CN114388653B - 一种基于水蒸气处理二硫化钨表面p型掺杂的光电晶体管及其制备方法 - Google Patents

一种基于水蒸气处理二硫化钨表面p型掺杂的光电晶体管及其制备方法 Download PDF

Info

Publication number
CN114388653B
CN114388653B CN202111488447.4A CN202111488447A CN114388653B CN 114388653 B CN114388653 B CN 114388653B CN 202111488447 A CN202111488447 A CN 202111488447A CN 114388653 B CN114388653 B CN 114388653B
Authority
CN
China
Prior art keywords
sio
phototransistor
doped
water vapor
pmma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111488447.4A
Other languages
English (en)
Other versions
CN114388653A (zh
Inventor
张帅
高伟
霍能杰
李京波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202111488447.4A priority Critical patent/CN114388653B/zh
Publication of CN114388653A publication Critical patent/CN114388653A/zh
Application granted granted Critical
Publication of CN114388653B publication Critical patent/CN114388653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于半导体器件技术领域,公开了一种基于水蒸气处理二硫化钨表面P型掺杂的光电晶体管及其制备方法。该方法是将制得的PMMA/Au/WS2/SiO2/Si放入丙酮溶液浸泡去除PMMA薄膜,在Ar气体中150~300℃退火,在水蒸气环境中处理5~60min,得到Au/WS2/SiO2/Si,即为WS2表面P型掺杂的光电晶体管。本发明首次通过水蒸气处理实现了WS2表面P型掺杂,该方法掺杂方式简单,成本低廉,有利于商业化推广,使用WS2表面P型掺杂的光电晶体管。该光电晶体管具有快速光响应、高灵敏度以及高迁移率。为二维材料高性能光电器件供了可能的发展应用前景。

Description

一种基于水蒸气处理二硫化钨表面P型掺杂的光电晶体管及 其制备方法
技术领域
本发明属于半导体器件技术领域,更具体地,涉及一种基于水蒸气处理二硫化钨(WS2)表面P型掺杂的光电晶体管及其制备方法。
背景技术
硫化钨(WS2)是一种典型的n型二维过渡金属二卤化物(TMDCs),由于其优异的光响应性能、高载流子移动率和高光致发光效率,已经引起了下一代纳米电子和光电子器件的广泛关注。传统上,通过热扩散和离子注入等替代掺杂的方法实现材料掺杂。然而该掺杂方法不适用于具有原子较薄特性的二维材料。因此迫切需要探索兼容的掺杂技术。目前有一些可以实现TMDCs材料的界面n或p掺杂的探索性工作,如等离子体处理和取代化学掺杂,但等离子体处理不可避免的表面损伤和快速蚀刻率阻碍了其在二维材料电子器件制造中的实际应用。同样,取代化学掺杂的问题是掺杂过程复杂。因此,开发一种高效、无损伤、空气稳定、可控的策略来实现功能掺杂是至关重要。
众所周知,界面电子转移掺杂工程通常利用分子物理吸附如O2或水捕获载流子,在FET应用中导致源漏(S/D)电流的释放。此外,YangS等人选择紫外/臭氧处理来改善WSe2的欧姆接触,并通过电子转移诱导邻近WSe2中的空穴掺杂。ShenH等人,报道了通过界面工程实现多层二烯化钨(WSe2)晶体管的多态数据存储,全面分析了在SiO2基WSe2界面上捕获的水和氧分子(H2O/O2)对转移曲线大滞后的影响。然而,该方法在实际应用较为复杂且不经济。另一方面,水和氧对WS2表面的影响已经被理论分析。Zhou等人通过第一性原理计算研究了水分子与单层WS2的相互作用,发现水分子在单层WS2上物理排列。并进一步利用平面平均微分电荷密度来确定水作为电子受体,导致WS2的p型掺杂。然而,实际应用中并没有通过物理吸附分子水掺杂制备p型WS2-FET的案例。
发明内容
为了解决上述现有技术存在的不足和缺点,提供一种基于水蒸气处理二硫化钨(WS2)表面P型掺杂的光电晶体管的制备方法,首次通过水蒸气处理WS2实现了WS2表面P型掺杂,该方法有效的实现了WS2表面P型掺杂,同时掺杂方式简单,成本低廉,非常有利于商业化推广,使用P型掺杂的WS2制备的光电晶体管为二维材料光电应用的发展铺平了道路。
本发明另一目的在于提供一种上述基于WS2表面P型掺杂的二硫化钨光电晶体管。该器件由于WS2表面水分子的正或负栅压偏置而引起的快速电荷转移,使得空穴迁移率高达60cm2/V·s,利用光致效应实现了103A·W-1的超高灵敏度,1.60×1012琼斯的比探测率。用于快速光响应和高灵敏度以及高迁移率的光电晶体管,推动商业化应用进程。
本发明的目的通过下述技术方案来实现:
一种基于水蒸气处理二硫化钨表面P型掺杂的光电晶体管的制备方法,包括以下步骤:
S1.分别使用丙酮、异丙醇和去离子水清洗SiO2/Si衬底,在SiO2/Si上表面光刻电极图案,并在其表面电子束蒸镀Au电极,制得附有Au电极的SiO2/Si;
S2.通过胶带机械剥离WS2单晶至洗净的SiO2/Si衬底上获得二维层状WS2纳米片;
S3.将PMMA溶液滴加到附有Au电极的SiO2/Si上进行旋涂,使PMMA溶液均匀分布在Au电极的SiO2/Si上,在100~200℃加热,得到PMMA/Au/SiO2/Si;
S4.将PMMA/Au/SiO2/Si放入KOH溶液中在60~70℃加热,取出清后将附有Au的PMMA膜和SiO2/Si分离,将附有Au的PMMA膜载于载玻片上,在显微镜下移动至SiO2/Si衬底的WS2纳米片上;在100~200℃加热,然后将PMMA/Au/WS2/SiO2/Si放入丙酮溶液浸泡去除PMMA薄膜,在Ar气体中150~300℃退火,在水蒸气环境中处理20~60min,得到Au/WS2/SiO2/Si,即为WS2表面P型掺杂的光电晶体管。
优选地,步骤S1中所述Au的厚度为20~100nm。
优选地,步骤S2中所述WS2纳米片的厚度为10~100nm。
优选地,步骤S3中所述旋涂的转速为4000~8000r/min,所述旋转的时间为40~80s。
优选地,步骤S3中所述加热的时间为10~30min。
优选地,步骤S4中所述KOH溶液的浓度为2~4mol/L,所述加热的时间均为10~30min,所述退火的时间为10~30min。
一种二硫化钨表面P型掺杂的光电晶体管,所述光电晶体管是所述的方法制备得到。
与现有技术相比,本发明具有以下有益效果:
1.本发明基于水蒸气处理WS2表面P型掺杂的光电晶体管,首次通过水蒸气处理实现了WS2表面P型掺杂。该方法简单,成本低廉,具有高效、无损伤、空气稳定功能。克服了传统上通过热扩散和离子注入等替代掺杂的方法对具有原子较薄特性的二维材料表面的损伤等技术问题。
2.本发明基于WS2表面P型掺杂的光电晶体管由于WS2表面水分子的正或负栅压偏置而引起的快速电荷转移,其具有高的空穴迁移率(60cm2/V·s)、较大开关比(104)等电学性能。另外具有优异的光学性能(103A·W-1的超高灵敏度,1.60×1012琼斯的比探测率),可广泛应用在光通讯、逻辑开关、医疗成像等重要领域。
附图说明
图1为本发明制备的基于WS2表面P型掺杂的光电晶体管的结构示意图;
图2为实施例1中WS2纳米片的拉曼和PL测试曲线,右下角为光电晶体管的光学显微镜图;
图3为实施例1中制备的基于WS2表面P型掺杂的电晶体管的AFM扫描图;
图4为实施例1中WS2纳米片的AFM数据;
图5为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在-0.5~-3V负偏置下的Ids-Vg转移曲线;
图6为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在Vds=-3V下的转移曲线以及其对数图示;
图7为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在不同栅极配置下测量的输出特性曲线;
图8为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在不同功率密度的暗照射和光照射(λ=635nm)下的对数输出特性曲线;
图9为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在λ=635nm激光照射下,Vg=-50V~50V不同光电流随光功率密度变化的关系曲线;
图10为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在λ=635nm激光照射下对于不同栅极电压响应率随光功率密度变化的关系曲线;
图11为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在λ=635nm激光照射下,当Vds=0V和Vg=-50V外量子效率-比探测率与光功率密度关系曲线图;
图12为实施例2制得的基于WS2表面P型掺杂的光电晶体管的光学显微镜图和对应材料的原子力显微镜(AFM)照片;
图13为实施例2制得的基于WS2表面P型掺杂的光电晶体管转移特性曲线;
图14为实施例3制得的基于WS2表面P型掺杂的光电晶体管的光学显微镜图和对应材料的原子力显微镜(AFM)照片;
图15为实施例3制得的基于WS2表面P型掺杂的光电晶体管转移特性曲线。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.分别使用丙酮、异丙醇和去离子水超声清洗SiO2/Si衬底各5min;然后用臭氧紫外或者氧气等离子体中清洗5min,氧气流量为50sccm,等离子功率为100W;
2.先通过匀胶机旋涂为德国ALLRESISTARP-5350型号的光刻胶至SiO2/Si衬底上,匀胶机转速设置为3500rpm,时间为1min,然后使用加热板加热烘干,加热的时间为4min,再通过405nm紫外激光直写光刻机光刻出对称电极,再用电子束蒸发获得60nmAu电极待用;
3.通过胶带机械剥离WS2单晶到另外一片步骤1洗净的SiO2/Si衬底上获得获得大量横向有几十微米尺寸的二维WS2,并通过显微镜观察选择10~100nm厚度的WS2纳米片;
4.使用胶头滴管将预先配好的PMMA溶液滴加到步骤2中附有Au电极的SiO2/Si上,并设置匀胶机转速7000r/min,旋转时间为60s,使PMMA溶液均匀的分布在Au电极的SiO2/Si上,然后在150℃加热15min,得到PMMA/Au/SiO2/Si,
5.将PMMA/Au/SiO2/Si放入3mol/LKOH溶液中在65℃加热20min;取出并使用去离子水清洗,随后使用镊子轻轻将附有Au的PMMA膜和SiO2/Si分离,并使用干净的载玻片将PMMA膜捞起;
6.将附有Au的PMMA膜在显微镜下移动至SiO2/Si衬底的WS2纳米片上;随后使用加热平台150℃加热PMMA/Au/WS2/SiO2/Si20min,再将其放入丙酮溶液浸泡5min去除PMMA薄膜;在Ar气体中150℃退火30min,然后在水蒸气环境中处理20min,制得Au/WS2/SiO2/Si,即为基于WS2表面P型掺杂的光电晶体管。
图1为本发明制备的基于WS2表面P型掺杂的光电晶体管的结构示意图;从图1中可知,该光电晶体管的结构为Au/WS2/SiO2/Si。由于通过机械剥离的方法获得WS2纳米片的表面存在有S空位。H2O/O2通过范德华力吸附在WS2表面的S空位上。水分子与靠近WS2表面的H原子表现出倾斜的O-H键。因此,当有电场存在或者光照条件下,界面态发生了电子捕获和去捕获的过程,这对应于WS2表面的H2O/O2氧化还原反应。图2为实施例1中WS2纳米片的拉曼和PL测试曲线,右下角为器件光学显微镜图;从PL测试图可以看出掺杂WS2不仅具有约1.44eV的间接带隙,而且具有弱直接带隙约为1.90eV;另外,拉曼光谱图显示了布里渊区(Γ)中心面内E1 2g(352cm-1)和面外A1 g(420cm-1)两种强光学声子模式,所有这些都与之前关于多层WS2报道一致。表明该器件中使用的材料为WS2,因此能带结构、介电常数等参数均使用WS2的作为理论分析。
图3为实施例1中制备的基于WS2表面P型掺杂的光电晶体管的AFM扫描图;从图3可以看出该器件选用的WS2表面平整程度以及AFM测试区域。图4为实施例1中WS2纳米片的AFM数据;从图4可以精确的测量该器件使用的WS2厚度为78.6nm。图5为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在-0.5~-3V负偏置下的Ids-Vg转移曲线;从图5中可知,对于不同漏源偏置电压,漏极电流Ids随着栅极电压Vg的增加而不断减少,这表明该器件使用的WS2表现出明显的p型传输特性。图6为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在Vds=-3V下的转移曲线以及其对数图示。从图6中可知,能够清晰的看出器件迁移率高达57.61cm2/V·s,以及4.45×104高的开关比;说明该器件电学性能优异超过了大多数p型掺杂WS2器件的迁移率。图7为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在不同栅极电压下测量的输出特性曲线;从图7中可知,该器件表现出良好的栅极调控线性行为,说明P型掺杂的WS2与金电极之间的接触势垒非常小接触。
图8为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在黑暗状态和光照射(λ=635nm)下的对数输出特性曲线;从图8中可知,对相同的栅极电压,漏电流随着激光功率的增加而增加,同时在Vg=-16V时,漏电流显著增加。在635nm激光器照射下,漏极电流光开关比约为103。另外,对于不同的栅极电压下,光电流变化幅度不同,说明器件同时具有光电导效应和光栅效应。
图9为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在λ=635nm激光照射下,Vg=-50V~50V不同光电流随光功率密度变化的关系曲线;从图9中可知,光电流随入射光功率密度增大而呈线性增加,此外,随着负栅电压的增加,斜率值逐渐降低,在Vg=-50V时光电流达到饱和。图10为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在λ=635nm激光照射下对于不同栅极电压响应率随光功率密度变化的关系曲线;从图10中可知,在0.12mWcm-2的光功率密度下,在Vg=-50V时,最大响应率R可达1036A·W-1,此时光电性能主要由光栅效应主导。此外,还可以发现响应率随着光功率和负栅极电压的增加而减小。
图11为实施例1中制备的基于WS2表面P型掺杂的光电晶体管在λ=635nm激光照射下,当Vds=0V和Vg=-50V外量子效率-比探测率与光功率密度关系曲线图。从图11中可知,该器件得到了超高的外量子效率(EQE)为202440%,比探测率(D*)约为1.6×1012Jone。在-3V源漏偏压和-50V栅压下,随着光功率密度的增加,外量子效率和比探测率呈下降趋势。其中EQE>100%的异常现象可能是由界面陷阱态形成的光电导增益效应引起的。
实施例2
与实施例1不同的在于:选择10~100nm厚度的WS2制备光电晶体管,水蒸气处理的时间为5min,制得基于WS2表面P型掺杂的光电晶体管。图12为实施例2制得的基于WS2表面P型掺杂的光电晶体管的光学显微镜图和对应材料的原子力显微镜(AFM)照片,从图12可以看出该器件选用的WS2表面平整,厚度约为95nm。图13为实施例2制得的基于WS2表面P型掺杂的光电晶体管转移特性曲线,可以看出该器件也表现出P型传输特性,但载流子迁移率仅有0.085cm2/V·s表现情况远不及实施例1,说明水蒸气处理能够使WS2表面掺杂改变极型,但由于处理时间较短,达不到最佳效果进而突出了本工艺的优势。
实施例3
与实施例1不同的在于:选择10~100nm厚度的WS2制备光电晶体管,水蒸气处理的时间为60min,制得于WS2表面P型掺杂的光电晶体管。图14为实施例3制得的基于WS2表面P型掺杂的光电晶体管的光学显微镜图和对应材料的原子力显微镜(AFM)照片。从图14可以看出该器件选用的WS2表面平整,厚度约为120nm。图15为实施例3制得的基于WS2表面P型掺杂的光电晶体管转移特性曲线,可以看出该器件也表现出P型传输特性,载流子迁移率表现情况与实施例1数据相当,说明了水蒸气处理能够使WS2表面掺杂,而且处理时间更长并没有增强器件的性能,这说明WS2表面的缺陷数量是一定的,使用实施例1中水蒸气处理时间足够使水分子占据WS2表面的缺陷位置。因此,没有必要过长时间的水蒸气处理,进而突出了本工艺的优势。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种基于水蒸气处理二硫化钨表面P型掺杂的光电晶体管的制备方法,其特征在于,包括以下步骤:
S1.分别使用丙酮、异丙醇和去离子水清洗SiO2/Si衬底,在SiO2/Si上表面光刻电极图案,并在其表面电子束蒸镀Au电极,制得附有Au电极的SiO2/Si;
S2.通过胶带机械剥离WS2单晶至洗净的SiO2/Si衬底上,获得二维层状WS2纳米片;
S3.将PMMA溶液滴加到附有Au电极的SiO2/Si上进行旋涂,使PMMA溶液均匀分布在Au电极的SiO2/Si上,在100~200℃加热,得到PMMA/Au/SiO2/Si;
S4.将PMMA/Au/SiO2/Si放入KOH溶液中在60~70℃加热,取出清后将附有Au的PMMA膜与SiO2/Si分离,将附有Au的PMMA膜载于载玻片上,在显微镜下移动至SiO2/Si衬底的WS2纳米片上;在100~200℃加热,然后将PMMA/Au/WS2/SiO2/Si放入丙酮溶液浸泡去除PMMA薄膜,在Ar气体中150~300℃退火,在水蒸气环境中处理20~60min,得到Au/WS2/SiO2/Si,即为WS2表面P型掺杂的光电晶体管。
2.根据权利要求1所述的基于水蒸气处理二硫化钨表面P型掺杂的光电晶体管的制备方法,其特征在于,步骤S1中所述Au的厚度为20~100nm。
3.根据权利要求1所述的基于水蒸气处理二硫化钨表面P型掺杂的光电晶体管的制备方法,其特征在于,步骤S2中所述WS2纳米片的厚度为10~100nm。
4.根据权利要求1所述的基于水蒸气处理二硫化钨表面P型掺杂的光电晶体管的制备方法,其特征在于,步骤S3中所述旋涂的转速为4000~8000r/min,所述旋涂的时间为40~80s。
5.根据权利要求1所述的基于水蒸气处理二硫化钨表面P型掺杂的光电晶体管的制备方法,其特征在于,步骤S3中所述加热的时间为10~30min。
6.根据权利要求1所述的基于水蒸气处理二硫化钨表面P型掺杂的光电晶体管的制备方法,其特征在于,步骤S4中所述KOH溶液的浓度为2~4mol/L,所述加热的时间均为10~30min,所述退火的时间为10~30min。
7.一种二硫化钨表面P型掺杂的光电晶体管,其特征在于,所述光电晶体管是由权利要求1-6任一项所述的方法制备得到。
CN202111488447.4A 2021-12-07 2021-12-07 一种基于水蒸气处理二硫化钨表面p型掺杂的光电晶体管及其制备方法 Active CN114388653B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111488447.4A CN114388653B (zh) 2021-12-07 2021-12-07 一种基于水蒸气处理二硫化钨表面p型掺杂的光电晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111488447.4A CN114388653B (zh) 2021-12-07 2021-12-07 一种基于水蒸气处理二硫化钨表面p型掺杂的光电晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN114388653A CN114388653A (zh) 2022-04-22
CN114388653B true CN114388653B (zh) 2023-09-26

Family

ID=81195295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111488447.4A Active CN114388653B (zh) 2021-12-07 2021-12-07 一种基于水蒸气处理二硫化钨表面p型掺杂的光电晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN114388653B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107464847A (zh) * 2017-07-25 2017-12-12 西安电子科技大学 基于碱金属溶液掺杂的二硫化钼晶体管及制备方法
CN110098104A (zh) * 2018-01-20 2019-08-06 清华大学 一种图案化的二维过渡金属硫属化合物纳米材料的制备方法
CN110828375A (zh) * 2019-10-25 2020-02-21 东南大学 一种快速、无刻蚀的转移二维材料和制备异质结的方法
CN113097319A (zh) * 2021-03-08 2021-07-09 华南师范大学 一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用
CN113097334A (zh) * 2021-03-08 2021-07-09 华南师范大学 一种SiC基二硫化钨紫外-可见光电探测器及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107464847A (zh) * 2017-07-25 2017-12-12 西安电子科技大学 基于碱金属溶液掺杂的二硫化钼晶体管及制备方法
CN110098104A (zh) * 2018-01-20 2019-08-06 清华大学 一种图案化的二维过渡金属硫属化合物纳米材料的制备方法
CN110828375A (zh) * 2019-10-25 2020-02-21 东南大学 一种快速、无刻蚀的转移二维材料和制备异质结的方法
CN113097319A (zh) * 2021-03-08 2021-07-09 华南师范大学 一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用
CN113097334A (zh) * 2021-03-08 2021-07-09 华南师范大学 一种SiC基二硫化钨紫外-可见光电探测器及其制备方法和应用

Also Published As

Publication number Publication date
CN114388653A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
Lara‐Avila et al. Non‐Volatile Photochemical Gating of an Epitaxial Graphene/Polymer Heterostructure
Ahn et al. Self-powered visible–invisible multiband detection and imaging achieved using high-performance 2D MoTe2/MoS2 semivertical heterojunction photodiodes
Hong et al. Inclined ultrathin Bi2O2Se films: a building block for functional van der Waals heterostructures
Biswas et al. Chemically doped random network carbon nanotube p–n junction diode for rectifier
Chen et al. Ultrasensitive ZnO nanowire photodetectors with a polymer electret interlayer for minimizing dark current
CN113097319B (zh) 一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用
CN112614945A (zh) 具有沟槽阵列结构的微纳单晶柔性光电探测器及其制备
CN109841703A (zh) 一种高稳定、低暗电流全无机钙钛矿光电探测器及其制备方法
CN115832108A (zh) 一种栅极可调高灵敏偏振探测器的制备方法
Lin et al. Illumination-dependent free carrier screening effect on the performance evolution of ZnO piezotronic strain sensor
CN111063731A (zh) Cnt-igzo薄膜异质结双极晶体管及其制备方法和应用
CN114388653B (zh) 一种基于水蒸气处理二硫化钨表面p型掺杂的光电晶体管及其制备方法
CN111081820B (zh) 一种基于二维黑磷材料实现igzo光电流调控的方法
Li et al. UV rewritable hybrid graphene/phosphor p–n junction photodiode
CN116666498A (zh) 一种简易制备的等离激元修饰的MoS2宽光谱光敏场效应管及其制备方法
CN116544302A (zh) 一种基于准一维范德华材料ZrS3纳米带的可调偏振光电探测器的制备方法
CN115621353A (zh) 一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用
CN115347078A (zh) 基于等离子体n型掺杂的MoS2异质结光电探测器及其制备方法
CN112447858B (zh) 结型场效应晶体管及其制备方法
CN113990970A (zh) 一种石墨烯/二硫化钨-二硒化钨异质结/石墨烯光电探测器及其制备方法和应用
CN111584682A (zh) 基于石墨烯的柔性光探测装置及其制造方法
CN110120349A (zh) InGaZnO薄膜晶体管的源漏电极及晶体管制备方法
Ge et al. Towards high-performance transistors and photodetectors with monolayer graphene through modified transfer and lithography process
Zhang et al. Enhance the Electrical and Photoelectrical Performance of MoS $ _ {\text {2}} $ Transistor With Polyimide Gate Dielectric by Microwave Annealing
Huang et al. Reversible charge-polarity control for a photo-triggered anti-ambipolar In 2 Se 3 &WSe 2 heterotransistor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant