CN114364821A - 方向性电磁钢板及其制造方法 - Google Patents

方向性电磁钢板及其制造方法 Download PDF

Info

Publication number
CN114364821A
CN114364821A CN202080062277.0A CN202080062277A CN114364821A CN 114364821 A CN114364821 A CN 114364821A CN 202080062277 A CN202080062277 A CN 202080062277A CN 114364821 A CN114364821 A CN 114364821A
Authority
CN
China
Prior art keywords
less
steel sheet
grain
50ppm
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080062277.0A
Other languages
English (en)
Other versions
CN114364821B (zh
Inventor
新垣之启
下山祐介
原田晃史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of CN114364821A publication Critical patent/CN114364821A/zh
Application granted granted Critical
Publication of CN114364821B publication Critical patent/CN114364821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B2001/028Slabs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明提供提供一种在卷材全长上稳定地得到优异的磁特性的方向性电磁钢板。所述方向性电磁钢板具有如下成分组成:以质量%计,含有C:0.005%以下、Si:2.0~4.5%和Mn:0.01~0.5%;以及以质量ppm计,含有20ppm以下的N,分别小于50ppm的Se、Te和O,小于30ppm的S和小于40ppm的酸可溶性Al,以及含有小于30ppm的Ti,并且该Ti中的酸可溶性Ti为5ppm~25ppm;剩余部分为Fe和不可避免的杂质;并且,以0.05个/mm2以上具有含有Ti和N的粒径200nm以上的析出物。

Description

方向性电磁钢板及其制造方法
技术领域
本发明涉及具有稳定的磁特性且铁损特性优异的方向性电磁钢板及其制造方法。
背景技术
方向性电磁钢板是主要被用于变压器等铁芯的材料。近年,对于这种铁芯的节能化的要求在增高。与此相伴,对于铁芯的材料即方向性电磁钢板,要求更优异的磁特性、即低铁损且高磁通密度。
方向性电磁钢板具有作为铁的易磁化轴的<001>取向在钢板的轧制方向上高度一致的结晶组织。这样的织构可以通过在方向性电磁钢板的制造工序中,特别是在最终退火时,优先使所谓的高斯方位(Goss Orientation)的{110}<001>取向的晶粒巨大生长的二次再结晶的现象而形成。因此,二次再结晶晶粒的结晶方位对方向性电磁钢板的磁特性产生很大影响。
至今为止,这样的方向性电磁钢板可以通过以下的工序进行制造。
即,将含有4.5质量%左右以下的Si、进而含有形成MnS、MnSe、AlN和BN等抑制剂的元素的钢坯在1300℃以上加热后,进行热轧,根据需要实施热轧板退火,其后,通过1次或夹着中间退火的2次以上的冷轧而制成最终板厚,接着在湿润氢气气氛中进行一次再结晶退火,从而进行一次再结晶和脱碳,进而涂布以氧化镁为主剂的退火分离剂,然后为了进行二次再结晶和抑制剂形成元素的纯化,在1200℃实施5小时左右的最终退火,从而制造(例如,专利文献1、2、3等)。
但是,在这样的方向性电磁钢板的制造工序中因为存在抑制剂形成元素,因此,高温的板坯加热是不可或缺的,其制造成本极高。
对于该问题,开发了即使不含有抑制剂形成元素也能表现二次再结晶的方法,即所谓的无抑制剂法(例如,专利文献4)。
该方法与现有的方向性电磁钢板的制造方法的技术思想完全不同。即,现有的方法中,是利用MnS、MnSe、AlN等析出物(抑制剂)来表现二次再结晶的,但是,在无抑制剂法中,不使用这些抑制剂,反而是进行高纯度化而减少晶界迁移的阻力,使依赖于晶界特性的原本的晶界迁移速度差显著化,成功地表现出期望的二次再结晶。
在该无抑制剂法中,原本就是基本上不含有抑制剂元素,因此,不需要抑制剂成分的固溶所必需的高温板坯加热的工序,能实现低成本的方向性电磁钢板的制造。
现有技术文献
专利文献
专利文献1:美国专利第1965559号说明书
专利文献2:日本特公昭40-15644号公报
专利文献3:日本特公昭51-13469号公报
专利文献4:日本特开2000-129356号公报
发明内容
在此,在通过无抑制剂法制造方向性电磁钢板的情况下,极微量的杂质元素在钢中不均匀地析出,从而二次再结晶变得不均匀,最终制造的方向性电磁钢板的磁特性在1个卷材中也大幅变动这一现象成为问题而显现。
对于该问题,专利文献5中提出了如下技术:通过在包含Ca和/或Mg的氧化物之中,减少直径为1~3μm的大小的氧化物,能够得到稳定的磁特性。由此,可以在卷材全长上得到稳定的磁特性。
专利文献5:日本特开2006-152387号公报
但是,上述技术中,在使用含有20ppm以上的酸可溶性Al的供于无抑制剂法的板坯的情况下,会强烈地受到途中工序的退火的热历史的影响,存在磁特性不稳定的情况。
本发明是有利地解决上述的问题,其目的在于得到在卷材全长上稳定地具有优异的磁特性的方向性电磁钢板。
发明人等通过以各种各样的手法评价在某频率下产生的卷材内的磁特性的“变动量”大的材料的特征,为了明确其特征,进行了深入的研究。
其结果作为特性的“变动量”大的产品的特征,发现在钢中的含有Ti中酸可溶性Ti小于5ppm或者大于25ppm,并且,含有Ti和N的粒径200nm以上的析出物小于0.05个/mm2。应予说明,钢中的析出物的评价利用如下得到的值进行:从产品卷材的宽度、长度方向的中央位置切出样品,对于轧制方向(L方向)剖面以连续的视野观察90mm2的范围,从粒子的反射电子图像,对所有以圆当量直径计直径为200nm以上的粒子进行利用EDX的组成分析,对同时含有Ti和N这两方的粒子数进行计数,除以观察视野的面积而得到值。
通常在通过无抑制剂法而制造方向性电磁钢板的情况下,酸可溶性Ti大多为以TiN析出的状态,也能够作为抑制剂发挥功能,因此以极力不添加的方式进行制造。但是,Ti是各种各样的合金元素、废铁等中含有的元素,因此,是作为杂质混入而含有的元素。
在上述此次的见解中,认为在最终产品卷材中酸可溶性Ti大于25ppm的情况下,磁性变动大的原因是TiN作为抑制剂发挥功能,形成不均匀的组织。另一方面,作为磁特性变动较大的卷材的特征,观察到酸可溶性Ti<5ppm的范围,因此认为一定量的酸可溶性Ti显示出有助于磁性稳定化。上述见解给出了如下启示:在没有适当地控制酸可溶性Ti而使其作为杂质混入而制造的情况下,在特定的频率下可能会产生磁特性的不稳定化。
另外,作为Ti存在形态的特征,在产品卷材中于钢中作为粒径200nm以上的粒子与N同时存在,其存在频率小于0.05个/mm2,可以确认到磁性变动大的特征。通常作为抑制剂利用的析出物为小于100nm的粒径。如果是200nm以上的粒径,则必然地密度会变低,作为抑制剂的功能会变低。另外,Ti会形成氧化物(TiO2)、氮化物(TiN),氧化物不溶解于酸,因此,认为酸可溶性Ti被评价为作为氮化物而存在。通过观察而确认到的粒子也与Ti和N一并被检测到,以TiN的形态存在。在此,已知TiN作为MnS等硫化物的析出位点而发挥作用。另外,由于还存在氮化物,因此,也作为AlN等氮化物的析出位点而发挥功能。实际上,观察到的粒子如图1A和图1B所示,硫化物、氮化物、以及Si、Al的氧化物一起被观察到,为复合析出的形态。
根据该观察结果,得到如下见解:作为可以抑制最终的磁特性的偏差的原因,在适量的Ti作为含有氮的析出物以适当的尺寸存在的情况下,可能作为复合析出的位点发挥功能,在无抑制剂体系中促进重要的高纯度化。
发明人等进一步研究上述见解,完成了本发明。本发明的主旨构成为如下。
1.一种方向性电磁钢板,具有如下成分組成:以质量%计,含有C:0.005%以下、Si:2.0~4.5%和Mn:0.01~0.5%;并且以质量ppm计,含有20ppm以下的N、分别小于50ppm的Se、Te和O、小于30ppm的S和小于40ppm的酸可溶性Al,并且含有小于30ppm的Ti且该Ti中的酸可溶性Ti为5ppm~25ppm;剩余部分为Fe和不可避免的杂质;并且,以0.05个/mm2以上具有含有Ti和N的粒径200nm以上的析出物。
2.根据上述1所述的方向性电磁钢板,其中,上述成分组成进一步以质量%计含有选自Ni:1.50%以下、Sn:0.50%以下、Sb:0.50%以下、Cu:0.50%以下、Mo:0.50%以下、P:0.50%以下、Cr:1.50%以下、B:0.0050%以下和Nb:0.0100%以下中的1种或2种以上。
3.一种方向性电磁钢板的制造方法,是制造上述1所述的方向性电磁钢板的方法,对由具有如下成分组成的钢水铸造而成的钢坯实施热轧而制成热轧板后,通过退火和轧制而制成最终板厚的冷轧板,接着进行一次再结晶退火,进一步实施二次再结晶退火后,进行绝缘被膜的形成;其中,上述成分组成以质量%计含有C:0.08%以下、Si:2.0~4.5%和Mn:0.01~0.5%且以质量ppm计将Ti抑制为小于50ppm,将Se、Te和O抑制为分别小于50ppm,将S控制在小于50ppm、将酸可溶性Al在20ppm以上且小于100ppm,并且将N控制在80ppm以下的范围,剩余部分为Fe和不可避免的杂质;
在上述钢水的阶段中,使上述钢水中的Ti小于50ppm,并使该Ti中的酸可溶性Ti为5ppm~30ppm。
4.一种方向性电磁钢板的制造方法,是制造上述1所述的方向性电磁钢板的方法,对由具有如下成分组成的钢水铸造而成的钢坯,实施具有进行最初的压下后以1000℃以上的温度保持40秒以上的时间的工序的热轧而制成热轧板,进而,通过退火和轧制而制成最终板厚的冷轧板,接着进行一次再结晶退火,在二次再结晶退火后,进行绝缘被膜的形成;上述成分组成:以质量%计含有C:0.08%以下、Si:2.0~4.5%和Mn:0.01~0.5%且以质量ppm计将Ti抑制为小于50ppm,将Se、Te和O抑制为分别小于50ppm,将S控制在小于50ppm、将酸可溶性Al控制在20ppm以上且小于100ppm,并且将N控制在80ppm以下的范围,剩余部分为Fe和不可避免的杂质;
上述钢水的成分调整中,对于含有Si的合金铁、含有Al的合金铁和含有Ti的合金铁的添加,按在添加上述含有Si的合金铁后且在添加上述含有Al的合金铁前,添加上述含有Ti的合金铁的整体量中的50%以上的顺序进行,至少使上述钢水中的Ti小于50ppm并使该Ti中的酸可溶性Ti为5ppm~30ppm。
5.根据上述3或4所述的方向性电磁钢板的制造方法,其中,在制造上述2所述的方向性电磁钢板的方法中,在上述3或4所述的钢坯中进一步以质量%计含有选自Ni:0.005~1.50%、Sn:0.01~0.50%、Sb:0.005~0.50%、Cu:0.01~0.50%、Mo:0.01~0.50%、P:0.0050~0.50%、Cr:0.01~1.50%、B:0.0001~0.0050%、和Nb:0.0005~0.0100%中的1种或2种以上。
6.一种方向性电磁钢板制造用热轧钢板,含有小于50ppm的Ti且该Ti中的酸可溶性Ti为5ppm~30ppm。
7.一种方向性电磁钢板制造用热轧钢板,是上述6所述的方向性电磁钢板制造用热轧钢板,进一步以0.05个/mm2以上具有含有Ti和N的粒径200nm以上的析出物。
根据该发明,能够得到使用无抑制剂法,在卷材全长上稳定地具有优异的磁特性的方向性电磁钢板。另外,能够有利地制造上述方向性电磁钢板。
附图说明
图1A是表示钢板表面的析出物的SEM图像和EDX分析结果的图。
图1B是表示其它钢板表面的析出物的SEM图像和EDX分析结果的图。
具体实施方式
以下,对本发明基于其制造方法进行具体的说明。
首先,对作为制造方向性电磁钢板时的起始材料的钢坯的成分组成的限定理由进行叙述。应予说明,以下,关于成分的“%”和“ppm”的表达,只要没有特别说明,就是指质量%和质量ppm。
C:0.08%以下
C具有抑制热轧时的晶粒粗大化、改善冷轧前组织的功能,并且在冷轧中,通过与位错的相互作用而改善一次再结晶后的织构。但是,如果残留在最终制品板中,则会成为磁老化的原因,产生磁性劣化。在板坯阶段含有大于0.08%的情况下,在途中脱碳工序中,负荷会变高,无法充分地减少,因此,限定为0.08%以下。并且,为了得到上述的组织改善效果,期望下限为0.01%。
Si:2.0~4.5%
Si是通过提高电阻而改善铁损的有用的元素。如果含量小于2.0%,则无法期望充分的铁损减少效果,另一方面,如果大于4.5%,则冷轧明显变得困难,因此,Si量限定为2.0%~4.5%的范围。优选为2.0%~4.0%。
Mn:0.01~0.5%
Mn为提高热加工性的有用的元素,但在含有大于0.5%的情况下,一次再结晶织构会劣化,难以得到在Goss方位上高度聚集的二次再结晶晶粒,因此,限定为0.5%以下的范围。另外,为了改善热加工性,需要含有0.01%以上。优选为0.03%~0.15%。
Se、Te和O分别小于50ppm
如果Se和Te过量地存在,则会形成Se化物、Te化物,二次再结晶会变得困难。其理由是通过板坯加热而粗大化的析出物使得一次再结晶组织不均匀。因此,将Se、Te分别抑制在小于50ppm以使其不作为抑制剂发挥作用。优选含量为30ppm以下。另外,O会形成氧化物,作为夹杂物而残留在最终产品中,使磁特性劣化,因此,需要抑制为小于50ppm。应予说明,这些元素的含量可以是0%。
酸可溶性Al:20ppm以上且小于100ppm,S:小于50ppm,N:80ppm以下
在适用无抑制剂法的情况下,如果仅考虑二次再结晶,则这些析出物形成元素不是必须的。但是,通过适量含有Al,从而在二次再结晶退火时,在表面形成致密的Al2O3膜,从退火气氛中减少氮化等影响,因此,以20ppm以上且小于100ppm的范围含有。
另外,含有50ppm以上的S、含有大于80ppm的N的情况下,与Se、Te同样,在板坯加热时形成的析出物会粗大化,使一次再结晶组织劣化。因此,将上限限定为上述数值。
S、N的添加量的下限优选为0%,但它们是难以完全除去的元素,实际上,使S小于10ppm、N小于20ppm会大幅提高制造成本。无抑制剂法想要以低成本制造优质的方向性电磁钢板,从减少这样的制造时的负担的观点出发,将上述的值规定为下限。
本发明通过适当的量的Ti来固定这样的S、N形成的硫化物、氮化物,从而进行伪高纯度化,由此使钢板卷材的磁特性稳定化。
接下来,对于Ti,在供于连续铸造的钢水的阶段中,需要使Ti量小于50ppm,并使在其后的Ti的存在状态中酸可溶性Ti为5ppm~30ppm。
钢中的Ti形成TiO2、TiN这些粒子。如果如此形成的夹杂物、析出物过量地存在,会导致磁特性、特别是过程损耗的劣化。因此,Ti量需要控制在小于50ppm。然后,将导致后续工序中的TiN析出的酸可溶性Ti控制在5ppm~30ppm的范围。在将不含有作为杂质的Ti的纯度高的合金铁利用于材料原料的情况下,需要另外添加作为Ti源的合金元素。因此,为了降低制造成本,本发明中可以采用通过积极地利用纯度低的合金铁从而提高Ti量的手段。
本发明中,优选按如下的顺序进行钢水的成分调节,即,在添加含有Ti的合金铁、含有Si的合金铁和含有Al的合金铁时,含有Ti的合金铁的添加是在添加含有Si的合金铁后且在添加含有Al的合金铁前,添加总添加量的50%以上。Ti为强脱氧元素,因此,如果在钢水中的氧高的阶段添加,则会与氧结合而成为TiO2的形态,难以成为酸可溶性Ti的状态。因此,优选采用在Ti源的添加前添加Si的顺序。
通过采用该顺序,从而钢水中的氧以SiO2的形态在某种程度上在炉渣中浮出,从钢中被除去。由此,Ti的收率提高,可以在适度的范围提高酸可溶性Ti。
另一方面,已知Al是比Ti更强的脱氧元素。因此,Al添加后钢水中的氧被Al以Al2O3的形态除去,可以预测大部分添加的Ti会全部成为酸可溶性Ti的形态,产生钢水中的酸可溶性Ti大于30ppm的风险。
因此,在利用纯度较低、含有作为杂质的Ti的廉价的合金铁进行成分调整的情况下,在添加含有Si的合金铁后,对于适度的溶存氧,以总添加量的50%以上添加含有Ti的合金铁,进行添加后的酸可溶性Ti的分析,然后添加含有Al的合金铁。其后,可以采用以Ti收率更高的状态添加剩余的含有Ti的合金铁并控制在适当范围的手法。如果采用该手法,可以不特别利用纯度高的合金铁,就能将Ti控制在适当范围。当然,如果进行利用纯度高的合金铁的成分调整,就不需要这样的手法。
以上,对于必需成分和抑制成分进行了说明,但在本发明中,除此之外,还可以适当含有选自以下所述的元素中的1种或2种以上。
Ni:0.005~1.50%
Ni具有通过提高热轧板组织的均匀性而改善磁特性的作用。但是,如果含量小于0.005%,则其添加效果不足,另一方面,如果大于1.50%,则二次再结晶会不稳定,磁特性会劣化,因此,期望在0.005~1.50%的范围含有Ni。
Sn:0.01~0.50%、Sb:0.005~0.50%、Cu:0.01~0.50%
这些元素是介由晶界偏析而被视为辅助抑制剂的元素,但有时在不积极地利用基于析出物的抑制剂的无抑制剂法中有用地发挥作用。如果各自小于下限,则缺乏添加效果,另一方面,如果大于上限,则二次再结晶不良的可能性会提高。
P:0.0050~0.50%、Cr:0.01~1.50%
这些元素具有在镁橄榄石被膜形成时改善其反应的效果。如果各自小于下限,则缺乏添加效果,另一方面,如果大于上限,则反而会过度促进镁橄榄石被膜的形成,结果是产生被膜剥离等问题。
Mo:0.01~0.50%、B:0.0001~0.0050%、Nb:0.0005~0.0100%
这些元素均有助于晶粒成长的抑制,具有织构改善效果和二次再结晶稳定化的效果。为了有效地得到该效果,优选以上述的范围分别含有。如果过量添加,则会在钢中析出而作为强抑制剂发挥功能,因此,在无抑制剂法中大于上述的上限的含有是不优选的。
对于剩余部分,为铁和上述以外的杂质,特别是不可避免的杂质。
对调整为上述的优选成分组成范围的钢坯,不进行再加热或者在再加热之后,供给热轧。应予说明,在将板坯再加热的情况下,优选再加热温度为1100℃~1300℃左右。特别是大于1300℃的板坯加热,这在板坯的阶段钢中几乎不含抑制剂的本发明中是没有意义的,增加成本,因此是不需要的。
之后,进行热轧,但优选在进行最初的压下(初始道次)后,于1000℃以上的温度保持40秒以上的时间。这是因为对于TiN作为酸可溶性Ti并形成粒径为200nm以上的析出物是更有效的工序。即,认为通过在初始道次后进行上述的保持处理,能够在已经处于析出状态的TiN的周围导入位错,提高TiN周边的N等的扩散速度而容易地将包含Ti、N的析出物控制在适当的粒径。应予说明,保持时间的上限没有特别限定,从制造上的观点出发,优选为600秒以下。另外,从在热轧的初始道次后确保1000℃的观点出发,板坯加热温度的下限优选为1100℃以上。
一并含有经历上述工序形成的适当的粒径的Ti和N的粒子在后续工序中几乎不变化,成为后续工序的硫化物、氮化物的析出位点,从而发挥伪高纯度化的效果。认为该效果与例如通过添加Ti而捕捉钢中的C制成IF钢的技术中利用的效果相近。
接下来,对热轧板根据需要实施热轧板退火后,实施1次的冷轧或者夹着中间退火的2次以上的冷轧,制成最终冷轧板。该冷轧可以在常温下进行,也可以进行将钢板温度升高到比常温高的温度例如250℃左右进行轧制的温轧。
对最终冷轧板实施一次再结晶退火。该一次再结晶退火的目的是使具有轧制组织的冷轧板进行一次再结晶,在二次再结晶中调整为最合适的一次再晶粒径。另外,通过使退火气氛为湿氢氮或者湿氢氩的气氛,从而将钢中含有的碳进行脱碳,同时通过上述退火气氛在表面形成氧化被膜。为此,一次再结晶退火的退火温度(保持温度)优选为800℃以上且小于950℃左右的温度区域。并且,为了进一步改善织构,提高一次再结晶退火的加热过程的升温速度是有效的。具体来说,通过将500℃~700℃间的升温速度设为80℃/s以上,可以期待改善。
在上述的一次再结晶退火后,在钢板表面涂布退火分离剂。为了在接下来进行的二次再结晶退火的后的钢板表面形成镁橄榄石被膜,利用氧化镁(MgO)作为退火分离剂的主剂。此时,通过在分离剂中适量添加Ti氧化物、Sr化合物等,能够进一步有利于进行镁橄榄石被膜的形成。特别使镁橄榄石被膜形成均匀地进行的助剂的添加也对剥离特性改善发挥有利的作用。接着,进行用于二次再结晶和镁橄榄石被膜形成的最终退火。该最终退火的退火气氛可以是N2、Ar、H2或者这些混合气体中的任一种。如果最终产品中析出微量成分,则会导致磁特性的劣化,因此,为了成分纯化,退火的最高温度优选设为1100℃以上。
本发明的钢板的卷材内的磁特性变动少,因此,考虑到经济性,优选在5吨以上、更优选在10吨以上的质量的卷材中进行最终退火。
在上述的最终退火后,可以在钢板表面进一步涂布绝缘被膜并烧结。对于该绝缘被膜的种类,没有特别限定,可以是公知的任意的绝缘被膜。例如,优选将日本特开昭50-79442号公报、日本特开昭48-39338号公报记载的含有磷酸盐-铬酸盐-胶体二氧化硅的涂布液涂布在钢板,在800℃左右烧结的方法。
得到的最终产品的成分通过最终退火时进行了纯化而得的除去绝缘被膜和基底被膜后的钢板基体铁中,含有C:0.005%以下、Si:2.0~4.5%、Mn:0.01~0.5%,含有20ppm以下的N、分别小于50ppm的Se、Te和O、小于30ppm的S、小于40ppm的酸可溶性Al,具有0.05个/mm2以上的Ti小于30ppm且Ti的存在状态中的酸可溶性Ti为5ppm~25ppm、一并含有Ti和N的粒径200nm以上的析出物。顺便一提,在考虑到制造成本的情况下,允许含有N为3ppm以上的N、S和Al,且允许含有S和Al为5ppm以上。另外,为了改善磁特性等,本发明的方向性电磁钢板进一步以质量%计含有选自Ni:1.50%以下、Sn:0.50%以下、Sb:0.50%以下、Cu:0.50%以下、Mo:0.50%以下、P:0.50%以下、Cr:1.50%以下、B:0.0050%以下和Nb:0.0100%以下中的1种或2种以上。
应予说明,上述添加元素中的没有规定下限的元素就是没有特别限定,允许包含0的分析下限值以下。另外,除此以外的元素根据最终退火条件,可能会被包含在镁橄榄石被膜中、或是放出到气相中,钢中的含量可能会降低,因此,成为在板坯含有时的浓度以下,分别为上述的范围。
实施例
(实施例1)
将除了主成分的C:0.06%、Si:3.35%和Mn:0.03%以外的成分为表1所示的各种组成的板坯熔炼。应予说明,Se、Te和O均为30ppm。Ti的调整使用Ti块进行,其它成分调整使用几乎不含Ti等杂质的高纯度合金铁或者块状、粒状纯金属。在1250℃的板坯加热后、热轧初始道次后、以1000℃以上保持60秒的条件下进行热轧,制成板厚2.5mm的热轧板。
对这些热轧板进行900℃的热轧板退火,冷轧至1.3mm后,实施中间退火。中间退火是从卷材的前端部至末端部缓慢地变更温度,以卷材前端部为950℃、卷材末端部为1050℃的方式,进行退火。退火后卷材通过冷轧而制成最终板厚0.23mm,供给进行脱碳、一次再结晶的退火。其后,涂布以MgO为主成分的退火分离剂,以最高温度1150℃、均热时间10小时进行包含二次再结晶过程和纯化过程的最终退火。在如此得到的卷材上,涂布由胶体二氧化硅和磷酸镁形成的绝缘涂层,在850℃烧结,制成制品板。
对于如此得到的各制品板,评价铁损特性。铁损(W17/50)如下评价:在各制品板卷材的全长上连续地测定,对于最优值即最低的值(最低值)、以及最差值即最高的值(最高值)进行评价。各个卷材从长度方向中央部、宽度方向中央部采取试样,进行Ti浓度的分析。同时,采取L剖面观察用的试验片,在连续的视野中观察90mm2,对于由粒子图像中以当量圆直径计直径为200nm以上的所有粒子,进行利用EDX的组成分析,对含有Ti的N的两种元素的粒子数进行计数,求出除以观察视野面积而得的值,作为钢中粒子密度。结果一并记于表1。应予说明,制品板的C、Si和Mn均为C:0.001%、Si:3.35%和Mn:0.03%。另外,Se、Te和O均为30ppm。
根据该表,可知根据按照本发明,能够减少磁特性的偏差,且保持良好的特性。
[表1]
Figure BDA0003529861410000121
(实施例2)
将目标成分为C:0.05%、Si:3.2%、Mn:0.05%、Cr:0.03%、P:0.01%、酸可溶性Al:30ppm、S:20ppm、N:30ppm、Se:50ppm、Te:30ppm和O:20ppm的钢进行熔炼时,在FeSi添加后,添加含有Ti作为杂质的FeMn、FeCr、FeP这些合金铁,对Mn、Cr、P、Ti进行分析,然后添加块状Al后,追加添加少量不足的成分,制造板坯A。另外,作为比较,分别制作在FeSi添加前添加合金铁、在块状Al添加后追加添加少量不足的成分的板坯B,以及在块状Al添加后进行所有的成分调整的板坯C各2根。进而,按板坯A的制造顺序分别制作2根表2记载的组成的板坯D~F。
其后,分别以热轧条件1和热轧条件2制作板厚2mm的热轧板;热轧条件1为在1200℃进行板坯加热,在热轧初始道次后,在1000℃以上保持60秒;热轧条件2为在初始道次后在30秒的期间将温度降低到980℃。
对这些热轧板进行热轧板退火时,从卷材的前端部至末端部缓慢地变更温度,以卷材前端部为1000℃、卷材长度方向中央部为1025℃、卷材末端部为1050℃的方式,进行退火。退火后卷材通过冷轧而制成最终板厚0.27mm,供于用于脱碳、一次再结晶的退火。其后,涂布以MgO为主成分的退火分离剂,进行包含二次再结晶过程和纯化过程的最终退火,此时,最高温度为1200℃、均热时间为10小时。对得到的卷材涂布由60%的胶体二氧化硅和磷酸铝形成的绝缘涂层,在800℃烧结。
对于各种材料,从卷材的前端、中央、末端的位置切出Epstein试验片,测定铁损(W17/50),算出其平均值。铁损的测定结果的平均值分别对应于热轧板退火时的温度,示于表2。应予说明,制品板的C、Si和Mn均为C:0.001%、Si:3.2%和Mn:0.05%。另外,制品板的Se、Te和O均为Se:10ppm、Te:5ppm和O:20ppm。
另外,从进行了铁损测定的Epstein试验片除去被膜,然后进行成分分析,采取L剖面观察用的试验片,在连续的视野中观察90mm2。该观察中,由粒子图像中对以当量圆直径计直径为200nm以上的所有粒子,进行利用EDX的组成分析,对含有Ti的N的两种元素的粒子数进行计数,以除以观察视野面积而得的值,算出钢中粒子密度。
根据表2,可知根据按照本发明,即便中途工序的退火温度产生变动,仍能够减少磁特性的偏差,且保持良好的特性。
[表2]
Figure BDA0003529861410000151

Claims (7)

1.一种方向性电磁钢板,具有如下成分组成:以质量%计,含有C:0.005%以下、Si:2.0~4.5%和Mn:0.01~0.5%;以及以质量ppm计,含有20ppm以下的N、分别小于50ppm的Se、Te和O、小于30ppm的S和小于40ppm的酸可溶性Al,并且含有小于30ppm的Ti且该Ti中的酸可溶性Ti为5ppm~25ppm;剩余部分为Fe和不可避免的杂质;并且,以0.05个/mm2以上具有含有Ti和N的粒径200nm以上的析出物。
2.根据权利要求1所述的方向性电磁钢板,其中,所述成分组成进一步以质量%计,含有选自Ni:1.50%以下、Sn:0.50%以下、Sb:0.50%以下、Cu:0.50%以下、Mo:0.50%以下、P:0.50%以下、Cr:1.50%以下、B:0.0050%以下和Nb:0.0100%以下中的1种或2种以上。
3.一种方向性电磁钢板的制造方法,是制造权利要求1所述的方向性电磁钢板的方法,对由具有如下成分组成的钢水铸造而成的钢坯实施热轧而制成热轧板后,通过退火和轧制而制成最终板厚的冷轧板,接着进行一次再结晶退火,进一步实施二次再结晶退火后,进行绝缘被膜的形成;
所述成分组成以质量%计含有C:0.08%以下、Si:2.0~4.5%和Mn:0.01~0.5%,并且以质量ppm计将Ti抑制为小于50ppm,将Se、Te和O抑制为分别小于50ppm,将S控制在小于50ppm的范围,将酸可溶性Al控制在20ppm以上且小于100ppm的范围,并且将N控制在80ppm以下的范围,剩余部分为Fe和不可避免的杂质;
在所述钢水的阶段中,使所述钢水中的Ti小于50ppm,并使该Ti中的酸可溶性Ti为5ppm~30ppm。
4.一种方向性电磁钢板的制造方法,是制造权利要求1所述的方向性电磁钢板的方法,对由具有如下成分组成的钢水铸造而成的钢坯实施具有进行最初的压下后以1000℃以上的温度保持40秒以上的时间的工序的热轧,制成热轧板,进而,通过退火和轧制而制成最终板厚的冷轧板,接着进行一次再结晶退火,二次再结晶退火后,进行绝缘被膜的形成;
所述成分组成以质量%计含有C:0.08%以下、Si:2.0~4.5%和Mn:0.01~0.5%,并且以质量ppm计将Ti抑制为小于50ppm,将Se、Te和O抑制为分别小于50ppm,将S控制在小于50ppm的范围,将酸可溶性Al控制在20ppm以上且小于100ppm的范围,并且将N控制在80ppm以下的范围,剩余部分为Fe和不可避免的杂质;
所述钢水的成分调整中,对于含有Si的合金铁、含有Al的合金铁和含有Ti的合金铁的添加,按在添加所述含有Si的合金铁后且添加所述含有Al的合金铁前,添加所述含有Ti的合金铁的整体量中的50%以上的顺序进行,至少使所述钢水中的Ti小于50ppm并使该Ti中的酸可溶性Ti为5ppm~30ppm。
5.根据权利要求3或4所述的方向性电磁钢板的制造方法,是制造权利要求2所述的方向性电磁钢板的方法,在权利要求3或4所述的钢坯中,进一步以质量%计,含有选自Ni:0.005~1.50%、Sn:0.01~0.50%、Sb:0.005~0.50%、Cu:0.01~0.50%、Mo:0.01~0.50%、P:0.0050~0.50%、Cr:0.01~1.50%、B:0.0001~0.0050%和Nb:0.0005~0.0100%中的1种或2种以上。
6.一种方向性电磁钢板制造用热轧钢板,含有小于50ppm的Ti且该Ti中的酸可溶性Ti为5ppm~30ppm。
7.一种方向性电磁钢板制造用热轧钢板,是权利要求6所述的方向性电磁钢板制造用热轧钢板,并且以0.05个/mm2以上具有含有Ti和N的粒径200nm以上的析出物。
CN202080062277.0A 2019-09-06 2020-09-04 方向性电磁钢板及其制造方法 Active CN114364821B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019163264 2019-09-06
JP2019-163264 2019-09-06
PCT/JP2020/033662 WO2021045212A1 (ja) 2019-09-06 2020-09-04 方向性電磁鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
CN114364821A true CN114364821A (zh) 2022-04-15
CN114364821B CN114364821B (zh) 2023-10-20

Family

ID=74853355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080062277.0A Active CN114364821B (zh) 2019-09-06 2020-09-04 方向性电磁钢板及其制造方法

Country Status (9)

Country Link
US (1) US20220333220A1 (zh)
EP (1) EP4026921A4 (zh)
JP (1) JP7160181B2 (zh)
KR (1) KR20220056226A (zh)
CN (1) CN114364821B (zh)
BR (1) BR112022003971A2 (zh)
CA (1) CA3153363A1 (zh)
MX (1) MX2022002590A (zh)
WO (1) WO2021045212A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228646A (ja) * 1992-12-08 1994-08-16 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の安定製造方法
JP2008214700A (ja) * 2007-03-05 2008-09-18 Sumitomo Metal Ind Ltd 高強度冷間圧延鋼板および高強度合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法
CN104870666A (zh) * 2012-12-28 2015-08-26 杰富意钢铁株式会社 方向性电磁钢板的制造方法和方向性电磁钢板制造用的一次再结晶钢板
CN104870665A (zh) * 2012-12-28 2015-08-26 杰富意钢铁株式会社 方向性电磁钢板的制造方法和方向性电磁钢板制造用的一次再结晶钢板
CN104884644A (zh) * 2012-12-28 2015-09-02 杰富意钢铁株式会社 方向性电磁钢板的制造方法
CN108291268A (zh) * 2015-12-04 2018-07-17 杰富意钢铁株式会社 方向性电磁钢板的制造方法
CN108699619A (zh) * 2016-02-22 2018-10-23 杰富意钢铁株式会社 方向性电磁钢板的制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1965559A (en) 1933-08-07 1934-07-03 Cold Metal Process Co Electrical sheet and method and apparatus for its manufacture and test
AT329358B (de) 1974-06-04 1976-05-10 Voest Ag Schwingmuhle zum zerkleinern von mahlgut
JPH04293725A (ja) * 1991-03-20 1992-10-19 Kawasaki Steel Corp 板幅方向に均一な磁気特性を有する一方向性けい素鋼板の製造方法
BR9800978A (pt) * 1997-03-26 2000-05-16 Kawasaki Steel Co Chapas elétricas de aço com grão orientado tendo perda de ferro muito baixa e o processo de produção da mesma
JP3707268B2 (ja) 1998-10-28 2005-10-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP4214937B2 (ja) * 2004-03-26 2009-01-28 Jfeスチール株式会社 磁気特性に優れた方向性電磁鋼板の製造方法
JP4747564B2 (ja) 2004-11-30 2011-08-17 Jfeスチール株式会社 方向性電磁鋼板
KR101322505B1 (ko) * 2010-02-18 2013-10-28 신닛테츠스미킨 카부시키카이샤 방향성 전자기 강판의 제조 방법
ITFI20110194A1 (it) 2011-09-08 2013-03-09 Menarini Int Operations Lu Sa Dispositivo autoiniettore di dosi di farmaco
JP6056675B2 (ja) * 2013-06-19 2017-01-11 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101633255B1 (ko) * 2014-12-18 2016-07-08 주식회사 포스코 방향성 전기강판 및 그 제조방법
JP6350398B2 (ja) * 2015-06-09 2018-07-04 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6354957B2 (ja) * 2015-07-08 2018-07-11 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
US20190161817A1 (en) * 2016-07-29 2019-05-30 Jfe Steel Corporation Hot-rolled steel sheet for grain-oriented electrical steel sheet and method of producing same, and method of producing grain-oriented electrical steel sheet
JP6572855B2 (ja) * 2016-09-21 2019-09-11 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
KR101947026B1 (ko) * 2016-12-22 2019-02-12 주식회사 포스코 방향성 전기강판 및 이의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228646A (ja) * 1992-12-08 1994-08-16 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の安定製造方法
JP2008214700A (ja) * 2007-03-05 2008-09-18 Sumitomo Metal Ind Ltd 高強度冷間圧延鋼板および高強度合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法
CN104870666A (zh) * 2012-12-28 2015-08-26 杰富意钢铁株式会社 方向性电磁钢板的制造方法和方向性电磁钢板制造用的一次再结晶钢板
CN104870665A (zh) * 2012-12-28 2015-08-26 杰富意钢铁株式会社 方向性电磁钢板的制造方法和方向性电磁钢板制造用的一次再结晶钢板
CN104884644A (zh) * 2012-12-28 2015-09-02 杰富意钢铁株式会社 方向性电磁钢板的制造方法
CN108291268A (zh) * 2015-12-04 2018-07-17 杰富意钢铁株式会社 方向性电磁钢板的制造方法
CN108699619A (zh) * 2016-02-22 2018-10-23 杰富意钢铁株式会社 方向性电磁钢板的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
阎峰等, 冶金工业出版社 *

Also Published As

Publication number Publication date
JP7160181B2 (ja) 2022-10-25
JPWO2021045212A1 (ja) 2021-11-25
EP4026921A4 (en) 2023-11-01
CA3153363A1 (en) 2021-03-11
US20220333220A1 (en) 2022-10-20
BR112022003971A2 (pt) 2022-05-24
KR20220056226A (ko) 2022-05-04
CN114364821B (zh) 2023-10-20
EP4026921A1 (en) 2022-07-13
WO2021045212A1 (ja) 2021-03-11
MX2022002590A (es) 2022-03-25

Similar Documents

Publication Publication Date Title
JP3172439B2 (ja) 高い体積抵抗率を有する粒子方向性珪素鋼およびその製造法
CN113166869B (zh) 无方向性电磁钢板及其制造方法
JP4747564B2 (ja) 方向性電磁鋼板
JP4258349B2 (ja) 方向性電磁鋼板の製造方法
CN107614725B (zh) 取向性电磁钢板及其制造方法
WO2011007771A1 (ja) 方向性電磁鋼板の製造方法
CN108431267B (zh) 取向电工钢板及其制备方法
KR20200076517A (ko) 방향성의 전기강판 및 그 제조 방법
JP2003253341A (ja) 磁気特性に優れた方向性電磁鋼板の製造方法
JP4206665B2 (ja) 磁気特性および被膜特性の優れた方向性電磁鋼板の製造方法
CN114364821B (zh) 方向性电磁钢板及其制造方法
JP3037878B2 (ja) 歪取焼鈍後鉄損に優れる無方向性電磁鋼板およびその製造方法
JP2014208895A (ja) 方向性電磁鋼板の製造方法
RU2799455C1 (ru) Лист из текстурированной электротехнической стали и способ его изготовления
US20240035108A1 (en) Grain oriented electrical steel sheet and method for manufacturing same
WO2024043294A1 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板用の熱延板
CN113166874B (zh) 取向电工钢板及其制造方法
JP6863310B2 (ja) 方向性電磁鋼板の製造方法
KR20230092584A (ko) 방향성 전기강판 및 이의 제조 방법
JP4267320B2 (ja) 一方向性電磁鋼板の製造方法
JP4283533B2 (ja) 一方向性電磁鋼板の製造方法
JPH0776732A (ja) 磁束密度の高い方向性珪素鋼板の製造方法
JP2001098329A (ja) 磁気特性に優れた無方向性電磁鋼板の製造方法
JPH0776733A (ja) 磁束密度の高い方向性珪素鋼板の製造方法
JP2000199014A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant