JP4475704B2 - エンジン制御装置 - Google Patents

エンジン制御装置 Download PDF

Info

Publication number
JP4475704B2
JP4475704B2 JP27092599A JP27092599A JP4475704B2 JP 4475704 B2 JP4475704 B2 JP 4475704B2 JP 27092599 A JP27092599 A JP 27092599A JP 27092599 A JP27092599 A JP 27092599A JP 4475704 B2 JP4475704 B2 JP 4475704B2
Authority
JP
Japan
Prior art keywords
signal
level
value
time
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27092599A
Other languages
English (en)
Other versions
JP2001090600A (ja
JP2001090600A5 (ja
Inventor
隆芳 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP27092599A priority Critical patent/JP4475704B2/ja
Priority to US09/665,693 priority patent/US6341253B1/en
Publication of JP2001090600A publication Critical patent/JP2001090600A/ja
Publication of JP2001090600A5 publication Critical patent/JP2001090600A5/ja
Application granted granted Critical
Publication of JP4475704B2 publication Critical patent/JP4475704B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、4サイクルエンジンを制御するエンジン制御装置に関し、特にエンジンの気筒判別に関するものである。
【0002】
【従来の技術】
従来より、エンジン制御装置として、エンジンのクランク軸が所定角度回転する毎にパルス信号を出力すると共に、そのクランク軸の回転位置が予め設定された基準位置に来た時にはパルス信号に代えて基準位置信号を出力するクランク角センサと、クランク軸の回転に対し1/2の比率で回転するエンジンのカム軸の回転位置に応じて、論理レベルがハイレベルとロウレベルとに変化する気筒判別用信号を出力するカム角センサとを備え、上記クランク角センサから基準位置信号が出力されたタイミングでの気筒判別用信号の論理レベルに基づいて、気筒判別を行うものがある(例えば特開平6−213058号公報)。
【0003】
ここで、このようなエンジン制御装置で実施される気筒判別方法の具体例について、図11を用いて説明する。
まず、この例において、クランク角センサから出力される信号NE(一般に回転信号と呼ばれるものであり、以下、NE信号という)は、クランク軸が10°回転する毎(10°CA毎)にロウレベル→ハイレベル→ロウレベルといった具合にパルス状に変化すると共に、クランク軸の回転位置が予め設定された1つの基準位置に来た時には、立ち上がりの間隔が3倍長くなる。つまり、10°CA毎にパルス状に変化する部分がパルス信号となり、また、立ち上がりの間隔が3倍長くなる(即ちパルス信号が2回欠落する)期間が、基準位置信号Kとなっている。そして、この基準位置信号Kは、クランク軸が1回転する毎(360°CA毎)に発生する。
【0004】
また、この例において、カム角センサから出力される気筒判別用信号G(以下、G信号という)は、クランク角センサからパルス信号が出力されている期間中に論理レベルが1回反転するようになっている。このため、G信号は、クランク軸が2回転する期間(720°CAの期間)を1周期とし、クランク角センサから基準位置信号Kが出力されるタイミングでは、その各タイミング毎に交互に異なった論理レベルとなる。尚、このようなカム角センサとしては、例えば特開平8−114411号公報に記載されているように、磁気抵抗素子を用いたものがある。
【0005】
次に、エンジン制御装置は、上記NE信号及びG信号と、エンジンを始動させるためのスタータスイッチがオンされた時にハイレベルとなるスタータ信号STAとに基づいて、以下の動作を行う。
まず、図11の時刻t11に示すように、スタータ信号STAがハイレベルになると(スタータスイッチがオンされると)、NE信号中における基準位置信号Kの検出動作を開始する。また、この時、内部のクランクカウンタの値(カウント値)を0にクリアする。
【0006】
そして、時刻t12に示すように、スタータ信号STAがハイレベルになってから最初に基準位置信号Kの発生を検出すると、以後、NE信号を分周して、30°CA毎(クランク軸が30°回転する毎)に立ち上がる30°CA信号NE2を生成すると共に、その30°CA信号NE2が立ち上がる毎に(即ち、NE信号に基づきクランク軸が30°回転したことを検出する毎に)、クランクカウンタの値を1ずつカウントアップさせる。
【0007】
ここで、クランクカウンタの値は、クランク軸の2回転分の累積回転角度を、30°を分解能として示すものであり、この例では0から23までの値となる。
つまり、エンジン制御装置は、クランクカウンタの値が23になると、その次の30°CA信号NE2の立ち上がりタイミングで、クランクカウンタの値を0に戻すことにより、そのクランクカウンタの値を、クランク軸の2回転分を1サイクルとして繰り返しカウントアップする。
【0008】
そして更に、エンジン制御装置は、NE信号中の基準位置信号Kを検出する毎に、G信号の論理レベルを読み取って、その論理レベルがロウレベルの場合には、クランクカウンタの値を20に初期化し、逆にG信号の論理レベルがハイレベルの場合には、クランクカウンタの値を8に初期化する。
【0009】
このため、図11の時刻t12に示すように、スタータ信号STAがハイレベルになってから最初の基準位置信号Kの発生タイミングで、G信号がロウレベルであったならば、クランクカウンタの値が20に初期化され、以後、クランクカウンタの値は、20→21→22→23→0→1→2→3…とカウントアップされていく。
【0010】
そして、時刻t13に示すように、次の基準位置信号Kの発生タイミングでは、G信号が時刻t12とは反対のハイレベルとなるため、その時刻t13では、クランクカウンタの値が8に初期化される。また、時刻t14に示すように、次の基準位置信号Kの発生タイミングでは、G信号が時刻t13とは反対のロウレベルとなるため、その時刻t14では、クランクカウンタの値が20に初期化される。そして、8と20は、クランク軸の1回転分(360°CA分)に相当する値だけ互いに異なった値であるため、上記初期化によってクランクカウンタの値の連続性を損なうことはない。つまり、上記初期化で設定される値(8と20)は、仮に上記初期化が行われなかったとしても、クランクカウンタの値がなるべき値となっている。
【0011】
以後は、図11の時刻t14〜時刻t17及び時刻t17以降に示すように、時刻t12〜時刻t14と同様の動作が繰り返される。
そして、エンジン制御装置は、G信号の論理レベルを最初に読み取った時(即ち、スタータスイッチがオンされてから最初に基準位置信号Kの発生を検出した時刻t12)からのクランクカウンタの値に基づいて、点火すべき気筒を判別する。
【0012】
例えば、エンジンがV型6気筒エンジンであるとすると、クランクカウンタの値が0の時に、第1気筒の上死点前(BTDC)30°CAと判断し、クランクカウンタの値が4の時に、第2気筒のBTDC30°CAと判断し、クランクカウンタの値が8の時に、第3気筒のBTDC30°CAと判断し、クランクカウンタの値が12の時に、第4気筒のBTDC30°CAと判断し、クランクカウンタの値が16の時に、第5気筒のBTDC30°CAと判断し、クランクカウンタの値が20の時に、第6気筒のBTDC30°CAと判断する。
【0013】
尚、スタータスイッチがオンされて最初に基準位置信号Kを検出した時だけでなく、その後も、基準位置信号Kを検出する毎にG信号の論理レベルを読み取って、クランクカウンタの値を8か20に初期化するようにしているのは、万一、ノイズの影響等によってクランクカウンタの値が正常値から外れても、それを速やかに正常値へと戻せるようにするためである。
【0014】
そして、図11のような気筒判別用の動作を行うエンジン制御装置によれば、スタータスイッチがオンされてから早期に気筒判別を行うことができ、延いては、エンジンの始動性を向上させることができる。
つまり、カム角センサとして、カム軸の1回転(クランク軸の2回転)に1パルスの気筒判別用信号を出力するものを用いると共に、NE信号中の基準位置信号Kを検出してから、NE信号の一定パルス数分の判定区間内にカム角センサからパルスが出力された場合にだけ、クランクカウンタの値を0に初期化する、といったオーソドックスな処理を行う装置の場合には、スタータスイッチがオンされてから最初に基準位置信号Kを検出した際の上記判定区間で、仮にカム角センサからパルスが出力されたとしても、その判定区間が終了した時点でしかクランクカウンタのカウント動作を開始することができず、その分、気筒判別が遅れてしまう。これは、基準位置信号Kの発生タイミングとカム角センサからパルスが出力されるタイミングとの時間差が、センサの個体差や経時変化、或いは更に、カム軸を操作して吸排気バルブの開閉タイミングを可変にする制御などによって、常に一定とはならないためである。
【0015】
これに対して、図11のような気筒判別用の動作を行うエンジン制御装置によれば、NE信号中の基準位置信号Kを最初に検出した時点から気筒判別を行って、エンジンの始動性を向上させることができるのである。
【0016】
【発明が解決しようとする課題】
ここで、図11を用いて説明したエンジン制御装置では、上記のように早期の気筒判別が可能となるが、カム角センサからエンジン制御装置の信号処理部分へ至る配線や、カム角センサ自身に異常が発生して、G信号の論理レベルが変化しなくなると(固定されてしまうと)、360°CA毎に、クランクカウンタの値が8と20との何れか一方だけに初期化されてしまい、もはや正常な気筒判別を行うことができないという問題がある。
【0017】
例えば、図12に示すように、図11の時刻t14と時刻t15との間の時刻に相当する時刻t14’にて、カム角センサからの配線やカム角センサ自身に異常が発生して、G信号がロウレベルに固定されてしまった場合には、その後、NE信号中の基準位置信号Kが検出される毎(図12の時刻t15,t16,t17)に、クランクカウンタの値が20に初期化されて、クランクカウンタの値の連続性が損なわれてしまい、正しく気筒判別することができなくなってしまう。
【0018】
本発明は、こうした問題に鑑みなされたものであり、気筒判別用信号(G信号)のレベルを読み取って早期気筒判別を行うエンジン制御装置において、気筒判別用信号を出力するセンサやその配線に異常が生じても、気筒判別を正しく行うことができるようにすることを目的としている。
【0019】
【課題を解決するための手段、及び発明の効果】
上記目的を達成するためになされた請求項1に記載のエンジン制御装置は、第1の信号発生手段と第2の信号発生手段とを備えており、第1の信号発生手段は、エンジンのクランク軸の回転に応じて、前記クランク軸が所定角度回転する毎にパルス信号を出力すると共に、クランク軸の回転位置が特定位置に来た時には基準位置信号を出力する。このため、基準位置信号は360°CA毎に発生する。
【0020】
また、第2の信号発生手段は、前記クランク軸の回転に対し1/2の比率で回転する回転軸の回転に応じて、気筒判別用信号を出力するが、この気筒判別用信号は、第1の信号発生手段から前記基準位置信号が出力されるタイミングでは、その各タイミング毎に交互に異なった論理レベルとなる。
【0021】
そして、請求項1に記載のエンジン制御装置では、レベル読取手段が、第1の信号発生手段から基準位置信号が出力されたことを検出すると、第2の信号発生手段からの気筒判別用信号の論理レベルを読み取る。また、カウント手段が、第1の信号発生手段から出力されるパルス信号に基づき、クランク軸の回転の単位角度を分解能として、その単位角度の検出時毎に、クランク軸の2回転分の累積回転角度を示すカウント値を、カウントアップ或いはカウントダウンさせるが、第1の信号発生手段から基準位置信号が出力されてレベル読取手段により気筒判別用信号の論理レベルが読み取られると、初期化手段により、前記カウント値は、該論理レベルがロウレベルの場合には第1の値に初期化され、逆に前記論理レベルがハイレベルの場合には第2の値に初期化される。
【0022】
そして、このエンジン制御装置では、レベル読取手段により気筒判別用信号の論理レベルが最初に読み取られてからの前記カウント値に基づいて、エンジンの気筒判別を行う。
【0023】
つまり、請求項1に記載のエンジン制御装置では、図11を用いて説明したような気筒判別方法を実施している。このため、第1の信号発生手段からの基準位置信号を最初に検出した時点から気筒判別を行うことができるのであるが、前述したように、第2の信号発生手段やその手段からの配線に異常が発生して、気筒判別用信号の論理レベルがハイレベルとロウレベルとの何れかに固定されてしまうと、第1の信号発生手段から基準位置信号が出力される毎(360°CA毎)に、前記カウント値が第1の値と第2の値との何れか一方だけに初期化されてしまい、正しく気筒判別することができなくなってしまう。
【0024】
そこで特に、請求項1に記載のエンジン制御装置では、禁止手段を設け、その禁止手段が、レベル読取手段により気筒判別用信号の論理レベルが読み取られると、その今回読み取られた論理レベルと、レベル読取手段により前回読み取られた論理レベルとを比較して、両論理レベルが一致していると判定すると、初期化手段の動作を禁止するようにしている。
【0025】
換言すれば、レベル読取手段により気筒判別用信号の論理レベルが読み取られると、その今回読み取られた論理レベルと、レベル読取手段により前回読み取られた論理レベルとを比較して、両論理レベルが相違している場合に、初期化手段を動作させて前記カウント値を第1の値或いは第2の値に初期化するようにしている。
【0026】
このため、請求項1に記載のエンジン制御装置によれば、第2の信号発生手段自身やその手段からの配線に異常が発生して、気筒判別用信号の論理レベルが固定されてしまっても、前記カウント値の連続性を維持することができ、正しく気筒判別することができるようになる。
【0030】
【発明の実施の形態】
以下、本発明が適用された実施形態のエンジン制御装置について、図面を用いて説明する。
まず、図1は、第1実施形態のエンジン制御装置の構成を表す構成図であり、図2は、このエンジン制御装置で正常時に行われる気筒判別用の動作を表すタイムチャートである。
【0031】
尚、このエンジン制御装置は、例えばV型6気筒の4サイクルエンジンを制御対象とし、6個の気筒に対応して、6個の燃料噴射弁11〜16と6個の点火コイル21〜26とを備えている。そして、このエンジン制御装置は、前述した図11と同じ要領で気筒判別を行うものである。
【0032】
図1に示すように、本第1実施形態のエンジン制御装置は、マイクロコンピュータ(以下、CPUという)31、入力バッファ33,35,37、A/D変換器39、出力バッファ41、及び信号処理回路43を備えた電子制御ユニット(以下、ECUという)45を中心に構成されている。
【0033】
そして、エンジンに取り付けられたクランク角センサ47からの回転信号NE(NE信号)が、入力バッファ33を介して信号処理回路43に入力され、また、エンジンに取り付けられたカム角センサ49からの気筒判別用信号G(G信号)が、入力バッファ35を介して信号処理回路43に入力される。
【0034】
ここで、クランク角センサ47は、第1の信号発生手段に相当するものであり、エンジンのクランク軸に固定されたロータ47aと、そのロータ47aの外周に対向して設けられ、該ロータ47aの外周に10°CAの間隔で形成された歯を検出してパルス信号を出力する光電式やホールIC式の信号出力部47bとからなる。そして、上記ロータ47aの外周には、歯が2個欠損した欠歯部が設けられている。
【0035】
このため、クランク角センサ47から入力バッファ33を介して信号処理回路43に入力されるNE信号は、前述した図11と同様の図2に示すように、クランク軸が10°回転する毎(10°CA毎)にロウレベル→ハイレベル→ロウレベルといった具合にパルス状に変化すると共に、クランク軸の回転位置が上記ロータ47aの欠歯部に対応する1つの基準位置(即ち、ロータ47aの欠歯部が信号出力部47bに対向する位置)に来た時には、立ち上がりの間隔が3倍長くなる。そして、10°CA毎にパルス状に変化する部分がパルス信号となり、また、立ち上がりの間隔が3倍長くなる(即ちパルス信号が2回欠落する)期間が360°CA毎に発生して、この期間が基準位置信号Kとなっている(図3及び図5参照)。
【0036】
また、カム角センサ49は、第2の信号発生手段に相当するものであり、クランク軸の回転に対し1/2の比率で回転するエンジンのカム軸に固定されたロータ49aと、そのロータ49aの回転に応じて、該ロータ49aが1/2回転する毎(即ち360°CA毎)に論理レベルが反転するG信号を出力する磁気抵抗素子式の信号出力部49bとからなる。
【0037】
そして、カム角センサ49から入力バッファ35を介して信号処理回路43に入力されるG信号は、図2に示すように、クランク角センサ47からパルス信号が出力されている期間中に論理レベルが1回反転し、クランク角センサ47から上記基準位置信号Kが出力されるタイミングでは、その各タイミング毎に交互に異なった論理レベルとなる。
【0038】
一方、ECU45内のCPU31には、エンジンを始動させるためのスタータスイッチ51がオンされた時にハイレベルとなるスタータ信号STAや、アクセルペダルが全閉の時にオンされるアイドルスイッチ53からの信号など、エンジンの運転状態を示す各種スイッチ信号が、入力バッファ37を介して入力される。
【0039】
そして更に、CPU31には、吸入空気量を検出するエアフロメータ55,スロットル操作量を検出するスロットルセンサ57,及び冷却水温を検出する水温センサ59などの各種センサからの信号が、A/D変換器39を介して入力される。
【0040】
また、信号処理回路43には、入力バッファ37からスタータ信号STAも入力されており、この信号処理回路43は、そのスタータ信号STAと上記NE信号及びG信号とに基づいて、後述する手順により、30°CA毎に立ち上がる30°CA信号NE2と、気筒判別用の第1信号TDC及び第2信号G2とを生成して、CPU31へ出力する。
【0041】
そして、CPU31は、信号処理回路43からの上記信号NE2,TDC,G2に基づいて気筒判別を行うと共に、その判別結果と上記各種スイッチ信号及び上記各種センサからの信号とに基づいて、エンジンの最適な点火時期や燃料噴射時期及び噴射量等を演算し、その演算結果に基づき、出力バッファ41を介して、各気筒の燃料噴射弁11〜16を駆動すると共に、イグナイタ61を駆動して所定の気筒の点火コイル21〜26に通電する。
【0042】
次に、信号処理回路43は、クランク角センサ47から基準位置信号Kが出力されたことを検出する欠歯検出部63と、この欠歯検出部63により上記基準位置信号Kの発生が検出された時に、カム角センサ49からのG信号の論理レベルを読み取るレベル読取部65と、クランク角センサ47から出力されるNE信号中のパルス信号から30°CA信号NE2を生成する30°CA信号生成部67と、クランク軸の2回転分の累積回転角度を30°を分解能として示すクランクカウンタ68の値CNT(カウント値に相当)を、上記30°CA信号NE2が立ち上がる毎に(即ち、NE信号に基づきクランク軸が30°回転したことを検出する毎に)更新するクランクカウンタカウント部69と、上記クランクカウンタ68の値CNTに基づいて、CPU31が気筒判別を行うための上記第1信号TDCと第2信号G2とを生成する判別用信号生成部71とを備えている。
【0043】
尚、前述したように、クランク角センサ47からは、クランク軸の回転に伴いロータ47aの欠歯部が信号出力部47bに対向する位置に来た時に、基準位置信号Kが出力されるため、本実施形態では、その基準位置信号Kの検出を、“欠歯検出”ともいっている。
【0044】
そして、欠歯検出部63は、スタータ信号STAがハイレベルになると(スタータスイッチがオンされると)、以後、図3に示す手順により、NE信号中の基準位置信号Kの検出を行う。
即ち、図3に示すように、まず欠歯検出部63は、NE信号がロウレベルからハイレベルへと立ち上がる毎に、計時用のタイマ値T2を0にリセットすると共に、そのリセットする直前のタイマ値T2から、NE信号の最新の立ち上がり間隔T1を計測している。そして更に、図3における一点鎖線に示す如く、上記計測した立ち上がり間隔T1をN倍して、基準位置信号検出用のしきい値時間(N×T1)を設定する。
【0045】
ここで、本実施形態では、前述したように、クランク角センサ47のロータ47aに設けられた欠歯部が、歯を2個欠損させたものであり、基準位置信号Kは、10°CA毎のパルス信号が2回欠落する期間であるため、上記Nは、2〜3の間の例えば2.5に設定されている。
【0046】
そして、欠歯検出部63は、上記タイマ値T2がしきい値時間(N×T1)を越えた時、即ち、図3の例では時刻taであり、NE信号の前回の立ち上がりタイミングから、その時に設定しているしきい値時間(N×T1)が経過しても、NE信号が立ち上がらないことを検出した時に、クランク角センサ47から基準位置信号Kが出力されたと判断して、欠歯検出信号FKを一定の期間だけハイレベルにする。
【0047】
尚、欠歯検出信号FKは、例えばNE信号が次に立ち下がったタイミングで、ロウレベルに戻される。また、この欠歯検出信号FKのハイレベルへの立ち上がりにより、レベル読取部65、30°CA信号生成部67、及びクランクカウンタカウント部69が、基準位置信号Kの発生を知ることとなる。
【0048】
そして、レベル読取部65は、図3に示すように、上記欠歯検出信号FKが立ち上がると、そのタイミングで、カム角センサ49からのG信号の論理レベルを読み取り、その読み取ったG信号の論理レベル(以下、読取レベルともいう)Grを記憶する。尚、この読取レベルGrは、後述するように、クランクカウンタカウント部69によって参照される。
【0049】
次に、30°CA信号生成部67は、スタータ信号STAがハイレベルになってから上記欠歯検出信号FKが最初に立ち上がると、内部カウンタの値を0にリセットして、以後、NE信号が立ち上がる毎に図4のフローチャートで示す動作を行うことにより、30°CA信号NE2を生成する。
【0050】
即ち、図4に示すように、30°CA信号生成部67は、NE信号が立ち上がると、まず、上記内部カウンタの値を1インクリメントし(S110)、次に、その内部カウンタの値が34になったか否かを判定する(S120)。
そして、内部カウンタの値が34になっていなければ(S120:NO)、内部カウンタの値を3で割った余りが1であるか否かを判定して(S130)、1であれば(S130:YES)、30°CA信号NE2をハイレベルにする(S140)。また、内部カウンタの値を3で割った余りが1でなければ(S130:NO)、内部カウンタの値を3で割った余りが0であるか否かを判定して(S150)、0であれば(S150:YES)、30°CA信号NE2をロウレベルにし(S160)、0でなければ(S150:NO)、30°CA信号NE2の論理レベルを変えることなく、NE信号の次の立ち上がりを待つ。
【0051】
一方、内部カウンタの値が34になった場合には(S120:YES)、その時点から一定時間後に30°CA信号NE2がロウレベルとなるように内部タイマをセットすると共に(S170)、内部カウンタの値を0に戻し(S180)、更に、30°CA信号NE2をハイレベルにする(S140)。このため、内部カウンタの値が34から0に戻された場合、30°CA信号NE2は、ロウレベルからハイレベルになると共に、上記内部タイマによる一定時間後にロウレベルへ戻ることとなる。
【0052】
つまり、30°CA信号生成部67は、図5に示すように、基準位置信号Kの発生時を起点として、NE信号が立ち上がる毎に、内部カウンタの値を1ずつカウントアップさせると共に、その値が34になると0に戻すようにしている。そして更に、内部カウンタの値が1〜33の場合には、その内部タイマの値を3で割った余りが1と2の場合に30°CA信号NE2をハイレベルにし、内部タイマの値を3で割った余りが0の場合に30°CA信号NE2をロウレベルにし、また、内部カウンタの値を34から0に戻した時には、30°CA信号NE2を上記内部タイマによる一定時間だけハイレベルにするようにしている。
【0053】
そして、30°CA信号生成部67は、こうした動作により、30°CA信号NE2が、NE信号に同期して30°CA毎に立ち上がる信号となるようにしている。
次に、クランクカウンタカウント部69は、スタータ信号STAがハイレベルになると、クランクカウンタ68の値CNTを0にする。そして、以後、30°CA信号NE2が立ち上がる毎に図6のフローチャートで示す処理を行うことにより、クランクカウンタ68の値CNTの初期化及びカウントアップを行う。尚、図6において、G-newは、レベル読取部65によって今回読み取られたG信号の最新の読取レベルGr(今回の読取レベルGr)を格納するための1ビットの記憶部であり、G-oldは、レベル読取部65によって前回読み取られたG信号の読取レベルGr(前回の読取レベルGr)を格納するための1ビットの記憶部である。
【0054】
図6に示すように、クランクカウンタカウント部69は、30°CA信号NE2が立ち上がると、まずS210にて、欠歯検出部63からの欠歯検出信号FKがハイレベルであるか否かを判定する。
そして、欠歯検出信号FKがハイレベルであれば、欠歯検出部63によってNE信号中の基準位置信号Kが検出された欠歯検出タイミングであると判断し、この場合には、今回30°CA信号NE2が立ち上がる直前に、レベル読取部65によってG信号の論理レベルが読み取られているため、S220に進んで、G-new内の論理レベルをG-oldに格納し、続くS230にて、G-newに、レベル読取部65によって今回読み取られたG信号の読取レベルGrを格納する。
【0055】
但し、スタータ信号STAがハイレベルになってから、上記S210にて欠歯検出信号FKがハイレベルであると初めて判定した場合には、G信号の前回の読取レベルGrが存在しないため、上記S220では、G-oldに、レベル読取部65によって今回読み取られた読取レベルGrとは反対の論理レベルを格納する。
【0056】
上記S220及びS230の処理を終えると、クランクカウンタカウント部69は、次のS240にて、G-new内の論理レベルとG-old内の論理レベルとが不一致であるか否かを判定し、その両論理レベルが不一致であれば、S250に進んで、G-new内の論理レベル(即ち、今回の読取レベルGr)がハイレベルであるか否かを判定する。
【0057】
そして、G-new内の論理レベルがハイレベルでなければ(即ち、ロウレベルであれば)、続くS260にて、クランクカウンタ68の値CNTを第1の値に相当する20に初期化し、その後、処理を終了する。また逆に、上記S250でG-new内の論理レベルがハイレベルであると判定した場合には、S270に移行して、クランクカウンタ68の値CNTを第2の値に相当する8に初期化し、その後、処理を終了する。
【0058】
一方、上記S210にて、欠歯検出信号FKがハイレベルではなく、欠歯検出タイミングではないと判断した場合、或いは、上記S240にて、G-new内の論理レベルとG-old内の論理レベルとが一致していると判定した場合には、S280に移行して、クランクカウンタ68の値CNTを1インクリメント(1つカウントアップ)する。
【0059】
そして、続くS290にて、クランクカウンタ68の値CNTが23を越えたか否かを判定し、23を越えていなければ、そのまま処理を終了するが、23を越えていれば(即ち、24に達したならば)、S300にてクランクカウンタ68の値CNTを0に戻してから処理を終了する。
【0060】
つまり、クランクカウンタカウント部69は、基本的には、30°CA信号NE2が立ち上がる毎に、S280〜300の処理により、クランクカウンタ68の値CNTを、720°CA分に相当する0〜23の範囲で1ずつカウントアップさせるが、欠歯検出部63によりNE信号中の基準位置信号Kが検出されてレベル読取部65によりG信号の論理レベルが読み取られた直後の30°CA信号NE2の立ち上がりタイミング(S210:YES)では、S220〜S270の処理により、クランクカウンタ68の値CNTを初期化すべきか否かを判断すると共に、初期化する場合には、下記の表1に示すように、クランクカウンタ68の値CNTを、G信号の今回の読取レベルGr(今回の欠歯検出時点のG信号レベル)に応じて、今回の読取レベルGrがロウレベルであれば20に初期化し、逆に今回の読取レベルGrがハイレベルであれば8に初期化するようにしている。
【0061】
【表1】
Figure 0004475704
【0062】
具体的には、表1における「スタータスイッチオン後の1回目」の欄と「場合1」及び「場合2」の各欄に示すように、スタータスイッチがオンされてから初めてレベル読取部65によりG信号の論理レベルが読み取られた場合と、G信号の前回の読取レベルGr(前回の欠歯検出時点のG信号レベル)と今回の読取レベルGr(今回の欠歯検出時点のG信号レベル)とが一致していない正常な場合には(S240:YES)、S250〜S270の処理により、クランクカウンタ68の値CNTを、今回の読取レベルGrがロウレベルならば20に初期化し、逆に今回の読取レベルGrがハイレベルならば8に初期化するようにしている。
【0063】
これに対して、表1における「場合3」及び「場合4」の各欄に示すように、G信号の前回の読取レベルGrと今回の読取レベルGrとが一致している場合には(S240:NO)、S250〜S270によるクランクカウンタ68の値CNTの初期化を行わずに、通常のカウントアップを行うようにしている(S280)。
【0064】
このため、本実施形態のエンジン制御装置において、カム角センサ49からECU45の信号処理回路43へ入力されるG信号が正常である場合には、クランクカウンタ68の値が、前述した図11と同じ要領で更新されることとなる。
即ち、図2に例示するように、まず時刻t1にて、スタータ信号STAがハイレベルになると、欠歯検出部63がNE信号中の基準位置信号Kの検出動作を開始し、また、クランクカウンタカウント部69によりクランクカウンタ68の値CNTが0にクリアされる。
【0065】
そして、その後、クランク角センサ47から最初に基準位置信号Kが出力され、時刻t2にて、その基準位置信号Kが欠歯検出部63により検出されると、レベル読取部65がカム角センサ49からのG信号の論理レベルを読み取り、また、その時点から、30°CA信号生成部67がNE信号の立ち上がり毎に図4及び図5に示した動作を行うことにより、30°CA信号を生成する。
【0066】
尚、図2では、欠歯検出部63が基準位置信号Kを検出するタイミング(時刻t2,t3,t4,t5,t6,t7)と、基準位置信号Kが終了するNE信号の立ち上がりタイミングとが、同じのように表されているが、実際には、欠歯検出部63が基準位置信号Kを検出するタイミングは、図3の時刻taで示したように、基準位置信号Kが終了するNE信号の立ち上がりタイミングよりも若干前である。そして、このことは、後述する図7及び図10についても同様である。
【0067】
ここで、この例の場合、スタータ信号STAがハイレベルになってから最初に基準位置信号Kが発生した時に、G信号がロウレベルであり、時刻t2でレベル読取部65により読み取られるG信号の読取レベルGrがロウレベルとなるため、その時刻t2の直後の30°CA信号NE2の立ち上がりタイミングにて、クランクカウンタ68の値CNTが、クランクカウンタカウント部69により20に初期化されることとなる。そして、以後、クランクカウンタ68の値CNTは、30°CA信号NE2が立ち上がる毎に、20→21→22→23→0→1→2→3…とカウントアップされていく。
【0068】
そして、次に基準位置信号Kが発生して、その基準位置信号Kが欠歯検出部63により検出される時刻t3では、G信号が時刻t2とは反対のハイレベルとなり、レベル読取部65によって読み取られるG信号の読取レベルGrがハイレベルとなるため、その時刻t3の直後の30°CA信号NE2の立ち上がりタイミングにて、クランクカウンタ68の値CNTが、クランクカウンタカウント部69により8に初期化されることとなる。そして、以後、クランクカウンタ68の値CNTは、30°CA信号NE2が立ち上がる毎に、8→9→10→11→12→13…とカウントアップされていく。
【0069】
そして更に、次に基準位置信号Kが発生して、その基準位置信号Kが欠歯検出部63により検出される時刻t4では、G信号が時刻t3とは反対のロウレベルとなり、レベル読取部65によって読み取られるG信号の読取レベルGrがロウレベルとなるため、その時刻t4の直後の30°CA信号NE2の立ち上がりタイミングにて、クランクカウンタ68の値CNTが、クランクカウンタカウント部69により20に初期化されることとなる。そして、以後、クランクカウンタ68の値CNTは、30°CA信号NE2が立ち上がる毎に、20→21→22→23→0→1→2→3…とカウントアップされていく。
【0070】
ここで、8と20は、クランクカウンタ68の値CNTとして、360°CA分に相当する値(12)だけ互いに異なった値であるため、上記初期化によってクランクカウンタ68の値CNTの連続性を損なうことはない。つまり、上記初期化で設定される8と20は、仮に上記初期化が行われなかったとしても、クランクカウンタ68の値CNTがなるべき値となっている。
【0071】
そして、以後は、図2の時刻t4〜時刻t7及び時刻t7以降に示すように、時刻t2〜時刻t4と同様の動作が繰り返される。
次に、信号処理回路43の判別用信号生成部71は、図2に示すように、スタータ信号STAがハイレベルになってから最初に30°CA信号NE2が立ち上がるまでの間は、CPU31への第1信号TDCをハイレベルにすると共に、CPU31への第2信号G2をロウレベルにする。そして、判別用信号生成部71は、スタータ信号STAがハイレベルになってから最初に30°CA信号NE2が立ち上がると、それ以後、クランクカウンタ68の値CNTが0又は12である場合に、第1信号TDCをロウレベルにすると共に、クランクカウンタ68の値CNTが0〜11である場合に、第2信号G2をハイレベルにし、また、クランクカウンタ68の値CNTが12〜23である場合に、第2信号G2をロウレベルにする。
【0072】
そして、CPU31は、スタータ信号STAがハイレベルになってから最初に30°CA信号NE2が立ち上がると、その時点から、例えば以下のように気筒判別を行う。
(1)まず、スタータ信号STAがハイレベルになってから最初に30°CA信号NE2が立ち立ち上がった時に、第2信号G2がロウレベルであれば、クランクカウンタ68の値CNTが20であるということであるため、第6気筒の上死点前(BTDC)30°CAと判断する。
【0073】
(2)また、スタータ信号STAがハイレベルになってから最初に30°CA信号NE2が立ち立ち上がった時に、第2信号G2がハイレベルであれば、クランクカウンタ68の値CNTが8であるということであるため、第3気筒のBTDC30°CAと判断する。
【0074】
(3)一方、上記(1)及び(2)以外の時には、第1信号TDCがロウレベルで且つ第2信号G2がハイレベルになった時に、クランクカウンタ68の値CNTが0であるということであるため、第1気筒のBTDC30°CAと判断する。そして、その後、30°CA信号NE2が4回立ち上がったことを検出した時に、クランクカウンタ68の値CNTが4であるということであるため、第2気筒のBTDC30°CAと判断し、更にその後、30°CA信号NE2が4回立ち上がったことを検出した時に、クランクカウンタ68の値CNTが8であるということであるため、第3気筒のBTDC30°CAと判断する。
【0075】
また、第1信号TDCがロウレベルで且つ第2信号G2がロウレベルになった時に、クランクカウンタ68の値CNTが12であるということであるため、第4気筒のBTDC30°CAと判断する。そして、その後、30°CA信号NE2が4回立ち上がったことを検出した時に、クランクカウンタ68の値CNTが16であるということであるため、第5気筒のBTDC30°CAと判断し、更にその後、30°CA信号NE2が4回立ち上がったことを検出した時に、クランクカウンタ68の値CNTが20であるということであるため、第6気筒のBTDC30°CAと判断する。
【0076】
そして、CPU31は、信号処理回路43によって出力される30°CA信号NE2,第1信号TDC,及び第2信号G2から、上記(1)〜(3)のように気筒判別を行うことにより、結局、クランクカウンタ68の値CNTに基づいて気筒判別を行っているのである。
【0077】
このような本第1実施形態のエンジン制御装置によれば、クランク角センサ47からの基準位置信号Kを最初に検出した時点(図2の時刻t2)から、気筒判別を行ってエンジンの制御を開始することができるのであるが、仮に、クランクカウンタカウント部69が図6のS220〜S240の処理を行わないものとすると、カム角センサ49自身或いはカム角センサ49からの配線に異常が発生して、G信号の論理レベルがハイレベルとロウレベルとの何れかに固定されてしまった場合には、図12に示したように、クランク角センサ47からの基準位置信号Kが検出される毎(360°CA毎)に、クランクカウンタ68の値CNTが8と20との何れか一方だけに初期化されてしまい、正しく気筒判別することができなくなってしまう。
【0078】
そこで、本第1実施形態のエンジン制御装置では、クランクカウンタカウント部69が図6のS220〜S240の処理を行うことにより、レベル読取部65によってG信号の論理レベルが読み取られると、その今回読み取られた論理レベルと、レベル読取部65によって前回読み取られた論理レベルとを比較して、両論理レベルが一致している場合には、S250〜S270の処理によるクランクカウンタ68の値CNTの初期化を行わないようにしている。換言すれば、レベル読取部65によってG信号の論理レベルが読み取られると、その今回読み取られた論理レベルと、レベル読取部65によって前回読み取られた論理レベルとが相違している場合にだけ、クランクカウンタ68の値CNTを、今回読み取られたG信号の論理レベルに応じて8か20に初期化するようにしている。
【0079】
このため、本第1実施形態のエンジン制御装置によれば、図7に例示するように、図2の時刻t4と時刻t5との間の時刻に相当する時刻t4’にて、カム角センサ49からの配線やカム角センサ49自身に異常が発生し、G信号がロウレベルに固定されてしまった場合には、その後の時刻t5,t6,t7にて欠歯検出部63によりNE信号中の基準位置信号Kが検出されても、クランクカウンタ68の値CNTは、G信号の読取レベルGrに応じて初期化されなくなる。
【0080】
よって、本第1実施形態のエンジン制御装置によれば、カム角センサ49やカム角センサ49からの配線に異常が生じても、図2と図7との比較からも分かるように、クランクカウンタ68の値CNTの連続性を正常時と同様に維持することができ、その結果、正しく気筒判別することができるようになる。
【0081】
尚、本第1実施形態では、欠歯検出部63とレベル読取部65とが、レベル読取手段に相当している。また、30°CA信号生成部67と、クランクカウンタカウント部69が行う図6の処理のうちのS280〜S300の処理とが、カウント手段に相当し、クランクカウンタカウント部69が行う図6の処理のうちのS210及びS250〜S270の処理が、初期化手段に相当している。そして、クランクカウンタカウント部69が行う図6の処理のうちのS210及びS220〜S240の処理が、禁止手段に相当している。
【0082】
次に、参考例のエンジン制御装置について説明する。尚、以下では、この参考例のことを、第2実施形態という。
2実施形態のエンジン制御装置は、前述した第1実施形態と比較して、下記の(a)及び(b)の点が異なっている。
(a):図8に示すように、信号処理回路43には、カム角センサ49からのG信号のエッジ(立ち上がりエッジと立ち下がりエッジとの両方)を検出するエッジ検出部73が追加して設けられている。
【0083】
そして、このエッジ検出部73は、クランクカウンタカウント部69からのエッジ検出開始指令を受けると、同じくクランクカウンタカウント部69からのエッジ検出終了指令を受けるまでの間、G信号を監視して、その期間中にG信号がレベル反転すると(G信号にエッジが発生すると)、G-edge 内の値を1にする。尚、G-edge は、G信号のエッジ検出結果を格納するための1ビットの記憶部であり、その値はクランクカウンタカウント部69によって参照される。
【0084】
(b):クランクカウンタカウント部69は、図6の処理に代えて図9の処理を行う。
そこで次に、本第2実施形態のクランクカウンタカウント部69で行われる処理について、図9を用い説明する。尚、図9において、前述した図6と同じ内容の処理については、同一のステップ番号を付しているため、詳しい説明は省略する。また、図9において、G-flgは、上記G-edge と同様に、G信号のエッジ検出結果を格納するための1ビットの記憶部である。
【0085】
まず、クランクカウンタカウント部69は、スタータ信号STAがハイレベルになると、クランクカウンタ68の値CNTと上記G-edge 内の値とを0にし、以後、30°CA信号NE2が立ち上がる毎に図9に示す処理を行う。
そして、図9に示すように、クランクカウンタカウント部69は、30°CA信号NE2が立ち上がると、まずS210にて、前述したように、欠歯検出部63からの欠歯検出信号FKに基づいて欠歯検出タイミング(欠歯検出部63によってNE信号中の基準位置信号Kが検出されたタイミング)であるか否かを判断し、欠歯検出タイミングであると判断した場合には、S410に進んで、スタータスイッチオン後の1回目、即ち、スタータ信号STAがハイレベルになってから初めて欠歯検出タイミングであると判断した場合か否かを判定する。
【0086】
ここで、スタータスイッチオン後の一回目であると判定した場合には、S420でG-flgに1をセットしてから、S230に進む。
そして、このS230にて、前述したように、G-newに、レベル読取部65によって今回読み取られたG信号の読取レベルGrを格納し、次のS430にて、エッジ検出部73へエッジ検出開始指令を与える。すると、エッジ検出部73は、G信号のエッジ検出動作を開始することとなる。
【0087】
そして更に、続くS440にて、G-flg内の値が1であるか否かを判定し、G-flg内の値が1であれば、前述したS250〜S270の処理により、クランクカウンタ68の値CNTをG信号の今回の読取レベルGr(G-new内の論理レベル)に応じて8か20に初期化し、その後、処理を終了する。
【0088】
また、上記S440にて、G-flg内の値が1でなければ(0であれば)、前述したS280〜S300の処理により、クランクカウンタ68の値CNTのカウントアップを行い、その後、処理を終了する。
但し、上記S410でスタータスイッチオン後の1回目と判定した場合には、S420でG-flgに1がセットされるため、S440では必ず肯定判定され、クランクカウンタ68の値CNTは、S250〜S270の処理により8か20に初期化されることとなる。
【0089】
一方、上記S410にて、スタータスイッチオン後の1回目ではないと判定した場合には、S450に進んで、エッジ検出部73へエッジ検出終了指令を与える。すると、エッジ検出部73は、G信号のエッジ検出動作を停止することとなる。
【0090】
次に、S460にて、エッジ検出部73によって1か0がセットされているG-edge 内の値を、G-flgに格納する。そして、続くS470にて、G-edge の値を0にリセットしてから、S230に進む。
すると、この場合にも、G-newに、レベル読取部65によって今回読み取られたG信号の読取レベルGrが格納される。そして、次のS430にて、エッジ検出部73へエッジ検出開始指令が与えられることにより、エッジ検出部73は、G信号のエッジ検出動作を再開始することとなる。そして更に、続くS440にて、G-flg内の値が1であるか否かが判定され、G-flg内の値が1であれば、S250〜S270の処理により、クランクカウンタ68の値CNTが8か20に初期化されるが、G-flg内の値が0であれば、クランクカウンタ68の値CNTの初期化は行われず、S280〜S300の処理による通常のカウントアップが行われることとなる。
【0091】
よって、S210にて欠歯検出タイミングであると前回判定されてから、同S210にて欠歯検出タイミングであると今回判定されるまでの間に、G信号が一度もレベル反転していなければ、エッジ検出部73によってG信号のエッジが検出されずに、上記S440で判定されるG-flg内の値が0となるため、クランクカウンタ68の値CNTの初期化が禁止されることとなる。
【0092】
つまり、本第2実施形態では、下記の表2における「スタータスイッチオン後の1回目」の欄と「場合1」及び「場合2」の各欄に示すように、スタータスイッチがオンされてから初めてレベル読取部65によりG信号の論理レベルが読み取られた場合と、レベル読取部65によりG信号の論理レベルが前回読み取られてから今回読み取られるまでの期間である判定区間内に、G信号のレベル反転が有った場合には(S440:YES)、クランクカウンタ68の値CNTを、G信号の今回の読取レベルGr(今回の欠歯検出時点のG信号レベル)に応じて8か20に初期化するようにしている。
【0093】
これに対して、表2における「場合3」及び「場合4」の各欄に示すように、上記判定区間内に、G信号のレベル反転が一度も無かった場合には(S440:NO)、クランクカウンタ68の値CNTの初期化を行わずに、通常のカウントアップを行うようにしている。
【0094】
【表2】
Figure 0004475704
【0095】
このため、本第2実施形態のエンジン制御装置では、例えば、図7と同様の図10に示すように、欠歯検出部63によりNE信号中の基準位置信号Kが検出されてレベル読取部65によりG信号の論理レベルが読み取られる各時刻t2,t3,t4,t5,t6,t7のうちで、時刻t2〜t3の判定区間では、G信号がロウレベルからハイレベルへと立ち上がっているため、時刻t3の直後の30°CA信号NE2の立ち上がりタイミングにて、クランクカウンタ68の値CNTは8に初期化されることとなる。また同様に、時刻t3〜t4の判定区間では、G信号がハイレベルからロウレベルへと立ち下がっているため、時刻t4の直後の30°CA信号NE2の立ち上がりタイミングにて、クランクカウンタ68の値CNTは20に初期化されることとなる。
【0096】
これに対して、例えば、時刻t4と時刻t5との間の時刻t4’で、カム角センサ49からの配線やカム角センサ49自身に異常が発生し、G信号がロウレベルに固定されてしまった場合には、その後の時刻t5,t6,t7にて、欠歯検出部63によりNE信号中の基準位置信号Kが検出されても、クランクカウンタ68の値CNTはG信号の読取レベルGrに応じて初期化されなくなる。
【0097】
以上のように、本第2実施形態のエンジン制御装置では、レベル読取部65によりG信号の論理レベルが前回読み取られてから今回読み取られるまでの間に、G信号の論理レベルが一度も反転していない場合には、クランクカウンタ68の値CNTの初期化を止めるようにしており、このような本第2実施形態によっても、第1実施形態のエンジン制御装置と同様の効果、即ち、カム角センサ49やカム角センサ49からの配線に異常が生じても、クランクカウンタ68の値CNTの連続性を正常時と同様に維持して、正しく気筒判別することができるようになる、という効果を得ることができる。
【0098】
尚、本第2実施形態では、エッジ検出部73と、クランクカウンタカウント部69が行う図9の処理のうちのS210及びS430〜S470の処理とが、禁止手段に相当している。
以上、本発明の一実施形態について説明したが、本発明は、種々の形態を採り得ることは言うまでもない。
【0099】
例えば、クランクカウンタ68の値CNTを初期化する値は、8と20に限るものではない。つまり、0と12や、5と17といった具合に、360°CA分だけ互いに異なった値であれば良い。
また、上記各実施形態では、クランクカウンタ68の値CNTをカウントアップさせたが、クランクカウンタ68の値CNTをカウントダウンさせるように構成しても良い。
【0100】
具体的に説明すると、例えば、図6及び図9において、S280では、クランクカウンタ68の値CNTを1デクリメント(1つカウントダウン)する。そして、S290では、クランクカウンタ68の値CNTが0よりも小さくなったか否かを判定し、0よりも小さければ、S300にて、クランクカウンタ68の値CNTを最大値の23に戻す。また、S260では、クランクカウンタ68の値CNTを例えば3に初期化し、S270では、クランクカウンタ68の値CNTを例えば15に初期化すれば良い。そして、このような変更に合わせて、第1信号TDC及び第2信号G2の生成方法やCPU31での気筒判別方法を変えれば良い。
【0101】
一方、上記各実施形態では、カム角センサ49から出力されるG信号が、360°CA毎に1回だけレベル反転するものであったが、G信号は、クランク角センサ47から基準位置信号Kが出力される各タイミング毎に交互に異なった論理レベルとなっていれば良く、クランク角センサ47からパルス信号が出力されている期間中に複数回レベル反転する信号であっても良い。
【0102】
また、レベル読取部65は、欠歯検出部63からの欠歯検出信号FKが立ち上がってからNE信号が最初に立ち上がったタイミング、即ち図3の時刻tbにて、G信号の論理レベルを読み取るように構成しても良い。
また更に、上記各実施形態では、信号処理回路43の各部がスタータスイッチのオンを起点に最初から動作するものとして説明したが、信号処理回路43の各部は、例えば電源オンのパワーオンリセット時や、エンジン回転数が0であることを検出した時等、他の要因が発生した時を起点として最初から動作するように構成することもできる。
【図面の簡単な説明】
【図1】 第1実施形態のエンジン制御装置の構成を表す構成図である。
【図2】 第1実施形態のエンジン制御装置で正常時に行われる気筒判別用の動作を表すタイムチャートである。
【図3】 第1実施形態のエンジン制御装置における欠歯検出部及びレベル読取部の動作を表すタイムチャートである。
【図4】 第1実施形態のエンジン制御装置における30°CA信号生成部の動作を表すフローチャートである。
【図5】 第1実施形態のエンジン制御装置における30°CA信号生成部の動作を表すタイムチャートである。
【図6】 第1実施形態のエンジン制御装置におけるクランクカウンタカウント部で行われる処理を表すフローチャートである。
【図7】 第1実施形態のエンジン制御装置の作用及び効果を説明するタイムチャートである。
【図8】 第2実施形態のエンジン制御装置の構成を表す構成図である。
【図9】 第2実施形態のエンジン制御装置におけるクランクカウンタカウント部で行われる処理を表すフローチャートである。
【図10】 第2実施形態のエンジン制御装置の作用及び効果を説明するタイムチャートである。
【図11】 従来のエンジン制御装置で行われる気筒判別用の動作を表すタイムチャートである。
【図12】 従来のエンジン制御装置の問題を説明するタイムチャートである。
【符号の説明】
11〜16…燃料噴射弁 21〜26…点火コイル
31…マイクロコンピュータ(CPU) 33,35,37…入力バッファ
39…A/D変換器 41…出力バッファ 43…信号処理回路
45…電子制御ユニット(ECU) 47…クランク角センサ
49…カム角センサ 51…スタータスイッチ 53…アイドルスイッチ
55…エアフロメータ 57…スロットルセンサ 59…水温センサ
61…イグナイタ 63…欠歯検出部 65…レベル読取部
67…30°CA信号生成部 68…クランクカウンタ
69…クランクカウンタカウント部 71…判別用信号生成部
73…エッジ検出部

Claims (2)

  1. エンジンのクランク軸の回転に応じて、前記クランク軸が所定角度回転する毎にパルス信号を出力すると共に、前記クランク軸の特定位置で基準位置信号を出力する第1の信号発生手段と、
    前記クランク軸の回転に対し1/2の比率で回転する回転軸の回転に応じて出力される信号であって、前記第1の信号発生手段から前記基準位置信号が出力されるタイミングでは、その各タイミング毎に交互に異なった論理レベルとなる気筒判別用信号を出力する第2の信号発生手段と、
    前記基準位置信号が出力されたことを検出すると、前記気筒判別用信号の論理レベルを読み取るレベル読取手段と、
    前記パルス信号に基づく前記クランク軸の回転における単位角度を分解能とし、前記単位角度の検出時毎に、前記クランク軸の2回転分の累積回転角度を示すカウント値を、カウントアップ或いはカウントダウンさせるカウント手段と、
    前記カウント値を、前記レベル読取手段による前記気筒判別用信号の論理レベルがロウレベルの場合には第1の値に初期化し、前記論理レベルがハイレベルの場合には第2の値に初期化する初期化手段と、
    を備え、前記レベル読取手段により前記気筒判別用信号の論理レベルが最初に読み取られてからの前記カウント値に基づいて、前記エンジンの気筒判別を行うように構成されたエンジン制御装置において、
    前記レベル読取手段により前記気筒判別用信号の論理レベルが読み取られると、その今回読み取られた論理レベルと、前記レベル読取手段により前回読み取られた論理レベルとを比較して、両論理レベルが一致していると判定すると、前記初期化手段の動作を禁止する禁止手段を備えていること、を特徴とするエンジン制御装置。
  2. 前記第1の値と前記第2の値は、前記カウント値の連続性を維持できるように前記クランク軸の1回転分に相当する値だけ互いに異なった値である請求項1に記載のエンジン制御装置。
JP27092599A 1999-09-24 1999-09-24 エンジン制御装置 Expired - Fee Related JP4475704B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27092599A JP4475704B2 (ja) 1999-09-24 1999-09-24 エンジン制御装置
US09/665,693 US6341253B1 (en) 1999-09-24 2000-09-20 Engine control apparatus with cylinder discrimination function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27092599A JP4475704B2 (ja) 1999-09-24 1999-09-24 エンジン制御装置

Publications (3)

Publication Number Publication Date
JP2001090600A JP2001090600A (ja) 2001-04-03
JP2001090600A5 JP2001090600A5 (ja) 2007-01-18
JP4475704B2 true JP4475704B2 (ja) 2010-06-09

Family

ID=17492913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27092599A Expired - Fee Related JP4475704B2 (ja) 1999-09-24 1999-09-24 エンジン制御装置

Country Status (1)

Country Link
JP (1) JP4475704B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163560A (ja) * 2003-11-28 2005-06-23 Denso Corp 内燃機関の気筒判別装置
US7142973B2 (en) 2004-06-11 2006-11-28 Denso Corporation Engine control apparatus designed to ensure accuracy in determining engine position
FR3090858B1 (fr) * 2018-12-19 2020-11-27 Continental Automotive France Synchronisation d’un moteur à combustion interne
US11946425B2 (en) 2019-11-13 2024-04-02 Hitachi Astemo, Ltd. Engine control device and engine control method

Also Published As

Publication number Publication date
JP2001090600A (ja) 2001-04-03

Similar Documents

Publication Publication Date Title
JP4168907B2 (ja) エンジン制御装置
JPWO2004013476A1 (ja) エンジン制御装置
US6679223B2 (en) Engine control system with cam sensor
JP2006214408A (ja) 内燃機関の制御装置
JP4073914B2 (ja) エンジン制御装置
JPS61193011A (ja) 内燃エンジンの始動開始直後のクランク角度基準位置検出方法
JP4475704B2 (ja) エンジン制御装置
JPH11229951A (ja) 可変バルブタイミング制御装置付多気筒内燃機関のノッキング制御装置
JP3979161B2 (ja) エンジン制御装置
JP4399997B2 (ja) エンジン制御装置
JP4332971B2 (ja) エンジン制御装置及びそれに用いられる信号処理回路
JP2005264862A (ja) エンジン制御装置
JP6579852B2 (ja) 内燃機関の始動制御装置及び始動制御方法
JPH07109948A (ja) 内燃機関のクランク角判別装置
JP4192844B2 (ja) 内燃機関の回転位置検出装置
JP2005098200A (ja) 内燃機関の気筒識別装置
JP4281037B2 (ja) 内燃機関用点火装置
JP4390033B2 (ja) 内燃機関制御装置
JP5794012B2 (ja) 電子制御装置
JP5287977B2 (ja) 内燃機関の制御装置
JP3146587B2 (ja) 内燃機関用制御装置
JP4066955B2 (ja) 内燃機関のクランク角判別装置
JP2003184629A (ja) 内燃機関のクランク角判定装置
JP4179155B2 (ja) 筒内噴射式内燃機関の燃料噴射時期制御装置
JP2631862B2 (ja) 点火時期制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081001

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4475704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees