CN114349508A - 一种具有氧化物薄层的多层陶瓷膜制备方法和应用 - Google Patents

一种具有氧化物薄层的多层陶瓷膜制备方法和应用 Download PDF

Info

Publication number
CN114349508A
CN114349508A CN202210044306.1A CN202210044306A CN114349508A CN 114349508 A CN114349508 A CN 114349508A CN 202210044306 A CN202210044306 A CN 202210044306A CN 114349508 A CN114349508 A CN 114349508A
Authority
CN
China
Prior art keywords
multilayer ceramic
layer
ceramic film
equal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210044306.1A
Other languages
English (en)
Other versions
CN114349508B (zh
Inventor
江河清
贺广虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Original Assignee
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Institute of Bioenergy and Bioprocess Technology of CAS filed Critical Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority to CN202210044306.1A priority Critical patent/CN114349508B/zh
Publication of CN114349508A publication Critical patent/CN114349508A/zh
Priority to PCT/CN2022/091517 priority patent/WO2023134092A1/zh
Priority to EP22919732.2A priority patent/EP4393898A1/en
Application granted granted Critical
Publication of CN114349508B publication Critical patent/CN114349508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62852Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • C04B2237/586Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different densities
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种具有氧化物薄层的多层陶瓷膜制备方法和应用,将由萤石型氧化物和钙钛矿型或尖晶石型氧化物构成的复合材料预成型,然后在与Al2O3接触条件下高温热处理,即得到具有萤石型氧化物薄层的多层陶瓷膜。其中萤石型氧化物薄层的致密度可调,厚度可控且最薄可达约1微米,多层陶瓷各层之间兼容良好,无剥离或分层现象。另外,本发明提供的多层陶瓷制备工艺简易,重复性好,易于规模化放大。这种多层陶瓷作为混合导体膜时,在含H2、CO2、CH4、H2S气氛下连续稳定工作超过1000个小时,作为透氧膜稳定高效地进行工业副产氢驱动水分解制氢。另外,本发明提供的多层陶瓷制备技术有望被用于固体氧化物燃料电池、高温电解电池、气体传感器等领域。

Description

一种具有氧化物薄层的多层陶瓷膜制备方法和应用
技术领域
本发明涉及一种具有氧化物薄层的多层陶瓷膜制备方法和应用,所制备的多层陶瓷膜可作为混合导体透氧膜兼具稳定性和透氧性能,被用于提纯工业副产氢获取氢气,此外本发明涉及的多层陶瓷简易制备技术有望被用于固体氧化物燃料电池、高温电解池、气体传感器等领域。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
多层陶瓷是许多能量转换和电子器件的基本结构。例如,固体氧化物燃料电池(SOFC)和电解电池(SOEC)主要由电解质层、负极(阴极)层和正极(阳极)层构成;陶瓷电容器主要包括三层:陶瓷介质、内电极和外电极;氧气传感器由固态电解质和两侧扩散电极层构成;陶瓷催化膜反应器主要包括多孔支撑层、致密分离层和多孔催化层构成。因此,多层陶瓷的可控制备是上述能量转换和电子器件广泛应用的关键技术,尤其是具有致密薄层、层与层之间兼容性良好、热化学稳定的多层陶瓷是高效低成本能量转换和电子器件的重点和难点。
下面以陶瓷催化膜反应器在氢气提纯领域的应用为例详细介绍多层陶瓷技术的发展现状和面临的问题。氢能产业是具有战略性和先导性的新兴产业,代表未来技术变革和能源发展的重要方向。通过提纯工业副产氢获取燃料氢气是现阶段比较现实和价廉的制氢方式,有利于降低氢燃料电池的运行成本。燃料氢气中微量CO杂质的存在能够快速毒化燃料电池催化剂,因此开发不含CO的氢气(CO≦0.2ppm)制备技术成为氢能研究的一个重要方向。
由于氧离子-电子混合导体透氧膜对氧气的传输具有100%的选择性,将高温水分解反应和工业副产氢燃烧反应耦合在混合导体透氧膜的两侧,低纯氢气的燃烧可以促进陶瓷膜另一侧水分解所生成氧气的原位移除,从而可以高效地促进水分解,直接获得不含CO的氢气。但是传统钴基、铁基透氧膜难以兼具稳定性和透氧性能。尤其在富含H2、CH4、CO等还原性气体或CO2和H2S酸性气氛下,膜材料中的Co或Fe离子易于被深度还原或者膜表面形成碳酸盐或硫酸盐,致使膜结构降解,透氧性能和机械强度降低。为此,有学者设计开发出不含Co或Fe的掺杂CeO2(Ce0.9Gd0.1O2-δ、PrxCe0.9-xGd0.1O1.95-δ),它们在低氧分压气氛下表现出氧离子-电子混合导电性,而且在含H2、CO2、CO、H2S等苛刻气氛中具有优异的稳定性,有望作为透氧膜耦合水分解和工业副产氢氧化制取不含CO的氢气。
为了提高氢气的产率,要求尽可能减小掺杂CeO2致密层的厚度,因此将CeO2薄层担载在支撑层上形成多层非对称结构透氧膜是关键核心技术。目前常见制备多层陶瓷的工艺包括流延-层压-烧结、干压-涂敷-烧结、磁控溅射、喷雾热解等。这些方法通常需要经历多步热处理、特殊的设备,工艺繁琐、耗时、操作不便。另外,由于不同层之间的热化学膨胀系数不同,高温热处理时层与层之间易分层剥离,制约透氧膜在副产氢提纯领域的广泛应用。
发明内容
本发明针对常见混合导体膜在氢气提纯条件下不能兼具稳定性和氧渗透性能的难题,提出采用界面反应诱导策略构筑具有掺杂氧化铈薄层的多层陶瓷膜,同时该策略同样适用于制备掺杂氧化锆基多层结构,用于固体氧化物燃料电池、电解电池和气体传感器。
为实现上述技术目的,本发明采用如下技术方案:
本发明的第一个方面,提供了一种具有氧化物薄层的多层陶瓷膜制备方法,包括:
以萤石型氧化物和钙钛矿型或尖晶石型氧化物为原料制成复合材料,然后,预成型,得到坯体;
将所述坯体的表面与Al2O3接触,进行烧结,即得。
本发明制得了兼具稳定性和氧渗透性能的多层陶瓷膜,且制备方法具有简易、高效、重复性好的特点。
本发明的第二个方面,提供了上述的方法制备的具有氧化物薄层的多层陶瓷膜,所述多层陶瓷膜包括两层或三层结构;
其中,两层结构由单相萤石型CAO或BZO薄层和复合材料层构成;
三层结构包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧复合材料多孔层;或者包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧CAO或BZO薄层。
本发明的第三个方面,提供了上述的多层陶瓷膜在从含氧混合气中选择性分离氧以及用于烃类的催化部分氧化、分解H2O制氢或制备燃料电池中的应用。
本发明的有益效果在于:
(1)与传统的多层陶瓷制备方法不同,本发明方法利用界面诱导相分离策略,将萤石结构氧化物(掺杂氧化铈或氧化锆)和钙钛矿或尖晶石结构氧化物均匀混合得到复合粉末,经过预成型后,与氧化铝进行表面接触(以氧化铝作为界面诱导剂),在一定温度下使原本混合均匀的双相复合材料产生界面相分离,形成双层或三层结构,即得到掺杂氧化铈或氧化锆基多层陶瓷,其中掺杂氧化铈或氧化锆层致密度可调,厚度可调节并且可达到~1微米,各层之间热兼容,没有出现鼓起或分层等现象。
(2)需要特别说明的是,与传统方法将萤石结构氧化物作为薄层原料溅射、喷涂或沉积在支撑层形成多层结构不同,本发明首次发现:可以采用氧化铝作为诱导剂与多相复合陶瓷材料接触,在一定温度下,氧化铝诱导复合陶瓷材料的界面发生相分离,直接得到由氧化物薄层(来源于本体材料)和本体复合材料支撑层构成的多层结构,其中氧化物薄层致密度和厚度易于调节,例如:两层结构由单相萤石型CAO或BZO薄层和本体复合材料层构成;或,三层结构包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧复合材料多孔层;或者包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧CAO或BZO薄层。
(3)本发明提供的萤石型氧化物基多层陶瓷制备方法简单,重复性好,易于规模化放大,突破传统多步法制备工艺。这种多层结构作为混合导体膜时,在含H2、CO2、CH4、H2S苛刻环境下连续稳定工作超过1000个小时,同时兼具优异的氧离子传输能力,作为新型强韧陶瓷透氧膜稳定高效地进行工业副产氢驱动的水分解制氢。
(4)由本发明提供的一种制备掺杂氧化铈或氧化锆基多层陶瓷简易制备技术有望被用于固体氧化物燃料电池、高温电解池、气体传感器等领域。
(5)本申请的操作方法简单、成本低、具有普适性,易于规模化生产。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例2制得的CGO/(CGO-GSFT)两层结构膜的X射线衍射和扫描电镜表征图。
图2为本发明实施例2提供的60CGO-40GSFT坯体在1350℃保温10个小时后,CGO/(CGO-GSFT)两层结构的扫描电镜表征图。
图3为本发明实施例2提供的CGO-GSFT坯体表面滴涂纳米Al2O3胶体溶液后,经高温烧结后的样品表面SEM-EDX图。
图4为本发明实施2提供的CSO-SSFT中空纤维膜坯体表面喷涂Al2O3胶体溶液后,经过高温烧结后样品表面SEM图。
图5为本发明实施例3制得的CGO/(CGO-GSFT)/(CGO-GSFT)三层陶瓷膜扫描电镜表征图。
图6为本发明实施例4提供的尺寸大于5cm x 5cm的CGO/(CGO-GSFT)两层陶瓷的扫描电镜表征图。
图7为本发明实施例5提供的采用界面自组装策略制备的其他多层陶瓷的X射线衍射图,包含60mol.%Ce0.9Gd0.1O2-δ-40mol.%Gd0.1Sr0.9FeO3-δ(CGO-GdSF)、60mol.%Ce0.9Gd0.1O2-δ-40mol.%SrFe0.8Co0.2O3-δ(CGO-SFCo)、60mol.%Ce0.9Gd0.1O2-δ-40mol.%SrFe0.5Ce0.5O3-δ(CGO-SFCe)、60mol.%Ce0.9Gd0.1O2-δ-40mol.%La0.2Sr0.8Fe0.8Co0.2O3-δ(CGO-LaSFCo)、60mol.%Ce0.9Pr0.1O2-δ-40mol.%Pr0.6Sr0.4FeO3-δ(CPO-PrSF)、60mol.%Ce0.9Pr0.1O2-δ-40mol.%Pr0.6Sr0.4Fe0.8Co0.2O3-δ(CPO-PrSFCo)、60mol.%Ce0.9Sm0.1O2-δ-40mol.%La0.1Sr0.9FeO3-δ(CSO-LaSF)、60mol.%Ce0.9Sm0.1O2-δ-40mol.%Sm0.1Sr0.9FeO3-δ(CSO-SmSF)。
图8为本发明实施例5提供的采用界面自组装策略一步热处理60mol.%Ce0.8Gd0.1O2-δ-40mol.%NiFe2O4(CGO-NFO)和60mol.%Ce0.9Pr0.1O2-δ-40mol.%Mn1.5Co1.5O4(CPO-MCO)复合坯体后样品的上下表面的X射线衍射图和截面扫描电镜图。
图9为本发明实施例6提供的采用界面自组装策略一步热处理Y0.08Zr0.92O2-δ-CoFe2O4(YSZ-CFO)复合坯体后样品的上下表面的X射线衍射图和截面扫描电镜图。
图10为本发明实施例2提供的CGO/(CGO-GSFT)两层陶瓷作为混合导体透氧膜进行空气分离、甲烷氧化和水分解制氢性能测试。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
一种具有氧化物薄层的多层陶瓷膜制备方法和应用,其特征在于,包含以下步骤:将由萤石型氧化物和钙钛矿型或尖晶石型氧化物构成的复合材料预成型,然后在与Al2O3接触条件下高温热处理,即得到萤石型氧化物薄层的多层陶瓷膜。
所述的萤石型氧化物化学组成表达式为Ce1-aAaO2-δ(CAO)或BbZr1-bO2-δ(BZO),其中A选自La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb中的一种或几种,0≤a≤1,δ为氧晶格缺陷数。B选自Y、Sc、Yb、Pr、Bi、Er、Ce中的一种或几种,0≤b≤1,δ为氧晶格缺陷数。
所述的钙钛矿型氧化物化学组成表达式为MmSr1-mFe1-nNnO3-δ(MSFNO),其中M选自La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Ba、Ca、Bi中的一种或几种;N选自Mg、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、Y、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Al、In、W、La、Gd、Ce中的一种或几种;0≤m≤0.5,0≤n≤0.5,δ为氧晶格缺陷数。
所述的尖晶石型氧化物化学组成表达式为X3-yYyO4(XYO),其中X选自Mg、Fe、Co、Ni、Mn、Zn、Cd中的一种或几种,Y选自Al、Fe、Co、Cr、Ga、Mn中的一种或几种,0≤y≤3。
所述复合材料的制备方法包括但不限于球磨混合法、固相反应法、溶胶-凝胶法,只需将粉末混合均匀即可。所述预成型方法包括干压法、相转化法和挤压成型法。
所述Al2O3是Al2O3刚玉片、Al2O3粉末或纳米Al2O3胶体溶液。
所述与Al2O3的接触方式包括预成型复合体放置在Al2O3刚玉片上面,或者夹在两个Al2O3刚玉片中间,或者涂敷纳米Al2O3胶体溶液。
所述具有萤石型氧化物薄层的多层陶瓷膜包括两层或三层结构,层与层之间粘连良好。两层结构由单相萤石型CAO或BZO薄层和复合材料层构成。三层结构包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧复合材料多孔层;或者包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧CAO或BZO薄层。
所述具有萤石型氧化物薄层的多层陶瓷膜用于从含氧混合气中选择性分离氧以及用于烃类的催化部分氧化、分解H2O制氢或燃料电池领域。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。
实施例1:溶胶-凝胶法制备CGO-GSFT复合粉末
按照60mol.%Ce0.9Gd0.1O2-δ-40mol.%Gd0.1Sr0.9Fe0.9Ti0.1O3-δ化学计量比将Ce(NO3)4、Gd(NO3)3、Sr(NO3)2和Fe(NO3)3分别溶于水中,之后向混合液中加入柠檬酸和乙二胺四乙酸(EDTA),其中柠檬酸、乙二胺四乙酸及金属离子的摩尔比为1.5:1:1,搅拌一段时间后,再加入适量氨水调节溶液pH值为9,获得澄清溶液。之后将化学计量比的钛酸四丁酯溶于等摩尔比的乳酸、乙醇和冰醋酸,形成的含Ti离子溶液与之前的澄清溶液混合,形成60CGO-40GSFT前驱体溶液。搅拌一段时间后,将前驱体溶液于120℃脱水处理获得深色溶胶,然后以5℃/min的升温速率从室温升至950℃煅烧10个小时,再以相同的速率降至室温获得混合均匀的60CGO-40GSFT粉体。
实施例2:掺杂CeO2基双层陶瓷膜的制备
称取适量60CGO-40GSFT粉体,150MPa的压力下制得坯体,将坯体放置在Al2O3基底上,从室温升至1450℃,保温10个小时后降至室温,获得(60CGO-40GSFT)/CGO双层结构膜。如图1所示,烧结后的样品上表面呈现立方萤石和立方钙钛矿双相结构,但是与Al2O3基底接触的下表面只有CGO相,扫描电镜发现下表面CGO层致密、厚度大约为5μm,说明与Al2O3基底接触的界面在高温热处理时发生相分离,界面自组装形成(60CGO-40GSFT)/CGO双层结构。
在上述基础上,降低烧结温度至1350℃,与Al2O3基底接触的下表面CGO致密层厚度降低为大约1μm,如图2所示。另外,在CGO-GSFT坯体表面滴涂纳米Al2O3胶体溶液,经过高温烧结后,表面涂敷有Al2O3胶体的一侧出现CGO富集,如图3所示。对于相转化预成型坯体,首先配置一定固含量的铸膜液,经过球磨混合和脱泡后,采用干湿相转化纺丝技术制备预成型的60mol%Ce0.8Sm0.2O2-δ–40mol%Sm0.2Sr0.8Fe0.6Ti0.4O3-δ(CSO-SSFT)中空纤维膜坯体,然后在坯体表面喷涂Al2O3胶体溶液,经高温烧结后,涂敷Al2O3胶体的表面出现CSO富集,如图4所示。以上结果表明,界面富集的萤石型氧化物薄层的厚度可以通过改变烧结条件进行调控,不同氧化铝都能够引起复合材料坯体界面富集。
实施例3:掺杂CeO2基三层陶瓷的制备
按照本发明实施例1制备CGO-GSFT粉末,然后称取适量CGO-GSFT粉末与淀粉、碳纤维球磨混合(质量比为70:24:6),球磨转速为500转/min,球磨后干燥备用。相似地,称取适量CGO-GSFT粉末与淀粉球磨混合(质量比为90:10),球磨转速为500转/min,球磨后干燥备用。
分别称取0.15g CGO-GSFT粉体、0.15g含淀粉的CGO-GSFT粉末、0.9g含淀粉和碳纤维的CGO-GSFT粉末(淀粉和碳纤维在高温时被气化使陶瓷形成多孔结构),按照先后顺序铺覆在磨具中,150MPa的压力下制得坯体,将坯体放置α-Al2O3基底上,经过一次烧结后,获得(CGO-GSFT)/(CGO-GSFT)/CGO三层结构透氧膜。如图5所示,扫描电镜图表明烧结后的样品呈现三层结构,与Al2O3基底接触的表面为CGO致密层,厚度约3μm;与之相连的是致密度较高、厚度大约100μm的CGO-GSFT中间层;与中间层相连的是CGO-GSFT多孔支撑层。通过电镜发现,三层之间粘连良好,没有出现分层、脱落和鼓起现象。
实施例4:大尺寸掺杂CeO2基双层陶瓷的制备
按照本发明实施例1制备CGO-GSFT粉末,称取约20g 60CGO-40GSFT粉体,均匀放置在8cm*10cm的长方形磨具中,70MPa的压力下等待2分钟后制得坯体,将坯体裁剪为~7cm*7cm的正方形坯体,然后将其放在Al2O3粉末上面,从室温升至1450℃,保温10个小时后降至室温,获得大小约5cm*5cm的(CGO-GSFT)/CGO双层结构透氧膜。如图6所示,烧结后的片状样品平整、没有发现弯曲、分层或者裂纹,同时与Al2O3粉末接触的下表面呈现立方萤石结构,CGO层的厚度大约3-5μm。
实施例5:其他CeO2基双层陶瓷膜的制备
按照实施例1中采用溶胶-凝胶法制备CGO-GdSF、CGO-SFCo、CGO-SFCe、CGO-LaSFCo、CPO-PrSF、CPO-PrSFCo、CSO-LaSF、CSO-SmSF八种不同的粉末。分别称取适量复合粉体,150MPa的压力下制得坯体,将坯体放置α-Al2O3基底上,从室温升至1400℃,保温10个小时后降至室温,获得八种氧化铈基双层陶瓷。如图7所示八种坯体经过一步烧结后双层陶瓷的上下表面X射线衍射图,发现八种样品的下表面均只有氧化铈的衍射峰,上表面包含萤石相和钙钛矿相,说明以上八种坯体经过热处理后,与Al2O3接触的一侧均发生界面相分离,自组装形成双层结构。
另外,按照实施例2制备CGO-NFO和CPO-MCO粉末,然后分别称取适量复合粉体,150MPa的压力下制得坯体,将坯体放置Al2O3基底上,从室温升至1400℃,保温10个小时后降至室温。如图8为烧结后样品上下表面X射线衍射图和横截面扫描电镜图,发现CGO-NFO烧结后样品的下表面呈现CGO衍射峰,没有发现NFO尖晶石结构。相似地,CPO-MCO烧结后样品的下表面保存CPO衍射峰,但是MCO衍射峰消失,说明CGO-NFO和CPO-MCO坯体经过热处理后,与Al2O3接触的一侧发生界面相分离形成双层结构。
实施例6 YSZ基多层陶瓷的制备
按照实施例1采用EDTA-柠檬酸法制备Y0.08Zr0.92O2-δ-CoFe2O4(YSZ-CFO)复合粉末,经过压制成型后放置在Al2O3基底上烧结,烧结温度为1450℃,保温时间为5个小时。图9为烧结后样品上下表面X射线衍射图和横截面扫描电镜图,发现YSZ-CFO烧结后样品的下表面呈现YSZ衍射峰,没有发现CFO尖晶石结构,说明界面自组装策略也适用于YSZ-CFO体系。
对上述实施例2获得的多层陶瓷作为混合导体透氧膜进行空气分离、甲烷氧化和水分解制氢性能测试:
将实例2中所制备的(CGO-GSFT)/CGO两层透氧膜密封后放置在高温管式炉中,当温度达到925℃时,将膜两侧分别通入Air和He(F(Air)=30cm3 min-1;F(He)=20cm3 min-1)、Air和CO2(F(Air)=20cm3 min-1;F(CO2)=10cm3 min-1)、Air和CH4(F(Air)=20cm3 min-1;F(CH4)=6cm3 min-1)、H2O-Ar和CH4(F(H2O)=16cm3 min-1;F(Ar)=4cm3 min-1;F(CH4)=6cm3 min-1)、H2O-He和CH4-H2-CO2-N2(F(H2O)=16cm3 min-1;F(He)=4cm3 min-1;F(CH4)=4cm3 min-1;F(H2)=6cm3min-1;F(CO2)=1cm3 min-1,F(N2)=2cm3 min-1)、H2O-He和CH4-H2-CO2-N2-H2S(F(H2O)=16cm3min-1;F(He)=4cm3 min-1;F(CH4)=4cm3 min-1;F(H2)=6cm3 min-1;F(CO2)=1cm3 min-1,F(N2)=2cm3 min-1;H2S=37ppm)六种不同的工况下。采用气相色谱仪对透氧膜两侧出口气体在线检测,如图10所示,在超过1000个小时内,透氧膜在以上六种不同工况下的氧渗透通量随时间的变化。随着膜两侧氧分压梯度的增加,CGO/(CGO-GSFT)两层透氧膜的氧渗透透量逐渐增加,在Air/CH4工况下耦合氧分离和甲烷转化反应,氧渗透性能达到0.6cm3 min-1cm-2。另外,当CGO/(CGO-GSFT)透氧膜暴露在模拟焦炉煤气和水蒸汽气氛,透氧膜依然能够连续稳定运行超过700个小时,水分解制氢产率基本稳定在0.8cm3 min-1cm-2,这说明CGO/(CGO-GSFT)透氧膜不仅具有较高的氧渗透性能,同时再次证实了其在苛刻的工作环境下具有优异的稳定性。
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,包括:
以萤石型氧化物和钙钛矿型或尖晶石型氧化物为原料制成复合材料,然后,预成型,得到坯体;
将所述坯体的表面与Al2O3接触,进行烧结,即得。
2.如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述的萤石型氧化物化学组成表达式为Ce1-aAaO2-δ或BbZr1-bO2-δ,其中A选自La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb中的一种或几种,0≤a≤1,δ为氧晶格缺陷数;B选自Y、Sc、Yb、Pr、Bi、Er、Ce中的一种或几种,0≤b≤1,δ为氧晶格缺陷数。
3.如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述的钙钛矿型氧化物化学组成表达式为MmSr1-mFe1-nNnO3-δ,其中M选自La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Ba、Ca、Bi中的一种或几种;N选自Mg、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、Y、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Al、In、W、La、Gd、Ce中的一种或几种;0≤m≤0.5,0≤n≤0.5,δ为氧晶格缺陷数。
4.如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述的尖晶石型氧化物化学组成表达式为X3-yYyO4,其中X选自Mg、Fe、Co、Ni、Mn、Zn、Cd中的一种或几种,Y选自Al、Fe、Co、Cr、Ga、Mn中的一种或几种,0≤y≤3。
5.如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述复合材料的制备方法包括球磨混合法、固相反应法或溶胶-凝胶法。
6.如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述预成型方法包括干压法、相转化法和挤压成型法。
7.如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述坯体的表面与Al2O3接触的具体方式为将胚体放置在Al2O3刚玉片上面,或者夹在两个Al2O3刚玉片中间,或者涂敷纳米Al2O3胶体溶液。
8.如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述Al2O3是Al2O3刚玉片、Al2O3粉末或纳米Al2O3胶体溶液。
9.权利要求1-8任一项所述的方法制备的具有氧化物薄层的多层陶瓷膜,其特征在于,所述多层陶瓷膜包括两层或三层结构;
优选地,两层结构由单相萤石型CAO或BZO薄层和复合材料层构成;
或,三层结构包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧复合材料多孔层;或者包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧CAO或BZO薄层。
10.权利要求9所述的多层陶瓷膜在从含氧混合气中选择性分离氧以及用于烃类的催化部分氧化、分解H2O制氢或制备燃料电池中的应用。
CN202210044306.1A 2022-01-14 2022-01-14 一种具有氧化物薄层的多层陶瓷膜制备方法和应用 Active CN114349508B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210044306.1A CN114349508B (zh) 2022-01-14 2022-01-14 一种具有氧化物薄层的多层陶瓷膜制备方法和应用
PCT/CN2022/091517 WO2023134092A1 (zh) 2022-01-14 2022-05-07 一种具有氧化物薄层的多层陶瓷膜制备方法和应用
EP22919732.2A EP4393898A1 (en) 2022-01-14 2022-05-07 Preparation method for multilayer ceramic membrane having oxide thin layer, and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210044306.1A CN114349508B (zh) 2022-01-14 2022-01-14 一种具有氧化物薄层的多层陶瓷膜制备方法和应用

Publications (2)

Publication Number Publication Date
CN114349508A true CN114349508A (zh) 2022-04-15
CN114349508B CN114349508B (zh) 2022-11-29

Family

ID=81091176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210044306.1A Active CN114349508B (zh) 2022-01-14 2022-01-14 一种具有氧化物薄层的多层陶瓷膜制备方法和应用

Country Status (3)

Country Link
EP (1) EP4393898A1 (zh)
CN (1) CN114349508B (zh)
WO (1) WO2023134092A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920549A (zh) * 2022-05-30 2022-08-19 东南大学 一种以前驱液为粘结剂制备氧化物陶瓷纳米纤维膜的方法
CN115714194A (zh) * 2022-12-01 2023-02-24 中国科学院青岛生物能源与过程研究所 一种具有电解质薄层的固体氧化物半电池及其制备方法
CN116283309A (zh) * 2022-12-07 2023-06-23 中国科学院青岛生物能源与过程研究所 一种具有双保护层的陶瓷透氧膜及其制备方法与应用
WO2023134092A1 (zh) * 2022-01-14 2023-07-20 中国科学院青岛生物能源与过程研究所 一种具有氧化物薄层的多层陶瓷膜制备方法和应用
CN116514549A (zh) * 2023-05-05 2023-08-01 上海大学 一种三相混合导体透氧膜材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198213A (zh) * 1995-09-29 1998-11-04 松下电器产业株式会社 气体传感器及其制造工艺
CN101733048A (zh) * 2009-12-25 2010-06-16 中国科学技术大学 用于气相氧化反应的中空纤维膜反应器及其制备和应用
CN113332863A (zh) * 2021-07-09 2021-09-03 辽宁石油化工大学 一种具有高表面催化活性双相透氧膜的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514314B2 (en) * 2000-12-04 2003-02-04 Praxair Technology, Inc. Ceramic membrane structure and oxygen separation method
ES2331828B2 (es) * 2008-06-27 2011-08-08 Universidad Politecnica De Valencia Capa catalitica para la activacion de oxigeno sobre electrolitos solidos ionicos a alta temperatura.
CN103272488B (zh) * 2013-05-23 2015-10-28 南京工业大学 多层复合陶瓷氧渗透膜及其制备和应用
CN114349508B (zh) * 2022-01-14 2022-11-29 中国科学院青岛生物能源与过程研究所 一种具有氧化物薄层的多层陶瓷膜制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198213A (zh) * 1995-09-29 1998-11-04 松下电器产业株式会社 气体传感器及其制造工艺
CN101733048A (zh) * 2009-12-25 2010-06-16 中国科学技术大学 用于气相氧化反应的中空纤维膜反应器及其制备和应用
CN113332863A (zh) * 2021-07-09 2021-09-03 辽宁石油化工大学 一种具有高表面催化活性双相透氧膜的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023134092A1 (zh) * 2022-01-14 2023-07-20 中国科学院青岛生物能源与过程研究所 一种具有氧化物薄层的多层陶瓷膜制备方法和应用
CN114920549A (zh) * 2022-05-30 2022-08-19 东南大学 一种以前驱液为粘结剂制备氧化物陶瓷纳米纤维膜的方法
CN115714194A (zh) * 2022-12-01 2023-02-24 中国科学院青岛生物能源与过程研究所 一种具有电解质薄层的固体氧化物半电池及其制备方法
CN116283309A (zh) * 2022-12-07 2023-06-23 中国科学院青岛生物能源与过程研究所 一种具有双保护层的陶瓷透氧膜及其制备方法与应用
CN116514549A (zh) * 2023-05-05 2023-08-01 上海大学 一种三相混合导体透氧膜材料及其制备方法

Also Published As

Publication number Publication date
EP4393898A1 (en) 2024-07-03
WO2023134092A1 (zh) 2023-07-20
CN114349508B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN114349508B (zh) 一种具有氧化物薄层的多层陶瓷膜制备方法和应用
EP2183043B1 (en) Membrane with a stable nanosized microstructure and method for producing same
Zhu et al. Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors
Kiebach et al. A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment
JP4302981B2 (ja) 少なくとも2つの相を含む伝導性材料
Zhu et al. Relationship between homogeneity and oxygen permeability of composite membranes
CN101795756B (zh) 廉价的薄层氧膜
WO2006061390A1 (en) Catalytic membrane reactor
CN102593480B (zh) 固体氧化物燃料电池掺杂钛酸盐支撑固体电解质多层膜及其制备方法
Danilov et al. Fundamental understanding and applications of protonic Y‐and Yb‐coped Ba (Ce, Zr) O3 perovskites: state‐of‐the‐art and perspectives
JP2004513867A5 (zh)
Wang et al. A review of progress in proton ceramic electrochemical cells: material and structural design, coupled with value-added chemicals production
CA2990603A1 (en) Dual function composite oxygen transport membrane
KR20100108957A (ko) 고체산화물 연료전지용 전해질 및 그 제조방법, 상기 전해질을 이용한 단위 전지 및 그 제조방법
CN113506905A (zh) 一种质子传导型半电池、质子传导型固体氧化物电池及其制备方法和应用
EP2030668A1 (en) Robust mixed conducting membrane structure
CN113332863B (zh) 一种具有高表面催化活性双相透氧膜的制备方法
Tan et al. Effect of Co2O3 as sintering aid on perovskite BaCe0. 8Y0. 2O3-δ proton conductive membrane for hydrogen separation
Kovalevsky et al. Processing and characterization of La0. 5Sr0. 5FeO3-supported Sr1− xFe (Al) O3–SrAl2O4 composite membranes
JP2008047445A (ja) 固体電解質セラミックス膜の製造方法、及び電気化学的デバイス
KR20140038795A (ko) 복합혼합전도층이 코팅된 지지체 및 복합혼합전도층이 코팅된 지지체의 제조방법
JP4993496B2 (ja) 酸素分離膜、及びその製造方法
CN111085112B (zh) 一种梯度多孔自支撑对称陶瓷膜的制备方法及其应用
KR20150028545A (ko) 지지체식 전기화학셀의 제조방법 및 이에 의해 제조된 전기화학셀
KR20220139612A (ko) 고투과성 산소 투과 분리막 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant