CN114369126A - Gmra11,12,13化合物的生物合成与应用 - Google Patents

Gmra11,12,13化合物的生物合成与应用 Download PDF

Info

Publication number
CN114369126A
CN114369126A CN202210059009.4A CN202210059009A CN114369126A CN 114369126 A CN114369126 A CN 114369126A CN 202210059009 A CN202210059009 A CN 202210059009A CN 114369126 A CN114369126 A CN 114369126A
Authority
CN
China
Prior art keywords
gmra11
compound
biosynthesis
compounds
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210059009.4A
Other languages
English (en)
Inventor
洪文荣
陈碧
陈跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou City Gulou District Rongde Biological Science & Technology Co ltd
Original Assignee
Fuzhou City Gulou District Rongde Biological Science & Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou City Gulou District Rongde Biological Science & Technology Co ltd filed Critical Fuzhou City Gulou District Rongde Biological Science & Technology Co ltd
Priority to CN202210059009.4A priority Critical patent/CN114369126A/zh
Publication of CN114369126A publication Critical patent/CN114369126A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/12Acyclic radicals, not substituted by cyclic structures attached to a nitrogen atom of the saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H5/00Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
    • C07H5/04Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to nitrogen
    • C07H5/06Aminosugars
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属新药筛选领域,具体涉及GMRA11,12,13化合物的生物合成与应用。本发明通过培养绛红色小单孢工程菌GMA102,经发酵得到发酵液,借助发酵过程进行生物合成,得到氨醛糖系列活性化合物GMRA11,12,13,并通过离子交换法,快速从发酵液中提取精制氨醛糖GMRA11,12,13新产品,该化合物GMRA11,12,13具有良好的抗菌、抗病毒、抗肿瘤活性。

Description

GMRA11,12,13化合物的生物合成与应用
技术领域
本发明属新药筛选领域,特别是抗病毒,抗肿瘤与抗遗传病治疗药物的开拓性研究,涉及氨醛糖系列活性化合物的开发与产业化及其关键技术的发明,更具体涉及GMRA11,12,13化合物的生物合成与应用。
背景技术
氨醛糖是一类新型生物活性化合物,其化学结构,与氨糖类比较接近,但具有独特的功能基团。氨糖类药物已经在临床上应用了几十年,特别是在抗感染方面,临床应用将近80年,效果显著,经久不衰。庆大霉素是其中的典型代表。早期对庆大霉素的研究确认,具有抗菌,抗原虫和抗蠕虫等作用。最新研究发现,庆大霉素等氨糖类化合物还具有抗癌,抗遗传病和抗病毒等作用。因此,从氨糖类中筛选结构独特的化合物,如新型的氨醛糖,是药物研究开发的重要途径之一,是发现抗病毒,抗肿瘤药物的重要途径,受到科学家的高度重视。由于糖化学研究,至今是生命科学研究的难点。因此,寻找筛选新型氨糖化合物,成了国际性难题,但又是药物学家一直在攻关的重点。任何新型抗病毒活性化合物的发现,都是人类寄予的重要期望,并值得深入研究与开发。
从微生物筛选药物,人类已经取得了历史性突破,青霉素的发现,是关键分水岭,至今仍然受到科学家的推崇。通过基因工程,发酵过程,分离工程,获得众多未被发现的新型化合物,研究其独特功能,获得新型药物,筛选新型功能性化合物,是当前筛选抗新冠病毒药物研究与开发的重要途径之一,也是热点之一,受到高层次药物学家的高度重视。
药用微生物种类繁多,小单孢菌是其中的重要一类,产生氨糖类的小单孢菌更是新药研究开发的重点。如棘孢小单孢菌,橄榄星小单孢菌,伊纽小单孢菌等等。从研究绛红色小单孢菌生物合成基因簇,关键功能基因,代谢途径,发酵,提取,生物活性检测,筛选到了新型化合物,成为抗病毒等新药筛选的重要前导化学实体。申请人在前期研究中,通过基因工程技术,构建了一株绛红色小单孢菌GMA102工程菌,借助发酵过程进行生物合成,得到了具有抗枯草芽孢杆菌、短小芽孢杆菌、藤黄微球菌、抗原虫作用的氨醛糖化合物GMRA1,2,3,见中国专利202110236001.6“GMRA1,2,3化合物及其生物合成与应用”。在此基础上,申请人经过进一步深化探索,发现了不同的新型化合物GMRA11,12,13,其具有明显的抗噬菌体外壳蛋白颗粒包装活性与抗菌活性,意味着其可能具有强大的广谱抗病毒、抗肿瘤应用前景。
发明内容
本发明的目的在于提供一种GMRA11,12,13化合物的生物合成与应用。
为实现上述目的,本发明采用如下技术方案:
制备满足基因工程接合转移所需的孢子。将保存于沙土管的庆大霉素产生菌G1008,接入斜面培养基,于37℃下,恒温培养,然后分离单菌落,进行复壮,得到生长丰满的斜面孢子。
构建庆大霉素生物合成基因簇,借助生物信息学技术,推测相关功能基因的orf。通过生物学实验技术,验证各个orf的真实功能。
借助分子生物学技术,敲除庆大霉素生物合成基因簇上的gmrA基因,验证gmrA基因功能。结果表明,gmrA基因确实具有甲基化作用,是耐药性基因的重要成员。除此之外,还极大地影响庆大霉素生物合成的代谢流。gmrA基因不仅仅修饰核糖体的甲基化,还修饰庆大霉素加拉糖胺3”-N的甲基化。
因此,通过敲除gmrA基因,消除其甲基化功能,可以改变药用微生物的生物合成途径,得到系列新型化合物。这一推论预测与结果一致,采用不同的发酵条件,最终得到了氨醛糖GMRAs系列化合物。这些化合物结构新颖,不仅具有庆大霉素C组结构的特点,又有庆大霉素A、B、X组结构的特征。但又与ABCX组的化学结构不同,属新型化合物,隐含着独特的药物学新功能。将该新型化合物称为庆大霉素D组化合物。
通过基因工程技术,敲除gmrA基因,构建gmrA基因缺失工程菌,获得新物种绛红色小单孢工程菌GMA102(绛红色小单孢菌变种GMA102,Micromonospora purpurea variantGMA102);将药用微生物细胞内的药物合成代谢流,定向引入氨醛糖新化合物GMRA1,2,3和GMRA11,12,13的生物合成。通过调整发酵培养基,改变发酵培养条件,生物合成转向新型氨醛糖的方向发展,获得了新化合物GMRA11,12,13。
通过离子交换法,快速从工程菌的发酵液中提取、精制GMRA11,12,13新产品。
发明内容主要包括以下几个步骤:
A.复壮庆大霉素产生菌——绛红色小单孢菌G1008,得到生长丰满的斜面孢子;
B.通过生物学实验技术,阐明庆大霉素生物合成基因簇上gmrA的功能,及其与药物生物合成的密切关系;
C.构建敲除gmrA基因工程菌,得到绛红色小单孢菌变种GMA102,以及工程菌的鉴定;
D.培养绛红色小单孢工程菌GMA102,经发酵得到含次级代谢产物的发酵液,通过发酵这一特殊过程,借助生物合成,得到GMRA11,12,13化合物;
E.从发酵液中提取精制GMRA11,12,13化合物;
F.化合物 GMRA11,12,13化学结构的确定。
G.化合物GMRA11,12,13生理功能的初步确认。
其中,上述绛红色小单孢菌变种GMA102(Micromonospora purpurea variantGMA102)已于2021年1月18日在中国微生物菌种保藏管理委员会普通微生物中心登记保存,保藏编号为CGMCC No.21692。
其中,上述GMRA11,12,13化合物的化学结构如图1所示。
本发明的显著优点在于:
本发明通过培养绛红色小单孢工程菌GMA102,经发酵得到含次级代谢产物的发酵液,通过发酵这一特殊过程,借助生物合成,得到GMRA11,12,13化合物,其具有良好的抗菌、抗病毒、抗肿瘤功能。
附图说明
图1:GMRA11,12,13的化学结构。
图2:基因gmrA特征DNA序列示意图(825 bp)。
图3:敲除gmrA-DNA序列示意图。
图4:重组质粒pKCAE274示意图。
图5:工程菌GMA102代谢产物的TLC检测结果。1:庆大霉素标准品;2:GMRA11,12,13化合物。
图6:GMRA11,12,13化合物的质谱分析结果。G1008庆大霉素C组分(C1,C2+2a,C1a);GMA102: GMRA11,12,13化合物。
图7:抗噬菌体包装蛋白检测结果。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
取沙土管保存的庆大霉素产生菌G1008,接斜面,分离单孢子;挑取生长丰满的单菌落,再接斜面;如此反复,至少5代。最后斜面于37℃培养10天,直至孢子生长丰满,满足基因工程接合转移要求。
实施例2
构建绛红色小单孢菌G1008的庆大霉素生物合成基因文库,基因库登记号为:GenBank accession No.JF431003。其特征DNA序列为51885bp,其中包括关键基因gmrA。理论推测gmrA(GenBank accession No.JQ975418)属通过对核糖体甲基化,达到对药物的抗性,来实现耐药的终极目标。
实施例3
参照参考文献(Zeng, Wei, Xianai, et al. Exclusive Production ofGentamicin C1a from Micromonospora purpurea by Metabolic Engineering.[J].Antibiotics (Basel, Switzerland), 2019, 8(4).)基因敲除策略,敲除gmrA基因,获得gmrA基因缺少工程菌——绛红色小单孢菌GMA102变种,简称GMA102。
实施例4
工程菌绛红色小单孢菌GMA102的构建。
1 庆大霉素生物合成基因簇特征DNA序列的功能分析
利用生物信息学技术,对DNA序列进行分析,结果其部分ORF特征如图2所示。其中gmrA(825bp;JQ975418;AJ628149),与甲基化有关,属甲基化耐药性基因。
2 穿梭载体pKCAE274的构建
通过生物信息学软件调取庆大霉素生物合成基因簇,锁定gmrA基因上下游序列,设计红霉素抗性基因(ermE)替换gmrA基因(825 bp)的研究策略,方案见图3。gmrA基因序列如SEQ ID NO.1所示,ermE红霉素抗性基因序列如SEQ ID NO.2所示。
根据特征DNA序列,设计三对引物(P1/P2,P3/P4,P5/P6),见表1。三对引物的位置见图3。
表1 引物序列及其限制性酶切位点
Figure 315304DEST_PATH_IMAGE001
*下划线部分表示酶切位点。
3 穿梭载体pKCAE274的构建
交换臂的克隆:以引物P1/P2和P3/P4分别扩增gmrA基因两端同源交换臂JHb1(2040 bp)和JHb2(2110 bp)。扩增交换臂JHb1和JHb2,经电泳检测,试剂盒回收,依次分别与T载体进行酶连,获得中间质粒pTJhb1(pTb1)和pTJHb2(pTb2),电泳条带大小与理论预测相符。
质粒pTb1经HindIII和EcoRI双酶切,回收2040 bp的Jhb1片段;质粒pTE1经EcoRI和XbaI双酶切,回收1746 bp的ermE基因片段;质粒pKC1139经HindIII和XbaI双酶切并回收。将以上三个片段按照适合的比例,进行酶连,并转化大肠杆菌,获得中间质粒pKCEb1(pKC-JHb1-ermE)。
用XbaI和EcoRV对质粒pKCEb1和pTb2进行双酶切,分别回收10118 bp和2114 bp的片段,两个片段再次按照合适的比例进行酶连,并转化大肠杆菌,最终获得质粒pKCAE274。质粒pKCAE274经HindIII和EcoRI双酶切,得到6419 bp、2709 bp、2037 bp和1137 bp四条带;经EcoRI和BglII双酶切,得到5989 bp、3846 bp、2063 bp和404 bp四条带。经EcoRV和HindIII双酶切,得到6426 bp、3174 bp和2702 bp三条带;质粒pKCAE274经以上三种酶切,得到的条带都与理论相符。证明重组质粒pKCAE274构建完毕(图4)。
4 基因gmrA基因缺失工程菌的筛选
单交换工程菌的筛选。利用接合转移技术成功将质粒pKCAE274整合到庆大霉素产生菌——绛红色小单孢菌G1008的基因组中,筛选具有对阿泊拉霉素和红霉素抗性的菌株,命名为绛红色小单孢菌GMA101(简称GMA101)。
根据同源重组原理,设计一对引物P5/P6。理论上,出发菌G1008的PCR产物只有1764 bp单条带,而单交换工程菌GMA101的PCR产物则有1764 bp和2687 bp两条条带。提取GMA101染色体,用引物P5/P6进行PCR,并对扩增产物进行电泳检测,结果得到两条带,1764bp和2687 bp。证明GMA101为单交换工程菌。
基因gmrA缺失工程菌的筛选。单交换工程菌同时含有阿泊拉霉素和红霉素抗性,双交换工程菌含有红霉素抗性;亲株和回复突变工程菌既不含阿泊拉霉素抗性,也没有红霉素抗性。利用这一原理,对单交换菌株进行传代分离,单菌落筛选。最终得到具有红霉素抗性但没有阿泊拉霉素抗性的突变株。红霉素抗性基因ermE替换gmrA基因工程菌可扩增出2687 bp的条带。利用引物P5/P6进行孢子PCR,扩增产物电泳检测,得到一条2687 bp的条带,与预测相符,最终经测序确认。将该菌株命名为绛红色小单孢菌GMA102(简称GMA102)。
实施例5
工程菌GMA102代谢产物的制备与结构确定。
1 GMRA11,12,13化合物的生物合成
种子培养基(按质量百分比计):葡萄糖0.6%,地瓜淀粉1.0%,玉米粉1.0%,蛋白胨0.2%,黄豆饼粉1.2%,CaCO3 0.5%;pH7.2。
发酵培养基(按质量百分比计):马铃薯淀粉7.0%,玉米粉1.0%,蛋白胨0.1%,花生饼粉0.5 %,CaCO3 0.3%;pH7.2。
绛红色小单孢工程菌GMA102的培养。工程菌GMA102的沙土管接转接到斜面培养基,在35℃下培养15天,取生长良好的斜面,刮取孢子接入种子培养基。于300rpm/min,35℃摇床培养48小时,然后按10%的接种量转接于发酵培养基(装量为150mL/1000mL三角瓶),35℃摇床发酵40 h(转速为250rpm)。
5立方米发酵罐生产,搅拌转速200转/分钟,通气量1:1.0~1.2 (M3 /M3·min),培养基、培养温度、接种量比例、发酵时间等,类似于摇瓶发酵,GMRA11,12,13化合物借助培养工程菌的过程,实现生物合成,最终生物合成量可达615单位/mL以上。
2 发酵液中GMRA11,12,13化合物的提取
A GMRA11,12,13化合物的提取
发酵液稀释后,酸化到pH1.2,半小时后,用碱回调到pH6.8,投入732-NH4 +树脂静态吸附6小时。收集吸附饱和树脂,用0.01M HCl溶液酸洗饱和树脂,再用无离子水洗涤至中性,再用pH7.3氨水进行碱洗,碱洗体积不少于饱和树脂体积的10倍。然后串联到等体积的711树脂柱上,收集树脱液。
B GMRA11,12,13化合物的精制
洗脱液经浓缩到约280000ug/mL,用浓硫酸调至pH5.8~6.0,加活性炭脱色,透光度达88%以上,过滤去除固体物,得透明澄清溶液。在搅拌下,缓慢向浓缩液中滴加体积分数90%以上乙醇,进行过夜析出,之后经离心分离,体积分数85%乙醇溶液淋洗,得湿成品。经真空干燥(真空度700mmHg以上,温度60℃,干燥12小时),得代谢产物精制品。
3 GMRA11,12,13化合物结构的确定
工程菌GMA102发酵代谢产物,经TLC分析,结果见图5。从图5可以看出,工程菌GMA102主产GMRA11,12,13化合物。硅胶GF254薄层层析,展开剂为氯仿:甲醇:氨水(1:0.9:0.9 v/v/v),混匀取下层作为展开剂。
GMRA11,12,13化合物,经电喷雾电离质谱(ESI/MS)分析,使用Agilent 6520四极杆-飞行时间质谱仪。该Q-TOP-MS扫描范围设定在正离子模式m/z 100~800,干燥气体为N2,流速为8mL/min,温度为350℃;雾化压力为2.07×105 Pa,毛细管电压为3500V,碎裂电压为135V,MS数据分析使用安捷伦MassHunter软件进行(B.04.00)定性,结果见图6。从质谱检测结果可以看出,在GMA102的代谢产物中,检测到了分子量分别为539.2945 (GMRA11)、525.2812(GMRA12)和511.2646(GMRA13)三个化合物。说明工程菌代谢产物肯定发生变化,基因gmrA与庆大霉素生物合成过程密切相关。
从庆大霉素类代谢产物的生物合成特征与规律,结合质谱分析检测结果,并参考TLC薄层层析的斑点变化,显然新型代谢产物GMRA11,12,13的极性比庆大霉素C组高,意味着羟基的数量更多;从TLC的比移值Rf变化与庆大霉素C组的变化规律完全类似,同时借助质谱的精确分子量检测结果,推定GMRA11,12,13的分子结构如图1。
4 GMRA11,12,13化合物生理活性检测
抗菌活性检测。
根据中华人民共和国药典附录(国家药典委员会.中华人民共和国药典. (2010年版第二部)。北京:中国医药科技出版社,2010:附录93-98.):抗生素微生物检定法进行检测。化合物GMRA11,12,13具有抗菌活性(枯草芽孢杆菌63501:10μg/mL【1】;短小芽孢杆菌63202:15μg/mL【2】;藤黄微球菌28001:20μg/mL【3】);
抗病毒抗肿瘤活性检测(采用干扰噬菌体蛋白的包装侵染检测法)。
Figure 45494DEST_PATH_IMAGE002
噬菌体包装蛋白自-80℃冰箱取出,置冰上缓慢融化,吸取25ml包装蛋白,注入准备好的1.5ml离心管中,再加入10ml supercos-1(7.9kbp)溶液,轻轻吹吸混匀(抽吸过程,应避免产生气泡),30℃温育90min后,再次加入25ml包装蛋白,于30℃下,继续温育90min。随后继续加入500ml SM缓冲液( SM 缓冲液(包装物稀释缓冲液)(每升含):NaCl5.8g,MgS04·7H2O 2.0g,1mol/L Tris-HC1(pH7.5) 50.0ml,2% (W/V)gelatin 5.0 ml)和25ml氯仿,轻轻翻转,充分混合,于500rpm离心10秒,弃去沉淀,得到的上清液即为包装后的文库混合物,简称为supercos-1包装物,保存于4℃备用。
将菌株E.coli LE392自-80℃冰箱取出置于冰上缓慢融化,随后于LB平板上划线分离,挑取单菌落接种于50ml LB液体培养基中(向该LB液体培养基中添加终浓度为10mmol/L的MgSO4和质量分数0.2%的高纯度麦芽糖),于280rpm、37℃下振荡培养过夜。将过夜培养的E.coli LE392,按10vol%转接到含50ml LB液体培养基的250ml三角瓶中(向该LB液体培养基中添加终浓度为10mmol/L的MgSO4和质量分数0.2%的高纯度麦芽糖),于280rpm、37℃条件下振荡培养至OD600=0.3~0.6,即得到制备好的宿主细胞E.coli LE392。
对照:取500ml制备好的宿主细胞E.coli LE392与250ml稀释后的supercos-1包装物,于25ml离心管中轻轻混匀,30℃温育90min,向其中加入2ml LB液体培养基,37℃温育1.0hr后,1000rpm离心2min,弃去上清,以3ml LB液体培养基重新悬浮菌体,取10mL菌悬液,加入到3mL的LB液体培养基(含氨苄青霉素100mg/ml)中,37℃培养过夜,观察到E.coliLE392可正常生长(图7)。取500ml制备好的宿主细胞E.coli LE392与250ml稀释后的supercos-1包装物,于25ml离心管中轻轻混匀,30℃温育90min,向其中加入2ml LB液体培养基,37℃温育1.0hr,1000rpm离心2min后,弃去上清,以3ml LB液体培养基重新悬浮菌体,涂布于3个LB琼脂平板(氨苄青霉素100mg/ml),37℃培养过夜,计算菌落数,结果也观察到E.coli LE392可正常生长,可见E.coli LE392单菌落。
检测:取500ml制备好的宿主细胞E.coli LE392,加入GMRA11,12,13氨醛糖样品(终浓度10mg/mL),然后再加入250ml稀释后的supercos-1包装物,于25ml离心管中轻轻混匀,30℃温育90min,随后加入2ml LB液体培养基,37℃温育1.0hr,1000rpm离心2min后,弃去上清,以3ml LB液体培养基重新悬浮菌体,取10mL菌悬液加入到3mL LB液体培养基(含氨苄青霉素100mg/ml)中,37℃培养过夜,观察生长情况,作为检测结果,结果发现E.coliLE392不能生长(图7)。取500ml制备好的宿主细胞E.coli LE392,加入GMRA11,12,13氨醛糖样品(终浓度10mg/mL),然后再加入250ml稀释后的supercos-1包装物,于25ml离心管中轻轻混匀,30℃温育90min,随后加入2ml LB液体培养基,37℃温育1.0hr,1000rpm离心2min后,弃去上清,以3ml LB液体培养基重新悬浮菌体,涂布于3个LB琼脂平板(氨苄青霉素100mg/ml),37℃培养过夜,计算菌落数,结果发现,LB琼脂平板中没有见到E.coli LE392单菌落生长(检测结果不生长,不见E.coli LE392单菌落)。
以上抗病毒抗肿瘤模拟检测结果显示,新化合物GMRA11,12,13在10mg/mL浓度下,已经具备抗噬菌体侵染的能力,意味着其在该浓度下具备抗病毒、抗肿瘤活性,是一种具有潜在应用前景的抗病毒、抗肿瘤新药前导化合物。
综上,显然,化合物 GMRA11,12,13具有良好的抗菌、抗病毒、抗肿瘤功能。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
SEQUENCE LISTING
<110> 福州市鼓楼区荣德生物科技有限公司
<120> GMRA11,12,13化合物的生物合成与应用
<130>
<160> 8
<170> PatentIn version 3.3
<210> 1
<211> 825
<212> DNA
<213> 人工序列
<400> 1
atgacgacat ctgtgcccga cgaccgtatc gagcaggtcg agcaggccat caccaagagc 60
cggcgctacc agacggtggc cccggccacc gtgcgacgcc tggcccgggc tgccctcgtc 120
gccacgcggg gcgacgtgcc ggacgcggtg aagcgcacca agcgcgggct gcacgagatc 180
tacggcgcct tcctgccgcc cagtccgccc aactacgcag cgttgctccg gcagctcgac 240
tccgctgtgg acgacggtga cgacgaggcg gtccgggcgg ccctgcggcg cgcgatgtcg 300
gtgcacgtgt ccacccgcga acgattgccg cacctggcgg agttctaccg ggaggtcttc 360
cgccacgtcc cccggcccaa cacgctgcgt gacctcgcct gcggcctcaa cccgctggcc 420
gccccgtgga tggggttgtc ggacgagacc gtctacgtcg cctccgacat cgacgcccgg 480
ctgatcgact tcgtggacgc cgccctgacg aggttgggcg tcgcgcaccg cacgagtgtg 540
gtcgacgtcc tcgaggaccg ccttgacgag ccgaccgacg tcacgctatt gctgaagacg 600
ctgccctgtc tggagactca gcgacgaggc tccggctggg aagtgattga cattgtcaac 660
tcgccgatta tcgtggtaac cttcccgacc aagtctctcg gtcagcgatc gaaggggatg 720
tttcagaact attcacaaag ttttgagtcc caggccagag agcggtcgtg ccgcattcag 780
cgactggaga tcggcaacga gctgatttac gtcattcaga aatag 825
<210> 2
<211> 1746
<212> DNA
<213> 人工序列
<400> 2
gaattcatag ttctagaggt accagcccga cccgagcacg cgccggcacg cctggtcgat 60
gtcggaccgg agttcgaggt acgcggcttg caggtccagg aaggggacgt ccatgcgagt 120
gtccgttcga gtggcggctt gcgcccgatg ctagtcgcgg ttgatcggcg atcgcaggtg 180
cacgcggtcg atcttgacgg ctggcgagag gtgcggggag gatctgaccg acgcggtcca 240
cacgtggcac cgcgatgctg ttgtgggctg gacaatcgtg ccggttggta ggatccagcg 300
gtgagcagtt cggacgagca gccgcgcccg cgtcgccgca accaggatcg gcagcacccc 360
aaccagaacc ggccggtgct gggccgtacc gagcgggacc gcaaccggcg ccagttcggg 420
cagaacttcc tccgcgaccg caagaccatc gcgcgcatcg ccgagacagc cgagctgcgg 480
cccgatctgc cggtgctgga agccggcccc ggcgaagggc tgctcaccag ggaactcgcc 540
gaccgcgcgc gtcaggtgac gtcgtacgag atcgaccccc ggctggcgaa gtcgttgcgg 600
gagaagcttt ccggccaccc gaacatcgaa gtcgtcaacg ccgacttcct caccgccgaa 660
ccgccgcccg agccgttcgc cttcgtcggc gcgatcccct acggcatcac ctcggcgatc 720
gtggactggt gcctggaggc gccgacgatc gagacggcga cgatggtcac gcagctggag 780
ttcgcccgga agcggaccgg cgattacggc cgctggagcc gcctcacggt gatgacctgg 840
ccgctgttcg agtgggagtt cgtcgagaag gtcgaccgcc ggctgttcaa gccggtgccc 900
aaggtcgact cggcgatcat gcggctgcgc aggcgcgccg aaccgctgct ggaaggcgcg 960
gcgctcgaac gctacgagtc gatggtcgag ctgtgcttca ccggcgtcgg cggcaacatc 1020
caggcgtcgc ttctgcgcaa gtacccgagg cgccgcgtcg aggcggcgct cgaccacgcg 1080
ggggtcgggg gcggcgccgt ggtcgcctac gtccggccgg agcagtggct ccggctgttc 1140
gagcggctgg atcagaagaa cgaaccgagg ggtgggcagc cccagcgggg caggcgaacc 1200
ggcggacggg accacgggga ccggcgaacc ggcgggcagg atcgcggcga tcggcgaacc 1260
ggcggccgcg accacaggga ccggcaagcc agcggccacg gcgatcgtcg cagcagcgga 1320
cgcaatcgcg acgacggacg aaccggcgag cgcgagcagg gggaccaagg cgggcggcgg 1380
gggccgtccg ggggtggacg gaccggcgga cgtccagggc gacgcggcgg acccgggcag 1440
cggtagtccc cggcacgcgg aacggggcag gccgtcgagc ggcctgcccc gttctgtcga 1500
gaggaatcag aggttgatgt cggcccggag gtcgatgtcg cgcgacgacg agccgatctc 1560
caccgctcgc ttgccgcccc cgagcttcca gccgcccgcg gcttcgtccc agtgctggag 1620
ggcccgctcc gcgacgtgca cccggacgcg cttggtctcg cccggtgcga gttcgacctt 1680
ctggtaccgg ttgttaacgt tagccggcta cgtatactcc ggaatattaa taggcctagg 1740
gaattc 1746
<210> 3
<211> 37
<212> DNA
<213> 人工序列
<400> 3
ttagaattca gcaggcgggc ctcgtcgaga aagcgtt 37
<210> 4
<211> 29
<212> DNA
<213> 人工序列
<400> 4
ggtctagaga tcggagatgc tcaagatgg 29
<210> 5
<211> 28
<212> DNA
<213> 人工序列
<400> 5
tttctagatc tactccgtcg gcgagtcg 28
<210> 6
<211> 37
<212> DNA
<213> 人工序列
<400> 6
gggaagctta aagtgggcga ccaccaagca caagaag 37
<210> 7
<211> 24
<212> DNA
<213> 人工序列
<400> 7
ttcgagatcg tcaagtaccg ggtc 24
<210> 8
<211> 24
<212> DNA
<213> 人工序列
<400> 8
ggatgatgat ggagatgggc ttcg 24

Claims (3)

1.一种氨醛糖化合物GMRA11,12,13,其特征在于:结构如下式所示:
Figure 886685DEST_PATH_IMAGE001
2.一种如权利要求1所述的氨醛糖化合物GMRA11,12,13的制备方法,其特征在于:所述氨醛糖化合物GMRA11,12,13由保藏编号为CGMCC No.21692的绛红色小单孢菌变种GMA102(Micromonospora purpurea variant GMA102)发酵提取后获得。
3.一种如权利要求1所述的氨醛糖化合物GMRA11,12,13在制备抗菌、抗病毒、抗肿瘤药物中的应用。
CN202210059009.4A 2022-01-19 2022-01-19 Gmra11,12,13化合物的生物合成与应用 Pending CN114369126A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210059009.4A CN114369126A (zh) 2022-01-19 2022-01-19 Gmra11,12,13化合物的生物合成与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210059009.4A CN114369126A (zh) 2022-01-19 2022-01-19 Gmra11,12,13化合物的生物合成与应用

Publications (1)

Publication Number Publication Date
CN114369126A true CN114369126A (zh) 2022-04-19

Family

ID=81143526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210059009.4A Pending CN114369126A (zh) 2022-01-19 2022-01-19 Gmra11,12,13化合物的生物合成与应用

Country Status (1)

Country Link
CN (1) CN114369126A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318847A (en) * 1979-07-13 1982-03-09 Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai Physiologically active tetrapeptides
CN105200002A (zh) * 2015-10-27 2015-12-30 福州市鼓楼区荣德生物科技有限公司 产西索米星绛红色小单孢工程菌及其构建和应用
CN110358718A (zh) * 2019-07-19 2019-10-22 福州市鼓楼区荣德生物科技有限公司 主产庆大霉素C1a工程菌的构建及其应用
CN112725257A (zh) * 2021-03-03 2021-04-30 莆田学院 Gmra1,2,3化合物及其生物合成与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318847A (en) * 1979-07-13 1982-03-09 Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai Physiologically active tetrapeptides
CN105200002A (zh) * 2015-10-27 2015-12-30 福州市鼓楼区荣德生物科技有限公司 产西索米星绛红色小单孢工程菌及其构建和应用
CN110358718A (zh) * 2019-07-19 2019-10-22 福州市鼓楼区荣德生物科技有限公司 主产庆大霉素C1a工程菌的构建及其应用
CN112725257A (zh) * 2021-03-03 2021-04-30 莆田学院 Gmra1,2,3化合物及其生物合成与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
万云凤 等: "庆大霉素生物合成基因簇中抗性基因gmrB及gmrA的功能研究", 《中国抗生素杂志》, vol. 43, no. 6, pages 688 - 695 *

Similar Documents

Publication Publication Date Title
US8759032B2 (en) Genetically engineered strain WSJ-IA for producing isovaleryl spiramycin I
CN111621454B (zh) 基因工程高产菌株淀粉酶产色链霉菌及ε-聚赖氨酸的生产方法和应用
CN112111439A (zh) 高产多杀菌素的刺糖多孢菌及提高菌株多杀菌素产量的方法
CN110358718B (zh) 主产庆大霉素C1a工程菌的构建及其应用
CN110804598B (zh) 前咕啉-2c(20)-甲基转移酶突变体、突变基因及其在制备维生素b12中的应用
CN112725257A (zh) Gmra1,2,3化合物及其生物合成与应用
CN110564718B (zh) 高通量诱变筛选高产两性霉素b结节链霉菌的方法及菌株
WO2019223433A1 (zh) 一种非达霉素基因工程菌及构建方法和应用
CN114369126A (zh) Gmra11,12,13化合物的生物合成与应用
EP3460055B1 (en) Doxa protein mutant, and coding gene and applications thereof
CN107541503B (zh) 一种甲基转移酶GenL和其编码基因genL及应用
CN102719388A (zh) 提高链霉菌抗生素产量的方法及其质粒
CN110904079B (zh) β-呋喃果糖苷酶突变体、突变基因及其在制备维生素B12中的应用
CN110343650B (zh) 一种产两性霉素b的重组结节链霉菌及其应用
CN110423790B (zh) 一种抗真菌四霉素b定向高产的代谢工程方法
CN103805544B (zh) 一种产庆大霉素a工程菌及其应用
US20120015404A1 (en) Gene cluster for thuringiensin synthesis
CN109468253B (zh) 一种高产雷帕霉素的吸水链霉菌
CN112430608B (zh) 一种构建奥利万星前体高产工程菌的方法及应用
CN116042416B (zh) 高产ε-聚赖氨酸的多基因过表达链霉菌工程菌株及方法与应用
CN114150006B (zh) 一种可提高米尔贝霉素产量的基因簇、重组菌及其制备方法与应用
CN118063531B (zh) 大环内酯类化合物PA-46101s C-E的制备及其应用
CN110819615B (zh) 尿卟啉原ⅲ合成酶突变体、突变基因及其在制备维生素b12中的应用
CN102174539A (zh) 杀粉蝶菌素a1生物合成基因簇
CN116676353A (zh) 天蓝色链霉菌M145-chry及其在发酵生产金黄霉素中应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination