷射控制及点火控制,则会对与最初不同的气缸进行燃料喷射及点火,例如会导致发动机输出的降低等。
因此,在凸轮角传感器260的凸轮信号为正常的情况下,着眼于正反判定位置中凸轮信号读取值进行正反反转的特性、即1(低电平)及2(高电平)交替变化,如图6所示,导入表示凸轮信号的期待值(认为是这样的值)的凸轮信号期待值。具体而言,为了根据凸轮信号的变化状态求得凸轮信号期待值,如果此次的控制周期中的凸轮信号读取值从上一次的控制周期中的凸轮信号读取值变化,则凸轮信号期待值被设定成凸轮信号读取值。另外,如果此次的控制周期中的凸轮信号读取值未从上一次的控制周期中的凸轮信号读取值变化,则凸轮信号期待值通过将上一次的控制周期中的凸轮信号期待值反转来进行设定。而且,如果凸轮信号读取值和凸轮信号期待值相等,则使用凸轮信号读取值进行气缸判别,如果凸轮信号读取值和凸轮信号期待值不同,则由于噪声叠加等而判断为凸轮信号读取值错误,并使用凸轮信号期待值进行气缸判别。
这样,在凸轮信号由于噪声叠加而成为了异常时,代替凸轮信号读取值,使用凸轮信号期待值进行气缸判别,因此,能够抑制错误的气缸判别。另外,即使直到凸轮角传感器260的故障诊断确定之前,凸轮信号具有异常,也使用凸轮信号期待值进行气缸判别,因此,关于气缸判别能够提高鲁棒性。
图7表示以ECM270被起动为契机,每当从曲柄角传感器240接收到曲柄信号即探测到曲柄板230的齿部230B的角度位置信号时执行的气缸判别处理的主例程。此外,ECM270根据储存于微型计算机的非易失性存储器的应用程序,执行气缸判别处理。
在步骤1(图7中缩写成“S1”。以下相同。)中,为了更新在进气凸轮轴170旋转一圈期间对曲柄信号进行了计数的曲柄位置计数器,ECM270执行子例程形式的曲柄位置识别处理。此外,在本实施方式中,曲柄位置识别处理以子例程形式安装,但也可以在主例程中展开(以下,其它的子例程也相同)。
在步骤2中,ECM270通过判定曲柄位置计数器是否为规定值,判定是否为正反判定位置。在此,正反判定位置是鉴于在进气凸轮轴170旋转一圈的期间曲轴130旋转两圈,对于进气凸轮轴170的一圈,判定是曲轴130的旋转为第一圈的正的基准位置、或是曲轴130的旋转为第二圈的反的基准位置的位置。而且,当判定为是正反判定位置时(是),ECM270将处理进入步骤3。另一方面,当判定为不是正反判定位置时(否),ECM270将处理进入步骤5。
在步骤3中,为了在正反判定位置根据来自凸轮角传感器260的凸轮信号设定凸轮信号读取值,ECM270执行子例程形式的凸轮位置识别处理。
在步骤4中,为了在正反判定位置选定气缸判别中使用的凸轮信号设定值,ECM270执行子例程形式的凸轮位置预测处理。然后,ECM270将处理进入步骤5。
在步骤5中,为了更新在曲轴130旋转一圈期间对曲柄信号进行了计数的气缸判别位置计数器,ECM270执行子例程形式的气缸判别位置计数器更新处理。
在步骤6中,ECM270通过判定气缸判别位置计数器是否为规定值,判定是否为判别发动机100的气缸的气缸判别位置。然后,如果判定为是气缸判别位置(是),则ECM270将处理进入步骤7。另一方面,如果判定为不是气缸判别位置(否),则ECM270结束气缸判别处理。
在步骤7中,为了实际判别气缸,ECM270执行子例程形式的判别处理。然后,ECM270结束气缸判别处理。
根据上述的气缸判别处理,当成为计数曲柄信号而特定的正反判定位置时,根据凸轮信号设定凸轮信号读取值,并且根据凸轮信号读取值的变化状态,进行异常计数器的更新及凸轮信号选定值的选定。然后,当计数曲柄信号而成为被特定的气缸判别位置时,根据凸轮信号选定值设定气缸判别值。
图8表示子例程形式的曲柄位置识别处理的一例。
在步骤11中,ECM270通过测定从曲柄角传感器240输出的连续的两个曲柄信号的基准位置信号的时间间隔,测定曲柄信号的周期。
在步骤12中,ECM270根据连续的两个曲柄信号的周期的比,判定是否为与曲柄板230的缺齿部230C对应的缺齿位置。而且,如果判定为是缺齿位置(是),则ECM270将处理进入步骤13。另一方面,如果判定为不是缺齿位置(否),则ECM270将处理进入步骤14。
在步骤13中,ECM270对曲柄位置计数器设定“0”而进行复位。然后,ECM270结束曲柄位置识别处理。
在步骤13中,ECM270对曲柄位置计数器加上“1”而进行更新。然后,ECM270结束曲柄位置识别处理。
根据上述的曲柄位置识别处理,ECM270测定曲柄角传感器240的曲柄信号的周期,根据连续的两个曲柄信号的周期的比判定是否为缺齿位置。而且,如果是缺齿位置,则ECM270对曲柄位置计数器设定“0”而进行复位。另外,如果不是缺齿位置,则ECM270对曲柄位置计数器加上“1”进行更新。这样,在进气凸轮轴170的旋转一圈期间,ECM270对曲柄信号进行计数。
图9表示子例程形式的凸轮位置识别处理的一例。
在步骤21中,ECM270对保持上一次的控制周期中的凸轮角传感器260的输出值的变量(上一次值)设定本次的控制周期中的凸轮信号读取值。此外,凸轮信号读取值在ECM270起动时的初始化处理中,例如设定上一次的最终确定处理中的凸轮角传感器260的输出值。
在步骤22中,ECM270从凸轮角传感器260读入凸轮信号,判定该凸轮信号输出值是否为低电平,即是否探测到凸轮板250的被探测部250B。然后,如果判定为凸轮信号输出值是低电平(是),则ECM270将处理进入步骤23。另一方面,如果判定为凸轮信号输出值不是低电平,即探测到凸轮板250的被探测部250B(否),则ECM270将处理进入步骤24。
在步骤23中,ECM270对凸轮信号读取值设定“1(低电平)”。然后,ECM270结束凸轮位置识别处理。
在步骤24中,ECM270对凸轮信号读取值设定“2(高电平)”。然后,ECM270结束凸轮位置识别处理。
根据上述的凸轮位置识别处理,ECM270存储上一次的控制周期中的凸轮信号读取值,并且根据凸轮信号逐次更新凸轮信号读取值。
图10及图11表示子例程形式的凸轮位置预测处理的一例。
在步骤31中,ECM270判定来自凸轮角传感器260的凸轮信号的读取是否为第二次以后,即是否设定上一次值。而且,如果判定为凸轮信号的读取为第二次以后(是),则ECM270将处理进入步骤32。另一方面,如果判定为凸轮信号的读取不是第二次以后,即未设定上一次值(否),则ECM270将处理进入步骤37。
在步骤32中,ECM270判定凸轮信号读取值是否从上一次的控制周期变化,即上一次值及凸轮信号读取值是否为“1(低电平)”及“2(高电平)”,或“2(高电平)”及“1(低电平)”。而且,如果判定为凸轮信号读取值变化(是),则ECM270将处理进入步骤33。另一方面,如果判定为凸轮信号读取值未变化(是),则ECM270将处理进入步骤35。
在步骤33中,ECM270判断为凸轮信号读取值正常,对计数凸轮信号读取值连续而变为了异常的情况的异常计数器设定“0”而进行复位。
在步骤34中,凸轮信号读取值为正常,因此,ECM270对凸轮信号期待值设定凸轮信号读取值。然后,ECM270将处理进入步骤37。
在步骤35中,ECM270判定为凸轮信号读取值异常,对异常计数器加上1而进行更新。
在步骤36中,凸轮信号读取值异常,因此,如果上一次的凸轮信号期待值的反转值即上一次的凸轮信号期待值为“1(低电平)”,则ECM270对凸轮信号期待值设定“2(高电平)”,如果上一次的凸轮信号期待值为“2(高电平)”,则ECM270对凸轮信号期待值设定“1(低电平)”。然后,ECM270将处理进入步骤37。
在步骤37中,ECM270判定异常计数器是否不是“0”,即凸轮信号读取值是否异常。然后,如果判定为异常计数器不是“0”(是),则ECM270将处理进入步骤38。另一方面,如果判定为异常计数器是“0”(否),则ECM270将处理进入步骤43。
在步骤38中,ECM270判定异常计数器是否大于规定值,即是否产生了凸轮角传感器260的故障。而且,如果判定为异常计数器大于规定值(是),则ECM270将处理进入步骤39。另一方面,如果判定为异常计数器不大于规定值,即异常计数器为规定值以下(否),则ECM270将处理进入步骤40。
在步骤39中,ECM270判断为产生了凸轮角传感器260的故障,作为气缸判别中使用的作为变量的凸轮信号选定值,选定“0(气缸判别停止)”。然后,ECM270结束凸轮位置预测处理。此外,在诊断为凸轮角传感器260故障时,不使用凸轮信号,能够仅计数曲柄信号而判别气缸。
在步骤40中,ECM270判定预测许可条件是否成立。而且,如果判定为预测许可条件成立(是),则ECM270将处理进入步骤41。另一方面,如果判定为预测许可条件不成立(否),则ECM270将处理进入步骤42。在此,作为预测许可条件,能够利用以下条件的至少一项。此外,作为预测许可条件,也能够设为凸轮信号进行多次正反判定、以及发动机100的转速Ne为规定转速以上的至少一方。
条件1:凸轮信号读取值连续为正常至规定次数以上,且气缸判别值未成为“0”。在此,凸轮信号读取值是否正常能够根据凸轮信号是否交替成为“1(低电平)”以及“2(高电平)”来进行判定。另外,作为规定次数,能够设为2以上的任意次数。设定这种条件的理由是由于,在凸轮信号读取值连续为正常的情况下,能够判断为能够正确地识别进气凸轮轴170的正反。
条件2:发动机100的转速Ne为规定值以上的状态持续规定时间以上,且曲轴130不逆旋转。设定这种条件的理由是,由于在发动机100的转速Ne低于规定值的低旋转时,担心由于逆旋转或旋转变动而错误探测曲柄板230的缺齿部230C。
条件3:探测曲柄板230的缺齿部230C之前的曲柄信号的数量为第一规定值以上且第二规定值以下。在此,第一规定值能够设为0~NCRA-1(NCRA:从缺齿部230C到下一个缺齿部230C的曲柄信号的期待值),第二规定值能够设为NCRA~2NCRA-1。设定这种条件的理由是由于,在探测缺齿部230C之前的曲柄信号的数量少的情况下,认为由于曲柄信号的异常而错误探测了缺齿部230C。在该情况下,因为不是正确的缺齿位置,所以停止气缸判别。另外,是由于在探测缺齿部230C之前的曲柄信号的数量多的情况下,认为不能探测缺齿部230C。例如,是由于在仅一次不能探测缺齿部230C的情况下,下一个凸轮信号读取值与上一次值相等是正确的,如使用预测值则会出错。
条件4:曲柄角传感器240及凸轮角传感器260正常。当这些传感器异常时,不能精确地进行气缸判别,因此,需要禁止凸轮位置预测处理。
在步骤41中,由于预测许可条件成立,因此ECM270判断为凸轮信号读取值正常,作为凸轮信号设定值选定凸轮信号期待值。然后,ECM270结束凸轮位置预测处理。
在步骤42中,由于预测许可条件不成立,因此ECM270判断有可能凸轮信号读取值异常,作为凸轮信号选定值,选定“0(气缸判别停止)”。然后,ECM270结束凸轮位置预测处理。
在步骤43中,因为异常计数器为0,因此ECM270判定为凸轮角传感器260正常,选定凸轮信号读取值作为凸轮信号选定值。然后,ECM270结束凸轮位置预测处理。
根据上述的凸轮位置预测处理,ECM270将凸轮信号的读取为第二次以后设为条件,通过判定凸轮信号读取值是否从上一次的控制周期产生了变化,由此判定凸轮信号读取值是否正常。而且,如果凸轮信号读取值正常,则ECM270将异常计数器复位,并且选定凸轮信号读取值作为凸轮信号期待值。另外,如果凸轮信号读取值异常,ECM270对异常计数器加上“1”进行更新,并且选定上一次的控制周期中的凸轮信号期待值的反转值作为凸轮信号期待值。然后,当异常计数器达到规定值时、即凸轮信号未变化的状态连续产生规定次数时,ECM270判断为产生了凸轮角传感器260的故障,作为凸轮信号选定值,选定表示应停止气缸判别的“0”。另外,如果在异常计数器未达到规定值的状态下预测许可条件成立,则ECM270选定凸轮信号期待值作为凸轮信号选定值,如果在异常计数器未达到规定值的状态下预测许可条件不成立,则ECM270选定表示应停止气缸判别的“0”作为凸轮信号选定值。另外,如果异常计数器为“0”,则ECM270选定凸轮信号读取值作为凸轮信号选定值。
图12表示子例程形式的气缸判别位置计数器更新处理的一例。
在步骤51中,ECM270判定是否未实施来自凸轮角传感器260的凸轮信号的读取。然后,如果ECM270判定为未实施凸轮信号的读取(是),则将处理进入步骤52。另一方面,如果ECM270判定为实施完毕凸轮信号的读取(否),则将处理进入步骤53。
在步骤52中,ECM270对曲轴130旋转一圈期间计数了曲柄信号的气缸判别位置计数器设定“0”而进行复位。然后,ECM270结束气缸判别位置计数器更新处理。
在步骤53中,ECM270判定是否成为了正反判定位置。然后,如果判定为成为了正反判定位置(是),则ECM270将处理进入步骤54。另一方面,如果判定为未到达正反判定位置(否),则ECM270将处理进入步骤55。
在步骤54中,ECM270对气缸判别位置计数器设定“0”而进行复位。然后,ECM270结束气缸判别位置计数器更新处理。
在步骤55中,ECM270判定气缸判别位置计数器是否成为了规定值,由此,判定是否成为了内插气缸判别位置。在此,内插气缸判别位置是随着进气凸轮轴170的旋转,可确定曲轴130从正的旋转转移到反的旋转的定时的位置,即由凸轮角传感器260不能检测的位置。另外,在与图2相关联地说明的曲柄板230的情况下,因为在第30次的曲柄信号中出现反的气缸判别位置,所以能够设为“29”作为规定值。而且,如果判定为成为了内插气缸判别位置(是),则将处理进入步骤56。另一方面,如果判定为未成为内插气缸判别位置(是),则ECM270将处理进入步骤57。
在步骤56中,因为成为了内插气缸判别位置,所以ECM270对气缸判别位置计数器设定“0”而进行复位。然后,ECM270结束气缸判别位置计数器更新处理。
在步骤57中,ECM270判定来自曲柄角传感器240的曲柄信号是否为缺齿位置之后的信号。然后,如果ECM270判定为曲柄信号是紧接缺齿位置之后的信号(是),则将处理进入步骤58。另一方面,如果判定为曲柄信号不是紧接缺齿位置之后的信号(否),则ECM270将处理进入步骤59。
在步骤58中,ECM270考虑到曲柄板230的缺齿部230C的缺齿数(两个齿),对气缸判别位置计数器加上“3”而进行更新。然后,ECM270结束气缸判别位置计数器更新处理。
在步骤59中,ECM270对气缸判别位置计数器加上“1”而进行更新。然后,ECM270结束气缸判别位置计数器更新处理。
按照上述的气缸判别位置计数器更新处理,如果从凸轮角传感器260未实施凸轮信号的读取,则ECM270对气缸判别位置计数器进行复位来作为初始化处理。另外,当从凸轮角传感器260实施完毕凸轮信号的读取,且成为正反判定位置时,ECM270对气缸判别位置计数器进行复位。当不是正反判定位置,且成为内插气缸判别位置时,ECM270对气缸判别位置计数器进行复位。如果不是内插气缸判别位置,且为紧接缺齿之后的曲柄信号,则ECM270对气缸判别位置计数器加上“3”而进行更新。如果不是内插气缸判别位置,且不是紧接缺齿之后的曲柄信号,则ECM270对气缸判别位置计数器加上“1”而进行更新。这样,ECM270适当更新气缸判别位置计数器。
图13表示子例程形式的判别处理的一例。
在步骤61中,ECM270通过判定曲柄位置计数器是否成为了规定值,判定是否为正反判定位置。然后,如果ECM270判定为是正反判定位置(是),则将处理进入步骤62。另一方面,如果判定为不是正反判定位置(否),则ECM270将处理进入步骤67。
在步骤62中,ECM270判定凸轮信号选定值是否为“低电平(1)”。然后,如果ECM270判定为凸轮信号选定值为“低电平(1)”(是),则将处理进入步骤63。另一方面,当ECM270判定为凸轮信号选定值不是“低电平(1)”时(否),将处理进入步骤64。
在步骤63中,ECM270对作为保持气缸判别结果的变量的气缸判别值设定表示第四气缸的“4”。然后,ECM270将处理进入步骤67。
在步骤64中,ECM270判定凸轮信号选定值是否为“高电平(2)”。然后,如果ECM270判定为凸轮信号选定值是“高电平(2)”,则将处理进入步骤65。另一方面,如果ECM270判定为凸轮信号选定值不是“高电平(2)”,即,既不是“低电平(1)”也不是“高电平(2)”(否),则将处理进入步骤66。
在步骤65中,ECM270对气缸判别值设定表示第一气缸的“1”。然后,ECM270将处理进入步骤67。
在步骤66中,ECM270对气缸判别值设定表示气缸不明的“0”。即,因为正反判定位置中的气缸判别用凸轮信号不是“1(低电平)”或“2(高电平)”,因此ECM270例如判断为对该信号叠加噪声,为了防止不适当的控制,对气缸判别值设定“0”。然后,ECM270将处理进入步骤67。
在步骤67中,ECM270通过判定气缸判别位置计数器是否成为规定值,判定是否为内插气缸判别位置。然后,如果判定为是内插气缸判别位置(是),则ECM270将处理进入步骤68。另一方面,如果ECM270判定为不是内插气缸判别位置(否),则不需要判别气缸,因此,结束判别处理。
在步骤68中,ECM270判定气缸判别值是否为“1”,即是否为“正”。然后,如果ECM270判定为气缸判别值是“1”(是),则将处理进入步骤69。另一方面,如果ECM270判定为气缸判别值不是“1”(否),则将处理进入步骤70。
在步骤69中,因为是“正”中的内插气缸判别位置,因此ECM270对气缸判别值设定表示第三气缸的“3”而进行内插。然后,ECM270结束判别处理。
在步骤70中,ECM270判定气缸判别值是否为“4”,即是否为“反”。然后,如果判定为气缸判别值是“4”(是),则ECM270将处理进入步骤71。另一方面,如果ECM270判定为气缸判别值不是“4”(否),则将处理进入步骤72。
在步骤71中,因为为“反”的内插气缸判别位置,因此ECM270对气缸判别值设定表示第二气缸的“2”进行内插。然后,ECM270结束判别处理。
在步骤72中,因为内插气缸判别位置的气缸判别值不是“1”或“4”,因此ECM270例如判断为存在在气缸判别值中叠加噪声的可能性,对气缸判别值设定表示气缸判别不明的“0”。然后,ECM270结束判别处理。
按照这样的判别处理,如果在正反判定位置中凸轮信号选定值为“低电平(1)”,则ECM270对气缸判别值设定表示第四气缸的“4”。如果在正反判定位置中凸轮信号选定值为“高电平(2)”,则ECM270对气缸判别值设定表示第一气缸的“1”。如果在正反判定位置中凸轮信号选定值不是“低电平(1)”或“高电平(2)”中任一项,则ECM270对气缸判别值设定表示气缸不明的“0”。
另外,如果在内插气缸判别位置中气缸判别值成为“1”,则ECM270对气缸判别值设定表示与第一气缸接续的第三气缸的“3”而进行内插。如果在内插气缸判别位置中气缸判别值成为“4”,则ECM270对气缸判别值设定表示与第四气缸接续的第二气缸的“2”而进行内插。如果在内插气缸判别位置中气缸判别值不是“1”或“4”中的任一项,则ECM270对气缸判别值设定表示气缸不明的“0”。
在此,关于本实施方式的作用,设想凸轮信号或曲柄信号成为了异常的多个事例,并对如何处理该事例进行说明。此外,为了便于说明,在最初的状态下凸轮信号正常,正反判定位置设为在探测缺齿位置后产生了曲柄信号的位置。但是,正反判定位置也可以设为探测缺齿位置之后的任意定时。
[第一事例]
图14表示凸轮信号单次地异常的事例。
当在最初的正反判定位置中凸轮信号成为高电平时,凸轮信号读取值被设定成为“2(高电平)”,并且凸轮信号期待值被设定为“2(高电平)”。此时,凸轮信号读取值和凸轮信号期待值相等,因此,作为凸轮信号选定值,选定凸轮信号读取值“2(高电平)”,使用该选定值,将气缸判别值设定为表示第四气缸的“4”。然后,当计数曲柄信号而探测到曲轴130旋转了180°时,将气缸判别值从“4”内插成表示第二气缸的“2”。
当在下一个控制周期的正反判定位置中凸轮信号成为低电平时,凸轮信号读取值被设定成“1(低电平)”,并且凸轮信号期待值被设定成“1(低电平)”。此时,凸轮信号读取值和凸轮信号期待值相等,因此,作为凸轮信号选定值,选定凸轮信号读取值“1(低电平)”,使用该凸轮信号选定值将气缸判别值设定成表示第一气缸的“1”。然后,当计数曲柄信号而探测到曲轴130旋转180°时,从气缸判别值“1”内插成表示第三气缸的“3”。
当在下一个控制周期的正反判定位置中在凸轮信号中叠加噪声而单次地成为低电平时,凸轮信号读取值被设定成“1(低电平)”,并且凸轮信号期待值被设定成“2(高电平)”。此时,凸轮信号读取值和凸轮信号期待值不同,因此,作为凸轮信号选定值,选定凸轮信号期待值“2(高电平)”,使用该凸轮信号选定值,气缸判别值被设定成表示第四气缸的“4”。然后,当计数曲柄信号而探测到曲轴130旋转了180°时,从气缸判别值“4”内插成表示第二气缸的“2”。另外,凸轮信号读取值没有如期待那样变化,因此,异常计数器从“0”累计成“1”。
当在下一个控制周期的正反判定位置中噪声叠加被消除而凸轮信号成为低电平时,凸轮信号读取值被设定成“1(低电平)”,并且凸轮信号期待值被设定成“1(低电平)”。此时,凸轮信号读取值和凸轮信号期待值相等,因此,作为凸轮信号选定值,选定凸轮信号读取值“1(低电平)”,使用该凸轮信号选定值,将气缸判别值设定成表示第一气缸的“1”。然后,当计数曲柄信号而探测到曲轴130旋转了180°时,从气缸判别值“1”内插成表示第三气缸的“3”。另外,凸轮信号读取值没有如期待那样变化,因此,异常计数器从“1”累计至“2”。
然后,当凸轮角传感器260产生断路时,如图15所示,在断路产生后的控制周期的正反判定位置中凸轮信号成为低电平,凸轮信号读取值被设定成“1(低电平)”,并且凸轮信号期待值被设定成“2(高电平)”。此时,凸轮信号读取值和凸轮信号期待值不同,因此,作为凸轮信号选定值,选定凸轮信号期待值“2(高电平)”,使用该凸轮信号选定值,将气缸判别值设定成表示第四气缸的“4”。然后,当计数曲柄信号而探测到曲轴130旋转了180°时,从气缸判别值“4”内插成表示第二气缸的“2”。另外,凸轮信号读取值如期待那样变化,因此,异常计数器被复位为“0”。
当凸轮角传感器260断路时,凸轮信号始终为低电平,因此,在之后的控制周期中的正反判定位置中凸轮信号也保持为低电平,凸轮信号读取值被设定成“1(低电平)”,并且凸轮信号期待值被设定成“1(低电平)”或“2(高电平)”。此时,如果凸轮信号读取值和凸轮信号期待值相等,则选定凸轮信号读取值作为凸轮信号选定值,如果凸轮信号读取值和凸轮信号期待值不同,则选定凸轮信号期待值作为凸轮信号选定值,使用该凸轮信号选定值将气缸判别值设定成表示第四气缸或第一气缸的“4”或“1”。然后,当计数曲柄信号而探测到曲轴130旋转了180°时,从气缸判别值“4”或“1”内插成表示第二气缸或第三气缸的“2”或“3”。另外,因为凸轮信号读取值没有如期待那样变化,因此对异常计数器依次加上“1”进行累计。然后,当异常计数器达到规定的阈值(例如,“4”)时,诊断为产生了凸轮角传感器260的故障,为了防止进行不适当的控制,将气缸判别值设定成“0”。此外,在凸轮角传感器260中产生了异常后,能够计数曲柄角传感器240的曲柄信号来进行气缸判别,而不使用凸轮角传感器260。
图16表示凸轮信号连续异常两次的事例。
在凸轮信号第二次成为异常的控制周期的正反判定位置,应成为低电平的凸轮信号由于噪声叠加而成为高电平时,凸轮信号读取值被设定成“2(高电平)”。另外,凸轮信号读取值从“1(低电平)”如期待那样变化成“2(高电平)”,因此,凸轮信号期待值被设定为凸轮信号读取值而成为“2(高电平)”。此时,凸轮信号读取值和凸轮信号期待值相等,因此,作为凸轮信号选定值,选定凸轮信号读取值而成为“2(高电平)”。但是,由于凸轮信号选定值没有从上一次的控制周期变化、即为了判别气缸而使用的凸轮信号或凸轮信号期待值没有变化,因此,气缸判别值被设定成“0(气缸判别停止)”。此外,关于异常计数器的计数、气缸判别值的内插等,如果需要,则要参照之前的说明(以下相同)。
如果在下一个控制周期的正反判定位置中噪声叠加被消除而凸轮信号成为高电平,则凸轮信号读取值被设定成“2(高电平)”,并且凸轮信号期待值被设定成“1(低电平)”。此时,凸轮信号读取值和凸轮信号期待值不同,因此,选定凸轮信号期待值“1(低电平)”作为凸轮信号选定值,使用该凸轮信号选定值将气缸判别值设定成表示第一气缸的“1”。
当在下一个控制周期的正反判定位置中凸轮信号成为低电平时,凸轮信号读取值被设定成“1(低电平)”,并且凸轮信号期待值被设定成“1(低电平)”。此时,凸轮信号读取值和凸轮信号期待值相等,因此,作为凸轮信号设定值,设定凸轮信号读取值“1(低电平)”。但是,凸轮信号选定值没有从上一次的控制周期变化,因此,将气缸判别值设定成“0(气缸判别停止)”。
然后,当在控制周期的正反判定位置中凸轮信号成为高电平时,凸轮信号读取值被设定成“1(高电平)”,并且凸轮信号期待值被设定成“2(高电平)”。此时,凸轮信号读取值和凸轮信号期待值相等,因此,作为凸轮信号选定值选定凸轮信号读取值“2(高电平)”,使用该凸轮信号选定值将气缸判别值设定成表示第四气缸的“4”,重新开始气缸判别。
图17表示凸轮信号连续异常三次的事例。
在凸轮信号第三次成为异常的控制周期的正反判定位置中,应成为高电平的凸轮信号由于噪声叠加而成为低电平时,凸轮信号读取值被设定成“1(低电平)”。另外,凸轮信号读取值从“2(高电平)”如期待那样变化成“1(低电平)”,因此,凸轮信号期待值被设定成凸轮信号读取值而成为“1(低电平)”。此时,凸轮信号读取值和凸轮信号期待值相等,因此,选定凸轮信号读取值作为凸轮信号选定值,使用该凸轮信号选定值将气缸判别值设定成表示第一气缸的“1”。
在下一个控制周期的正反判定位置中噪声叠加被消除而凸轮信号成为低电平时,将凸轮信号读取值设定成“1(低电平)”,并且凸轮信号期待值被设定成“2(高电平)”。此时,凸轮信号读取值和凸轮信号期待值不同,因此,作为凸轮信号选定值,选定凸轮信号期待值“2(高电平)”,使用该凸轮信号选定值将气缸判别值设定成表示第四气缸的“4”。此外,设为这以后的处理与之前的事例相同,因此省略其说明。如果需要,要参照之前的说明。
因此,只要是本领域技术人员,就能够容易地理解即使在凸轮信号中叠加噪声而成为异常,由于使用凸轮信号期待值进行气缸判别,因此也能够抑制气缸判别精度的降低。
[第二事例]
图18表示曲柄信号成为异常,单次地不能进行缺齿探测的事例。
当在紧靠曲柄信号成为异常之前的控制周期的正反判定位置中,凸轮信号成为低电平时,凸轮信号读取值被设定成“1(低电平)”,并且凸轮信号期待值被设定成“1(低电平)”。此时,凸轮信号读取值和凸轮信号期待值相等,因此,作为凸轮信号选定值,选定凸轮信号读取值“1(低电平)”,使用该凸轮信号选定值将气缸判别值设定成表示第一气缸的“1”。
当曲柄信号异常而不能进行缺齿探测时,不能进行正反判定位置的确定,因此,凸轮信号的读取被跳过。因此,凸轮信号读取值、凸轮信号期待值、凸轮信号选定值及气缸判别值仍为从前的值。而且,当在下一个控制周期的正反判定位置中凸轮信号成为低电平时,凸轮信号读取值被设定成“1(低电平)”,并且凸轮信号期待值被设定成“2(高电平)”。此时,凸轮信号读取值和凸轮信号期待值不同,因此,作为凸轮信号选定值,选定凸轮信号期待值“2(高电平)”,使用该凸轮信号选定值将气缸判别值设定成表示第四气缸的“4”。
当在下一个控制周期的正反判定位置中凸轮信号成为高电平时,凸轮信号读取值被设定成“2(高电平)”,并且凸轮信号期待值被设定成“2(高电平)”。此时,凸轮信号读取值和凸轮信号期待值相等,因此,作为凸轮信号选定值,选定凸轮信号读取值“2(高电平)”。但是,凸轮信号选定值没有从上一次的控制周期变化,因此,作为气缸判别值设定“0(气缸判别停止)”。然后,当凸轮信号的读取变得正常时,经过同样的处理,将气缸判别值设定成表示第一气缸的“1”。
因此,只要是本领域技术人员,就能够容易理解即使在曲柄信号中叠加噪声而暂时不能进行缺齿探测,由于使用凸轮信号期待值进行气缸判别,因此,也能够抑制气缸判别精度的降低。此外,在设定“0”作为气缸判别值而停止了气缸判别时,在一个控制周期的期间无法进行燃料喷射及点火,但是在之后噪声叠加被消除时进行恢复,因此,没有大的障碍。
本实施方式不限于四气缸,也能够适用于二气缸、三气缸及五气缸以上的发动机100。
图19表示关于三气缸的发动机100,凸轮信号单次地变为异常的事例。
当在紧靠凸轮信号成为异常之前的控制周期的正反判定位置中凸轮信号成为低电平时,凸轮信号读取值被设定成“1(低电平)”,凸轮信号期待值被设定成“1(低电平)”。此时,凸轮信号读取值和凸轮信号期待值相等,因此,作为凸轮信号选定值,选定凸轮信号读取值“1(低电平)”,使用该凸轮信号选定值将气缸判别值设定成表示第一气缸的“1”。然后,当计数曲柄信号而探测到曲轴130旋转了240°时,从气缸判别值“1”逐次内插成表示第二气缸及第三气缸的“2”和“3”。
当在下一个控制周期的正反判定位置中应成为高电平的凸轮信号由于噪声叠加而成为低电平时,凸轮信号读取值被设定成“1(低电平)”,并且凸轮信号期待值被设定成“2(高电平)”。此时,凸轮信号读取值和凸轮信号期待值不同,但作为三气缸的发动机100的特性,遍及两个控制周期而通过内插更新气缸判别值,因此,能够抑制气缸判别值错误。
因此,只要是本领域技术人员,就理解为即使是具有任意气缸的发动机100,也可同样地应用本实施方式。
此外,只要是本领域技术人员,就能够容易理解对于各种上述实施方式的技术思想,通过省略其一部分、或适当组合其一部分、或置换其一部分,构成新的实施方式。
标号说明
230 曲柄板
240 曲柄角传感器
250 凸轮板
260 凸轮角传感器
270 ECM(电子控制单元)。

Claims (16)

1.一种发动机控制装置,其具备:
曲柄角传感器,其随着曲轴的旋转,输出包含每规定角度的角度位置信号、以及每曲柄角度360°的基准位置信号的曲柄信号;
凸轮角传感器,其随着凸轮轴的旋转,在所述曲柄信号的正的基准位置和反的基准位置输出不同电平的凸轮信号;以及
电子控制单元,其被构成为根据所述凸轮信号的变化状态求期待值,在所述凸轮信号和所述期待值相等的情况下,使用所述凸轮信号来判别气缸,在所述凸轮信号和所述期待值不同的情况下,使用所述期待值来判别气缸。
2.根据权利要求1所述的发动机控制装置,其中,
所述电子控制单元被构成为,如果所述凸轮信号正常,则根据正反反转的特性求所述期待值。
3.根据权利要求1所述的发动机控制装置,其中,
所述电子控制单元被构成为,在所述凸轮信号未变化的状态连续发生了规定次数的情况下,诊断为所述凸轮角传感器故障。
4.根据权利要求3所述的发动机控制装置,其中,
所述电子控制单元被构成为,在诊断为所述凸轮角传感器故障的情况下,仅使用所述曲柄信号来判别气缸。
5.根据权利要求1所述的发动机控制装置,其中,
所述电子控制单元被构成为,在为了判别气缸而使用的所述凸轮信号或所述期待值未变化的情况下,停止气缸判别。
6.根据权利要求5所述的发动机控制装置,其中,
所述电子控制单元被构成为,在为了判别气缸而使用的所述凸轮信号或所述期待值开始变化的情况下,重新开始所述气缸判别。
7.根据权利要求1所述的发动机控制装置,其中,
所述电子控制单元被构成为,在所述凸轮信号进行了多次正反反转的第一条件、以及发动机转速为规定速度以上的第二条件的至少一方成立的情况下,求所述期待值。
8.根据权利要求7所述的发动机控制装置,其中,
所述第二条件是除了所述发动机转速为规定速度以上之外,该状态还持续了规定时间以上。
9.一种发动机控制方法,其中,
电子控制单元可读入曲柄角传感器和凸轮角传感器的各输出信号,所述曲柄角传感器随着曲轴的旋转而输出包含每规定角度的角度位置信号、以及每曲柄角度360°的基准位置信号的曲柄信号,所述凸轮角传感器随着凸轮轴的旋转而在所述曲柄信号的正的基准位置和反的基准位置输出不同电平的凸轮信号,
所述电子控制单元根据所述凸轮信号的变化状态求期待值,在所述凸轮信号和所述期待值相等的情况下,使用所述凸轮信号来判别气缸,在所述凸轮信号和所述期待值不同的情况下,使用所述期待值来判别气缸。
10.根据权利要求9所述的发动机控制方法,其中,
如果所述凸轮信号正常,则所述电子控制单元根据正反反转的特性求所述期待值。
11.根据权利要求9所述的发动机控制方法,其中,
在所述凸轮信号未变化的状态连续发生了规定次数的情况下,所述电子控制单元诊断为所述凸轮角传感器故障。
12.根据权利要求11所述的发动机控制方法,其中,
在诊断为所述凸轮角传感器故障的情况下,所述电子控制单元仅使用所述曲柄信号来判别气缸。
13.根据权利要求9所述的发动机控制方法,其中,
在为了判别气缸而使用的所述凸轮信号或所述期待值未变化的情况下,所述电子控制单元停止气缸判别。
14.根据权利要求13所述的发动机控制方法,其中,
在为了判别气缸而使用的所述凸轮信号或所述期待值开始变化的情况下,所述电子控制单元重新开始所述气缸判别。
15.根据权利要求9所述的发动机控制方法,其中,
在所述凸轮信号进行了多次正反反转的第一条件、以及发动机转速为规定速度以上的第二条件的至少一方成立的情况下,所述电子控制单元求所述期待值。
16.根据权利要求15所述的发动机控制方法,其中,
所述第二条件是除了所述发动机转速为规定速度以上之外,该状态还持续了规定时间以上。
CN202080063565.8A 2019-11-13 2020-11-04 发动机控制装置及发动机控制方法 Pending CN114391062A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019205416 2019-11-13
JP2019-205416 2019-11-13
PCT/JP2020/041224 WO2021095606A1 (ja) 2019-11-13 2020-11-04 エンジン制御装置及びエンジン制御方法

Publications (1)

Publication Number Publication Date
CN114391062A true CN114391062A (zh) 2022-04-22

Family

ID=75912041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080063565.8A Pending CN114391062A (zh) 2019-11-13 2020-11-04 发动机控制装置及发动机控制方法

Country Status (5)

Country Link
US (1) US11946425B2 (zh)
EP (1) EP4060177A4 (zh)
JP (1) JP7291238B2 (zh)
CN (1) CN114391062A (zh)
WO (1) WO2021095606A1 (zh)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861204A (ja) * 1994-08-24 1996-03-08 Hitachi Ltd 電子配電装置
JPH09195906A (ja) * 1996-01-11 1997-07-29 Unisia Jecs Corp 多気筒エンジンの点火気筒判別装置
JPH11343919A (ja) * 1998-06-02 1999-12-14 Unisia Jecs Corp エンジンの気筒判別装置
JP4475704B2 (ja) * 1999-09-24 2010-06-09 株式会社デンソー エンジン制御装置
JP4332971B2 (ja) * 2000-02-03 2009-09-16 株式会社デンソー エンジン制御装置及びそれに用いられる信号処理回路
US6341253B1 (en) 1999-09-24 2002-01-22 Denso Corporation Engine control apparatus with cylinder discrimination function
JP3506116B2 (ja) * 2000-01-27 2004-03-15 株式会社デンソー エンジン制御装置
JP2002180890A (ja) * 2000-12-12 2002-06-26 Unisia Jecs Corp エンジンの気筒判別装置
JP3791367B2 (ja) * 2001-08-27 2006-06-28 株式会社デンソー エンジン制御装置
JP4521661B2 (ja) * 2004-12-10 2010-08-11 スズキ株式会社 内燃機関の気筒判別装置
JP4541875B2 (ja) 2004-12-28 2010-09-08 株式会社ニッキ エンジンの制御装置
JP4655992B2 (ja) * 2006-04-24 2011-03-23 株式会社デンソー エンジン制御装置
DE102010003524A1 (de) * 2010-03-31 2011-10-06 Robert Bosch Gmbh Schaltungsanordnung und Verfahren zur Auswertung von Signalen eines Kurbelwellensensors und eines Nockenwellensensors einer Brennkraftmaschine
JP5556760B2 (ja) * 2011-07-27 2014-07-23 株式会社デンソー エンジン制御装置
JP2013167223A (ja) 2012-02-16 2013-08-29 Toyota Motor Corp 内燃機関の制御装置
US8978453B2 (en) * 2012-04-12 2015-03-17 Delphi Technologies, Inc. Crank signal error detection using a cam signal interval
KR101684013B1 (ko) * 2014-12-04 2016-12-08 현대자동차주식회사 가상크랭크신호를 이용한 엔진 시동 꺼짐 방지 방법
CN106285979A (zh) * 2016-10-26 2017-01-04 无锡威孚高科技集团股份有限公司 发动机转速信号故障处理装置及处理方法
DE102019210849A1 (de) * 2018-07-30 2020-01-30 Bosch Limited Eine motorsteuerungseinheit (ecu) und verfahren zum anpassen der ecu an impulsgeberradunregelmässigkeiten

Also Published As

Publication number Publication date
EP4060177A1 (en) 2022-09-21
US20220325673A1 (en) 2022-10-13
WO2021095606A1 (ja) 2021-05-20
EP4060177A4 (en) 2023-12-06
US11946425B2 (en) 2024-04-02
JPWO2021095606A1 (zh) 2021-05-20
JP7291238B2 (ja) 2023-06-14

Similar Documents

Publication Publication Date Title
US8818685B2 (en) Rotation detecting device and rotation detecting method
CN111664013B (zh) 发动机同步系统及其控制方法
US7984644B2 (en) Camshaft position measurement and diagnosis
US20050159877A1 (en) Fault diagnosis device for detection device provided on engine
US6796169B2 (en) Cylinder identifying system for internal combustion engine
JP2005273566A (ja) 内燃機関の気筒判別装置
JP4453839B2 (ja) エンジンの制御装置
US6768308B2 (en) Flame-cut detecting device for internal combustion engine
CN114391062A (zh) 发动机控制装置及发动机控制方法
US6874359B2 (en) Control apparatus and control method of engine
JP4210940B2 (ja) 吸気系センサの異常診断装置
JP4615004B2 (ja) 回転体の回転方向判別方法及びその装置、並びにその装置を用いた内燃機関の制御装置
JP2943045B2 (ja) 多気筒内燃機関の失火診断装置
JPH10148153A (ja) エンジンの失火診断装置
JP4333552B2 (ja) エンジン制御装置
JP4037485B2 (ja) エンジンの触媒劣化診断装置
JP2010090900A (ja) エンジンの制御装置
JP4389805B2 (ja) エンジンの気筒判定装置
KR980009818A (ko) 내연 기관의 기통 판정 제어 장치
JP2004232602A (ja) エンジンの触媒劣化診断装置
JP4241573B2 (ja) 内燃機関の気筒判定装置
JP4274037B2 (ja) 内燃機関用制御装置
JPH11316120A (ja) クランク角センサの診断装置
JPH1122537A (ja) センサ出力診断装置
JP3630568B2 (ja) 気筒判定用シグナルプレート及び気筒判定装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination