CN114380602A - 一种超高温陶瓷复合粉体制备方法 - Google Patents

一种超高温陶瓷复合粉体制备方法 Download PDF

Info

Publication number
CN114380602A
CN114380602A CN202011123433.8A CN202011123433A CN114380602A CN 114380602 A CN114380602 A CN 114380602A CN 202011123433 A CN202011123433 A CN 202011123433A CN 114380602 A CN114380602 A CN 114380602A
Authority
CN
China
Prior art keywords
powder
sic
preparation process
zrb
composite ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011123433.8A
Other languages
English (en)
Inventor
杨潇
李永
张冠男
孟晴
杨增朝
贺刚
双爽
陈义祥
李江涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN202011123433.8A priority Critical patent/CN114380602A/zh
Publication of CN114380602A publication Critical patent/CN114380602A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种ZrB2‑SiC超高温复合陶瓷的制备工艺,通过在高压氩气气氛下燃烧合成ZrB2‑SiC超高温复合陶瓷,能够控制复合陶瓷的含氧量低于1%,合成粉体纯度高,粉体粒径小,为5‑500nm,有利于提高材料的耐高温性能以及应用的持久性;相比于常规原位合成法制备的粉体通常在微米级别,由于反应过程中通常抽真空达到一定程度后即不在关注反应气氛,必然会导致反应过程中氧含量的增加,从而影响性能。

Description

一种超高温陶瓷复合粉体制备方法
技术领域
本发明涉及一种超高温陶瓷复合粉体,尤其涉及超高温ZrB2-SiC陶瓷复合粉体的制备方法
背景技术
ZrB2超高温陶瓷具有高熔点、高硬度、高热导和电导、良好的化学稳定性、抗氧化性和抗热震性等优点,可用于制备高超声速飞行器高温结构部件和防热系统部件。但单相ZrB2材料的高温抗氧化、抗烧蚀及抗破坏能力较差,限制了其在高温结构方面的应用,而SiC作为第二相加入到ZrB2中可以提高陶瓷的抗弯强度、断裂韧性、抗氧化性能等,具有更为广阔的应用前景,其中ZrB2-20~30vol.%SiC体系被广泛研究,其复合陶瓷粉体被用作超高温复合陶瓷烧结原料及等离子喷涂工艺原料。传统的ZrB2-SiC超高温复合陶瓷粉体一般采用机械混合法和碳热还原法制备,这两种方法存在异相陶瓷分布不均匀、纯度低等缺点。近年来,采用初始粉体进行原位烧结形成ZrB2-SiC超高温复合陶瓷也研究比较广泛,如CN101215173A中公开了一种ZrB2-SiC-ZrC复相陶瓷材料的制备方法,提及采用锆粉,硅粉和碳化硼粉为原料,按照生成ZrB2-SiC-ZrC的反应方程式(2+x)Zr+(1-x)Si+B4C=2ZrB2+(1-x)SiC+xZrC,0≤x≤0.5,进行配料,获得具有不同组分的材料,利用升温过程中引发的原料间的自蔓延反应,在1500-1700℃之间热压烧结,从而获得不同组分的ZrB2-SiC-ZrC复相陶瓷材料。但是此方法中仍需要采用热压烧结,温度高、耗能多、成本显著增加;真空自蔓延燃烧法合成ZrB2-SiC基超高温陶瓷粉体的制备方法,得到粒径1-10um的粉体;CN101104561A公开了一种原位制备二硼化锆复相陶瓷的方法,采用放电等离子体烧结,1300-1500℃下保温保压,仍然存在能耗高的问题。
发明内容
本发明利用燃烧合成工艺制备ZrB2-SiC超高温复合陶瓷粉体,产物活性高、含氧量低、复合粉体结合力强、工艺简单、能耗低、生产效率高,适合制备高性能高纯ZrB2-SiC复合粉体。
本发明采用如下技术方案:ZrB2-SiC超高温复合陶瓷粉体制备工艺,包括如下步骤:
1)将Zr粉进行干燥,将Zr粉、BC4粉和Si粉按化学计量比进行称量、混合,得到三种原料粉体均匀分布的混合粉体;
2)将混合粉体进行压坯,得到相对密度为45%~65%的预制块;
3)将预制块置入反应釜中,随后对反应釜抽真空,待真空度达到100Pa以下后,向反应釜中充入高纯Ar气至某一恒定压力;在Ar气气氛环境中,利用瞬时外加能量,诱发进行燃烧合成反应,得到ZrB2和SiC混合的产物;
4)将步骤3)得到的产物进行研磨,得到所述的ZrB2-SiC高温陶瓷复合粉体,其中SiC的体积分数为25%,陶瓷复合粉体的纯度≥98%,氧含量<1%。
进一步的,步骤3)中氩气恒定压力为0.15~4MPa,更优选为≥1MPa。
进一步的,步骤3)中高纯Ar气纯度>99.99%。
进一步的,步骤1)中优选Zr粉干燥为真空干燥或者冷冻干燥;
进一步的,步骤1)中所述混合采用无磨介混合,更优选超重力混合。
进一步的,步骤1)中优选Zr粉粒径为5~30微米;优选BC4粉体粒径为5~20微米;Si粉粒径为2~5微米。
进一步的,步骤1)中优选Zr粉粒度为20~30微米,BC4粉粒度≤10微米,Si粉粒度≤3微米。
进一步的,所述步骤2)中压坯压力在5-10MPa。
进一步的,所述步骤3)中利用通电钨丝发热诱发燃烧合成反应,通电持续时间小于10s。
本发明的有益效果:
本发明中采用在氩气气氛下发生如下燃烧合成反应:
2Zr+Si+B4C=2ZrB2+SiC
由于ZrB2-SiC超高温复合陶瓷性能对含氧量尤其敏感,过高的氧含量对于材料的强度和韧性以及耐高温性能都有明显的影响,而通过在高压氩气下合成,能够控制含氧量低于1%,合成粉体纯度高,粉体粒径小,为5-500nm,而常规原位合成法制备的粉体通常在微米级别,由于反应过程中虽然尽量控制在真空条件下,通常抽真空达到一定程度后发生燃烧合成反应,达不到原始真空度,必然会导致反应过程中氧含量的增加,从而影响性能。因此,本发明选择在特定高压氩气气氛下进行燃烧合成反应,有效降低了粉体的氧含量。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1.本发明制备的备ZrB2-SiC高温陶瓷复合粉体的XRD图谱;
图2.本发明制备的备ZrB2-SiC高温陶瓷复合粉体的TEM图谱。
具体实施方式
为了使本专利的技术方案和技术效果更加清楚,下面结合实施例对本专利的具体实施方式进行详细描述。
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
实施例1
选择粒径5微米的Zr粉,5微米的BC4粉,2微米的Si粉,粉体纯度均≥99%作为反应原料。将高纯Zr粉置于石英容器中,随后放置于真空干燥箱中进行真空干燥,保温时间5小时,真空度≤100MPa;将干燥的Zr粉、BC4粉和Si粉按照公式所示的化学计量比进行称量,称量总重量为200g;将称量后的粉体置于超重力混料机中,进行无磨介混合,混料机公转为1000转/分钟,自转为500转/分钟,旋转时间240s;随后将混合粉体进行压坯,单轴压力为5MPa,得到直径为40mm、相对密度为45%的预制块;将预制块置入反应釜中,随后对反应釜抽真空,待真空度达到100Pa以下后,向反应釜中充入高纯Ar气至0.15MPa;待气压稳定后,将钨丝通电发热,持续时间<10s,诱发自蔓延反应,持续进行燃烧合成反应,得到ZrB2和SiC混合的产物;然后将得到的产物在玛瑙坩埚中进行研磨,直至全部粉体能通过325目筛网,最终得到ZrB2-SiC高温陶瓷复合粉体。对制备的ZrB2-SiC高温陶瓷复合粉体的进行微观结构表征,结果为高温陶瓷复合粉体的物相只存在ZrB2和SiC两相,纯度98%,氧含量为0.92%,粉体平均粒径为200nm。
实施例2
采用实施例1中的制备工艺,原料选择为Zr粉10微米、BC4粉20微米、Si粉5微米,制备过程同上,混合粉体进行压坯单轴压力为10MPa,预制块相对密度为65%,高纯氩气压力控制在0.5MPa条件下,其他制备工艺条件不变。对制备的ZrB2-SiC高温陶瓷复合粉体的进行微观结构表征,结果为高温陶瓷复合粉体的物相只存在ZrB2和SiC,纯度98.3%,氧含量为0.88%,粉体平均粒径在100nm左右。
实施例3
采用实施例1中的制备工艺,原料选择Zr粉20微米,BC4粉5微米,Si粉3微米,制备过程同上,高纯氩气压力控制在1MPa条件下,其他制备工艺条件不变。对制备的ZrB2-SiC高温陶瓷复合粉体的进行微观结构表征,结果为高温陶瓷复合粉体的物相只存在ZrB2和SiC,纯度98.8%,氧含量为0.49%,粉体平均粒径为50nm。图1为Ar气压力为1MPa条件下制备的ZrB2-SiC陶瓷复合粉体的XRD图;图2为Ar气压力为1MPa条件下制备的ZrB2-SiC陶瓷复合粉体的TEM图。
实施例4
采用实施例1中的制备工艺,原料选择Zr粉30微米,BC4粉20微米,Si粉5微米,制备过程同上,高纯氩气压力控制在2MPa条件下,其他制备工艺条件不变。对制备的ZrB2-SiC高温陶瓷复合粉体的进行微观结构表征,结果为高温陶瓷复合粉体的物相只存在ZrB2和SiC,纯度99%,氧含量为0.48%,粉体平均粒径为20纳米。
实施例5
采用实施例1中的制备工艺,原料选择Zr粉30微米,BC4粉10微米,Si粉2微米,制备过程同上,高纯氩气压力控制在4MPa条件下,其他制备工艺条件不变。对制备的ZrB2-SiC高温陶瓷复合粉体的进行微观结构表征,结果为高温陶瓷复合粉体的物相只存在ZrB2和SiC,纯度98.9%,氧含量为0.51%,粉体平均粒径为50纳米。

Claims (9)

1.一种ZrB2-SiC超高温复合陶瓷粉体制备工艺,其特征在于,包括如下步骤:
1)将Zr粉进行干燥,将Zr粉、BC4粉和Si粉按化学计量比进行称量、混合,得到三种原料粉体均匀分布的混合粉体;
2)将混合粉体进行压坯,得到相对密度为45%~65%的预制块;
3)将预制块置入反应釜中,随后对反应釜抽真空,待真空度达到100Pa以下后,向反应釜中充入高纯Ar气至某一恒定压力;在Ar气气氛环境中,利用瞬时外加能量,诱发进行燃烧合成反应,得到ZrB2和SiC混合的产物;
4)将步骤3)得到的产物进行研磨,得到所述的ZrB2-SiC高温陶瓷复合粉体,其中SiC的体积分数为25%,陶瓷复合粉体的纯度≥98%,氧含量<1%。
2.根据权利要求1所述的ZrB2-SiC超高温复合陶瓷粉体制备工艺,其特征在于,步骤3)中氩气恒定压力为0.15~4MPa,更优选为≥1MPa。
3.根据权利要求1或2所述的ZrB2-SiC超高温复合陶瓷粉体制备工艺,其特征在于,步骤3)中高纯Ar气纯度>99.99%。
4.根据权利要求1所述的ZrB2-SiC超高温复合陶瓷粉体制备工艺,其特征在于,步骤1)中优选Zr粉干燥为真空干燥或者冷冻干燥。
5.根据权利要求1所述的ZrB2-SiC超高温复合陶瓷粉体制备工艺,其特征在于,步骤1)中所述混合采用无磨介混合,更优选超重力混合。
6.根据权利要求1所述的ZrB2-SiC超高温复合陶瓷粉体制备工艺,其特征在于,步骤1)中优选Zr粉粒径为5~30微米;优选BC4粉体粒径为5~20微米;Si粉粒径为2~5微米。
7.根据权利要求6所述的ZrB2-SiC超高温复合陶瓷粉体制备工艺,其特征在于,步骤1)中优选Zr粉粒度为20~30微米,BC4粉粒度≤10微米,Si粉粒度≤3微米。
8.根据权利要求1所述的ZrB2-SiC超高温复合陶瓷粉体制备工艺,其特征在于,所述步骤2)中压坯压力在5-10MPa。
9.根据权利要求1所述的ZrB2-SiC超高温复合陶瓷粉体制备工艺,其特征在于,所述步骤3)中利用通电钨丝发热诱发燃烧合成反应,通电持续时间小于10s。
CN202011123433.8A 2020-10-20 2020-10-20 一种超高温陶瓷复合粉体制备方法 Pending CN114380602A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011123433.8A CN114380602A (zh) 2020-10-20 2020-10-20 一种超高温陶瓷复合粉体制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011123433.8A CN114380602A (zh) 2020-10-20 2020-10-20 一种超高温陶瓷复合粉体制备方法

Publications (1)

Publication Number Publication Date
CN114380602A true CN114380602A (zh) 2022-04-22

Family

ID=81193045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011123433.8A Pending CN114380602A (zh) 2020-10-20 2020-10-20 一种超高温陶瓷复合粉体制备方法

Country Status (1)

Country Link
CN (1) CN114380602A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838147A (zh) * 2010-05-21 2010-09-22 李艳 真空自蔓延燃烧法合成ZrB2-SiC基超高温陶瓷粉体的制备方法
CN102584240A (zh) * 2012-01-17 2012-07-18 哈尔滨工业大学 一种ZrB2-SiC超高温陶瓷的烧结方法
CN104529467A (zh) * 2015-01-14 2015-04-22 哈尔滨工业大学 一种低温制备ZrB2-SiC超高温陶瓷复合材料的方法
WO2017016079A1 (zh) * 2015-07-28 2017-02-02 山东合创明业精细陶瓷有限公司 高纯超细ZrC-SiC复合粉体的合成方法
CN106478109A (zh) * 2016-10-09 2017-03-08 铜仁学院 ZrC/ZrB2复相陶瓷粉末、制备方法及其应用
CN108178632A (zh) * 2018-01-10 2018-06-19 西北工业大学 具有定向层片组织的ZrB2-SiC共晶陶瓷制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838147A (zh) * 2010-05-21 2010-09-22 李艳 真空自蔓延燃烧法合成ZrB2-SiC基超高温陶瓷粉体的制备方法
CN102584240A (zh) * 2012-01-17 2012-07-18 哈尔滨工业大学 一种ZrB2-SiC超高温陶瓷的烧结方法
CN104529467A (zh) * 2015-01-14 2015-04-22 哈尔滨工业大学 一种低温制备ZrB2-SiC超高温陶瓷复合材料的方法
WO2017016079A1 (zh) * 2015-07-28 2017-02-02 山东合创明业精细陶瓷有限公司 高纯超细ZrC-SiC复合粉体的合成方法
CN106478109A (zh) * 2016-10-09 2017-03-08 铜仁学院 ZrC/ZrB2复相陶瓷粉末、制备方法及其应用
CN108178632A (zh) * 2018-01-10 2018-06-19 西北工业大学 具有定向层片组织的ZrB2-SiC共晶陶瓷制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
毛小东等: "ZrB_2-SiC复相陶瓷的制备及其耐热冲击性能的研究", 《粉末冶金技术》 *

Similar Documents

Publication Publication Date Title
CN111848177B (zh) 一种超高温高熵硼化物陶瓷粉体及其制备方法
CN104150940B (zh) 氮化硅与碳化硅复相多孔陶瓷及其制备方法
CN103011827A (zh) 一种原位引入硼为添加剂的二硼化锆陶瓷的制备方法
CN111675541A (zh) 一种含碳max相材料的制备方法
CN109485858B (zh) 一种含金属元素聚碳硅烷及其制备方法与应用
CN101870586A (zh) 非晶和纳米晶的硅硼碳氮陶瓷复合材料及其制备方法
CN110407213B (zh) 一种(Ta, Nb, Ti, V)C高熵碳化物纳米粉体及其制备方法
CN109180161B (zh) 一种高纯钛硅化碳/氧化铝复合材料及其制备方法
CN101565308B (zh) 氮化硼纳米管增强的氮化硅陶瓷及其制备方法
CN110436934A (zh) 一种高α相氮化硅粉体、超长氮化硅纳米线的制备方法
CN110484796A (zh) 一种过渡金属碳化物高熵陶瓷颗粒及其制备方法
CN102020467A (zh) 一种低成本制备二硼化锆/碳化硅复合粉料的方法
CN106517225A (zh) 一种超细M1‑xTixB2粉体的制备方法
CN113416076A (zh) 一种自增强碳化硅陶瓷材料的制备方法
CN102153347A (zh) 一种快速合成Ti3SiC2亚微米粉体的方法
CN108424146A (zh) 一种四硼化钨基陶瓷的制备方法
CN114380602A (zh) 一种超高温陶瓷复合粉体制备方法
CN104844214A (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
CN105439162B (zh) 一种粗粒径mo2粉体合成细mb2粉体的制备方法
CN106800414A (zh) 原位反应制备含氮化硼的超高温陶瓷基复合材料的方法
CN1478757A (zh) 一种用放电等离子烧结制备高纯块体钛铝碳材料的方法
CN104961138A (zh) 一种富10b二硼化锆粉末的制备方法
CN105837220A (zh) 一种原位引入硼/碳化锆二元添加剂的二硼化锆陶瓷的制备方法
CN106007728B (zh) 一种抗热震超高温陶瓷及其制备方法
CN104163628B (zh) 一种制备HfC-SiC复相陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220422

RJ01 Rejection of invention patent application after publication