WO2023134092A1 - 一种具有氧化物薄层的多层陶瓷膜制备方法和应用 - Google Patents

一种具有氧化物薄层的多层陶瓷膜制备方法和应用 Download PDF

Info

Publication number
WO2023134092A1
WO2023134092A1 PCT/CN2022/091517 CN2022091517W WO2023134092A1 WO 2023134092 A1 WO2023134092 A1 WO 2023134092A1 CN 2022091517 W CN2022091517 W CN 2022091517W WO 2023134092 A1 WO2023134092 A1 WO 2023134092A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
multilayer ceramic
oxide
thin layer
preparing
Prior art date
Application number
PCT/CN2022/091517
Other languages
English (en)
French (fr)
Inventor
江河清
贺广虎
Original Assignee
中国科学院青岛生物能源与过程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院青岛生物能源与过程研究所 filed Critical 中国科学院青岛生物能源与过程研究所
Priority to EP22919732.2A priority Critical patent/EP4393898A1/en
Publication of WO2023134092A1 publication Critical patent/WO2023134092A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a preparation method and application of a multilayer ceramic membrane with a thin oxide layer.
  • the prepared multilayer ceramic membrane can be used as a mixed conductor oxygen permeable membrane with both stability and oxygen permeability, and can be used to purify industrial by-products Hydrogen can be used to obtain hydrogen gas.
  • the simple preparation technology of multilayer ceramics involved in the present invention is expected to be used in fields such as solid oxide fuel cells, high-temperature electrolytic cells, and gas sensors.
  • Multilayer ceramics are the basic structures of many energy conversion and electronic devices.
  • solid oxide fuel cells (SOFC) and electrolytic cells (SOEC) are mainly composed of electrolyte layer, negative electrode (cathode) layer and positive electrode (anode) layer;
  • ceramic capacitors mainly include three layers: ceramic dielectric, inner electrode and outer electrode;
  • the oxygen sensor is composed of a solid electrolyte and diffusion electrode layers on both sides;
  • the ceramic catalytic membrane reactor mainly consists of a porous support layer, a dense separation layer and a porous catalytic layer.
  • controllable preparation of multilayer ceramics is the key technology for the wide application of the above-mentioned energy conversion and electronic devices, especially multilayer ceramics with dense thin layers, good compatibility between layers, and thermochemical stability are high-efficiency and low-cost energy Key points and difficult points of conversion and electronic devices.
  • the hydrogen energy industry is a strategic and leading emerging industry, representing an important direction of future technological change and energy development.
  • Obtaining fuel hydrogen by purifying industrial by-product hydrogen is a relatively realistic and cheap hydrogen production method at this stage, which is conducive to reducing the operating cost of hydrogen fuel cells.
  • the existence of trace CO impurities in fuel hydrogen can quickly poison fuel cell catalysts, so the development of CO-free hydrogen (CO ⁇ 0.2ppm) preparation technology has become an important direction of hydrogen energy research.
  • the oxygen-ion-electron mixed conductor oxygen-permeable membrane has 100% selectivity for oxygen transmission
  • the high-temperature water decomposition reaction and the industrial by-product hydrogen combustion reaction are coupled on both sides of the mixed conductor oxygen-permeable membrane, and the combustion of low-purity hydrogen can be Promote the in-situ removal of oxygen generated by water splitting on the other side of the ceramic membrane, thereby efficiently promoting water splitting and directly obtaining CO-free hydrogen.
  • traditional cobalt-based and iron-based oxygen permeable membranes are difficult to achieve both stability and oxygen permeability.
  • the common processes for preparing multilayer ceramics include tape casting-lamination-sintering, dry pressing-coating-sintering, magnetron sputtering, spray pyrolysis, etc. These methods usually require multi-step heat treatment, special equipment, tedious process, time-consuming, and inconvenient operation.
  • the layers are easily delaminated and peeled off during high-temperature heat treatment, which restricts the wide application of oxygen-permeable membranes in the field of by-product hydrogen purification.
  • the present invention proposes the use of an interface reaction induction strategy to construct a multilayer ceramic membrane with a thin layer of doped cerium oxide, and this strategy is also applicable to Fabrication of doped zirconia-based multilayer structures for use in solid oxide fuel cells, electrolysis cells, and gas sensors.
  • a first aspect of the present invention provides a method for preparing a multilayer ceramic film with an oxide thin layer, comprising:
  • the surface of the green body is contacted with Al 2 O 3 and sintered to obtain.
  • the invention prepares a multilayer ceramic membrane with both stability and oxygen permeability, and the preparation method has the characteristics of simplicity, high efficiency and good repeatability.
  • a second aspect of the present invention provides a multilayer ceramic film with a thin oxide layer prepared by the above method, the multilayer ceramic film includes a two-layer or three-layer structure;
  • the two-layer structure is composed of a single-phase fluorite-type CAO or BZO thin layer and a composite material layer;
  • the three-layer structure includes a thin layer of single-phase CAO or BZO on one side, a dense layer of composite material in the middle, and a porous layer of composite material on the other side; or a thin layer of single-phase CAO or BZO on one side, a dense layer of composite material in the middle, and CAO on the other side. or BZO thin layer.
  • the third aspect of the present invention provides the application of the above-mentioned multilayer ceramic membrane in the selective separation of oxygen from the oxygen-containing mixed gas and in the catalytic partial oxidation of hydrocarbons, the decomposition of H 2 O to produce hydrogen or the preparation of fuel cells .
  • the method of the present invention utilizes an interface-induced phase separation strategy to homogenize fluorite-structured oxides (doped with ceria or zirconia) and perovskite or spinel-structured oxides
  • Composite powder is obtained by mixing, and after preforming, it is in surface contact with alumina (using alumina as an interface inducer), and at a certain temperature, the interface phase separation of the originally mixed dual-phase composite material occurs, forming a double or triple layer Structure, that is, doped ceria or zirconia-based multilayer ceramics, in which the doped ceria or zirconia layer has adjustable density, adjustable thickness and can reach ⁇ 1 micron, thermal compatibility between layers, no drumming rise or stratification.
  • the present invention finds for the first time that aluminum oxide can be used as an inducer and When the multi-phase composite ceramic material is in contact, at a certain temperature, alumina induces phase separation at the interface of the composite ceramic material, and a multilayer structure composed of a thin oxide layer (derived from the bulk material) and a bulk composite support layer is directly obtained, wherein The density and thickness of the thin oxide layer are easy to adjust, for example: a two-layer structure consists of a single-phase fluorite-type CAO or BZO thin layer and a bulk composite layer; or, a three-layer structure includes a single-phase CAO or BZO thin layer on one side, A dense layer of composite material in the middle, a porous layer of composite material on the other side; or a thin layer of single-phase CAO or BZO on one side,
  • the preparation method of the fluorite-type oxide-based multilayer ceramic provided by the present invention is simple, has good repeatability, is easy to scale up, and breaks through the traditional multi-step preparation process.
  • this multilayer structure When this multilayer structure is used as a mixed conductor film, it can work continuously and stably for more than 1000 hours in the harsh environment containing H 2 , CO 2 , CH 4 , and H 2 S , and has excellent oxygen ion transport ability.
  • the ceramic oxygen permeable membrane can stably and efficiently carry out water splitting hydrogen production driven by industrial by-product hydrogen.
  • a simple preparation technology for preparing doped ceria or zirconia-based multilayer ceramics provided by the present invention is expected to be used in fields such as solid oxide fuel cells, high-temperature electrolytic cells, and gas sensors.
  • the operation method of the present application is simple, low in cost, universal, and easy for large-scale production.
  • Fig. 1 is the X-ray diffraction and scanning electron microscope characterization diagram of the CGO/(CGO-GSFT) two-layer structure film prepared in Example 2 of the present invention.
  • Fig. 2 is a scanning electron microscope characterization diagram of the CGO/(CGO-GSFT) two-layer structure of the 60CGO-40GSFT green body provided by Example 2 of the present invention after being incubated at 1350°C for 10 hours.
  • Fig. 3 is a SEM-EDX image of the surface of the CGO-GSFT green body provided in Example 2 of the present invention after drip-coating the nano-Al 2 O 3 colloidal solution and sintering at a high temperature.
  • Fig. 4 is a SEM image of the surface of the CSO-SSFT hollow fiber membrane body provided by Embodiment 2 of the present invention after spraying Al 2 O 3 colloid solution on the surface and sintering at high temperature.
  • Fig. 5 is a scanning electron microscope characterization diagram of the CGO/(CGO-GSFT)/(CGO-GSFT) three-layer ceramic membrane prepared in Example 3 of the present invention.
  • Figure 6 is a scanning electron microscope characterization diagram of a CGO/(CGO-GSFT) two-layer ceramic with a size greater than 5cm x 5cm provided by Example 4 of the present invention.
  • Figure 7 is the X-ray diffraction pattern of other multilayer ceramics prepared by the interfacial self-assembly strategy provided in Example 5 of the present invention, containing 60mol.% Ce 0.9 Gd 0.1 O 2- ⁇ -40mol.% Gd 0.1 Sr 0.9 FeO 3- ⁇ (CGO-GdSF), 60mol.% Ce 0.9 Gd 0.1 O 2- ⁇ -40mol.% SrFe 0.8 Co 0.2 O 3- ⁇ (CGO-SFCo), 60mol.% Ce 0.9 Gd 0.1 O 2- ⁇ -40mol.
  • CPO-PrSF %Ce 0.9 Pr 0.1 O 2- ⁇ -40mol.% Pr 0.6 Sr 0.4 FeO 3- ⁇
  • CPO-PrSFCo 60mol.% Ce 0.9 Pr 0.1 O 2- ⁇ -40mol.% Pr 0.6 Sr 0.4 Fe 0.8 Co 0.2 O 3- ⁇
  • CPO-PrSFCo 60mol.% Ce 0.9 Sm 0.1 O 2- ⁇ -40mol.% La 0.1 Sr 0.9 FeO 3- ⁇
  • CSO-LaSF 60mol.% Ce 0.9 Sm 0.1 O 2- ⁇ -40 mol.% Sm 0.1 Sr 0.9 FeO 3- ⁇
  • Figure 8 shows the one-step heat treatment of 60mol.% Ce 0.8 Gd 0.1 O 2- ⁇ -40mol.% NiFe 2 O 4 (CGO-NFO) and 60mol.% Ce 0.9 Pr 0.1 O provided by Example 5 of the present invention using the interface self-assembly strategy 2- ⁇ -40mol.% Mn 1.5 Co 1.5 O 4 (CPO-MCO) composite green body X-ray diffraction pattern and cross-sectional scanning electron microscope image of the upper and lower surfaces of the sample.
  • CGO-NFO interface self-assembly strategy
  • CPO-MCO interface self-assembly strategy
  • Figure 9 is the X-ray diffraction pattern and cross-section of the upper and lower surfaces of the sample after one-step heat treatment of the Y 0.08 Zr 0.92 O 2- ⁇ -CoFe 2 O 4 (YSZ-CFO) composite body provided by the interface self-assembly strategy provided in Example 6 of the present invention SEM image.
  • YSZ-CFO Y 0.08 Zr 0.92 O 2- ⁇ -CoFe 2 O 4
  • Figure 10 shows the CGO/(CGO-GSFT) two-layer ceramic provided by Example 2 of the present invention as a mixed conductor oxygen permeable membrane for air separation, methane oxidation and water splitting hydrogen production performance tests.
  • a preparation method and application of a multilayer ceramic film with a thin oxide layer characterized in that it comprises the following steps: preforming a composite material composed of a fluorite-type oxide and a perovskite-type or spinel-type oxide, Then heat treatment at high temperature under the condition of contact with Al 2 O 3 to obtain a multi-layer ceramic film with a thin layer of fluorite oxide.
  • the chemical composition expression of the fluorite type oxide is Ce 1-a A a O 2- ⁇ (CAO) or B b Zr 1-b O 2- ⁇ (BZO), wherein A is selected from La, Pr, Nd , one or more of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, 0 ⁇ a ⁇ 1, ⁇ is the number of oxygen lattice defects.
  • B is selected from one or more of Y, Sc, Yb, Pr, Bi, Er, Ce, 0 ⁇ b ⁇ 1, and ⁇ is the number of oxygen lattice defects.
  • the chemical composition expression of the perovskite oxide is M m Sr 1-m Fe 1- n N n O 3- ⁇ (MSFNO), wherein M is selected from La, Pr, Nd, Pm, Sm, Eu, One or more of Gd, Tb, Dy, Ho, Er, Tm, Yb, Ba, Ca, Bi; N is selected from Mg, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, One or more of Zn, Zr, Y, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Al, In, W, La, Gd, Ce; 0 ⁇ m ⁇ 0.5, 0 ⁇ n ⁇ 0.5 , ⁇ is the number of oxygen lattice defects.
  • M is selected from La, Pr, Nd, Pm, Sm, Eu, One or more of Gd, Tb, Dy, Ho, Er, Tm, Yb, Ba, Ca, Bi
  • N is selected from Mg, Ca, Sc, Ti, V, Cr, Mn, Co
  • the chemical composition expression of the spinel oxide is X 3-y Y y O 4 (XYO), wherein X is selected from one or more of Mg, Fe, Co, Ni, Mn, Zn, and Cd , Y is selected from one or more of Al, Fe, Co, Cr, Ga, Mn, 0 ⁇ y ⁇ 3.
  • the preparation method of the composite material includes but not limited to ball mill mixing method, solid phase reaction method, sol-gel method, and only needs to mix the powders uniformly.
  • the preforming method includes dry pressing method, phase inversion method and extrusion molding method.
  • the Al 2 O 3 is Al 2 O 3 corundum sheet, Al 2 O 3 powder or nano Al 2 O 3 colloidal solution.
  • the contact method with Al 2 O 3 includes placing the preformed composite on the Al 2 O 3 corundum sheet, or being sandwiched between two Al 2 O 3 corundum sheets, or coating nano-Al 2 O 3 colloidal solution.
  • the multi-layer ceramic membrane with thin fluorite oxide layer has a two-layer or three-layer structure, and the adhesion between layers is good.
  • the two-layer structure consists of a single-phase fluorite-type CAO or BZO thin layer and a composite material layer.
  • the three-layer structure includes a thin layer of single-phase CAO or BZO on one side, a dense layer of composite material in the middle, and a porous layer of composite material on the other side; or a thin layer of single-phase CAO or BZO on one side, a dense layer of composite material in the middle, and CAO on the other side. or BZO thin layer.
  • the multi-layer ceramic membrane with a fluorite-type oxide thin layer is used for selectively separating oxygen from oxygen-containing mixed gas, and for catalytic partial oxidation of hydrocarbons, decomposition of H 2 O to produce hydrogen, or the field of fuel cells.
  • Ce( NO 3 ) 4 , Gd ( NO 3 ) 3 , Sr ( NO 3 ) 2 and Fe(NO 3 ) 3 were dissolved in water respectively, and then citric acid and ethylenediaminetetraacetic acid (EDTA) were added to the mixture, wherein the molar ratio of citric acid, ethylenediaminetetraacetic acid and metal ions was 1.5: 1:1, after stirring for a period of time, add an appropriate amount of ammonia water to adjust the pH value of the solution to 9, and obtain a clear solution.
  • EDTA ethylenediaminetetraacetic acid
  • the stoichiometric ratio of tetrabutyl titanate was dissolved in equimolar ratio of lactic acid, ethanol and glacial acetic acid, and the resulting Ti ion-containing solution was mixed with the previous clear solution to form the 60CGO-40GSFT precursor solution.
  • the precursor solution was dehydrated at 120°C to obtain a dark sol, and then calcined at a rate of 5°C/min from room temperature to 950°C for 10 hours, and then lowered to room temperature at the same rate to obtain a mixed Uniform 60CGO-40GSFT powder.
  • 60CGO-40GSFT powder prepare the green body under the pressure of 150MPa, place the green body on the Al 2 O 3 substrate, raise it from room temperature to 1450°C, keep it warm for 10 hours and then lower it to room temperature, and obtain (60CGO -40GSFT)/CGO double layer structure membrane.
  • the upper surface of the sintered sample presents a cubic fluorite and cubic perovskite dual-phase structure, but the lower surface in contact with the Al 2 O 3 substrate has only the CGO phase.
  • the sintering temperature was reduced to 1350°C, and the thickness of the CGO dense layer on the lower surface in contact with the Al 2 O 3 substrate was reduced to about 1 ⁇ m, as shown in Figure 2 .
  • the nanometer Al 2 O 3 colloidal solution was drip-coated on the surface of the CGO-GSFT green body, and after high-temperature sintering, CGO enrichment appeared on the side coated with Al 2 O 3 colloid, as shown in Figure 3 .
  • the phase inversion preform body For the phase inversion preform body, first configure the casting solution with a certain solid content, after ball milling and degassing, the preform 60mol% Ce 0.8 Sm 0.2 O 2- ⁇ –40mol is prepared by dry-wet phase inversion spinning technology %Sm 0.2 Sr 0.8 Fe 0.6 Ti 0.4 O 3- ⁇ (CSO-SSFT) hollow fiber membrane body, and then spray Al 2 O 3 colloid solution on the body surface, after high temperature sintering, coating Al 2 O 3 colloid CSO enrichment appeared on the surface, as shown in Figure 4.
  • CSO-SSFT dry-wet phase inversion spinning technology
  • Al 2 O 3 colloid solution on the body surface, after high temperature sintering, coating Al 2 O 3 colloid CSO enrichment appeared on the surface, as shown in Figure 4.
  • the above results show that the thickness of the interface-enriched fluorite-type oxide thin layer can be adjusted by changing the sintering conditions, and different aluminas can cause interface enrichment of the composite green body
  • CGO-GSFT powder was prepared according to Example 1 of the present invention, and then an appropriate amount of CGO-GSFT powder was weighed and mixed with starch and carbon fiber for ball milling (mass ratio: 70:24:6). The ball milling speed was 500 rpm, and then dried for later use. Similarly, an appropriate amount of CGO-GSFT powder was weighed and mixed with starch ball mill (mass ratio: 90:10), the milling speed was 500 rpm, and dried for later use after ball milling.
  • the surface in contact with the Al 2 O 3 substrate is a dense layer of CGO with a thickness of about 3 ⁇ m;
  • the CGO-GSFT porous support layer is connected to the intermediate layer. It was found by electron microscope that the adhesion between the three layers was good, and there was no delamination, shedding and swelling.
  • CGO-GSFT powder according to Example 1 of the present invention, weigh about 20g of 60CGO-40GSFT powder, place it evenly in a rectangular grinding tool of 8cm*10cm, and wait for 2 minutes under a pressure of 70MPa to prepare a green body. Cut it into a square green body of ⁇ 7cm*7cm, then place it on the Al 2 O 3 powder, raise it from room temperature to 1450°C, keep it warm for 10 hours and then cool it down to room temperature, and obtain a (CGO- GSFT)/CGO double layer structure oxygen permeable membrane. As shown in Figure 6, the sintered flake sample is flat, without bending, delamination or cracks, and the lower surface in contact with the Al 2 O 3 powder presents a cubic fluorite structure, and the thickness of the CGO layer is about 3-5 ⁇ m.
  • CGO-GdSF, CGO-SFCo, CGO-SFCe, CGO-LaSFCo, CPO-PrSF, CPO-PrSFCo, CSO-LaSF, and CSO-SmSF were prepared according to the sol-gel method in Example 1. Weigh an appropriate amount of composite powder respectively, and prepare green body under the pressure of 150MPa, place the green body on the ⁇ -Al 2 O 3 substrate, raise from room temperature to 1400°C, keep it warm for 10 hours and then lower it to room temperature, and obtain eight kinds of Cerium oxide-based double-layer ceramics.
  • the X-ray diffraction patterns of the upper and lower surfaces of the double-layer ceramics after one-step sintering of the eight green bodies show that the lower surfaces of the eight samples only have diffraction peaks of cerium oxide, and the upper surfaces contain fluorite phases and perovskite phases. , indicating that after the heat treatment of the above eight types of green bodies, the interface phase separation occurred on the side in contact with Al 2 O 3 , and self-assembled to form a double-layer structure.
  • CGO-NFO and CPO-MCO powders were prepared according to Example 2, and then an appropriate amount of composite powders were weighed, and a green body was prepared under a pressure of 150 MPa. The green body was placed on an Al 2 O 3 substrate and raised from room temperature to 1400°C, keep warm for 10 hours and then drop to room temperature.
  • Figure 8 shows the X-ray diffraction pattern of the upper and lower surfaces of the sintered sample and the cross-sectional scanning electron microscope image. It is found that the lower surface of the sample after CGO-NFO sintering shows CGO diffraction peaks, and no NFO spinel structure is found.
  • the lower surface of the CPO-MCO sintered sample retains the CPO diffraction peak, but the MCO diffraction peak disappears, indicating that the interface phase separation occurs on the side of the CGO-NFO and CPO-MCO body that is in contact with Al 2 O 3 after heat treatment Form a double layer structure.
  • Embodiment 6 Preparation of YSZ-based multilayer ceramics
  • Y 0.08 Zr 0.92 O 2- ⁇ -CoFe 2 O 4 (YSZ-CFO) composite powder was prepared by EDTA-citric acid method. °C, and the holding time is 5 hours.
  • Figure 9 is the X-ray diffraction pattern of the upper and lower surfaces of the sintered sample and the scanning electron microscope image of the cross section. It is found that the lower surface of the sample after YSZ-CFO sintering shows a YSZ diffraction peak, and no CFO spinel structure is found, indicating that the interface self-assembly strategy is also applicable to YSZ-CFO system.
  • the multilayer ceramic obtained in the above-mentioned embodiment 2 is used as a mixed conductor oxygen-permeable membrane to perform air separation, methane oxidation and water splitting hydrogen production performance tests:
  • a gas chromatograph was used to detect the gas at the outlets on both sides of the oxygen permeable membrane online.
  • the oxygen permeation flux of the oxygen permeable membrane under the above six different working conditions changed with time over a period of more than 1000 hours.
  • the oxygen permeation rate of the CGO/(CGO-GSFT) two -layer oxygen permeable membrane gradually increases. The performance reaches 0.6cm 3 min -1 cm -2 .
  • the oxygen-permeable membrane when the CGO/(CGO-GSFT) oxygen-permeable membrane is exposed to the simulated coke oven gas and water vapor atmosphere, the oxygen-permeable membrane can still operate continuously and stably for more than 700 hours, and the hydrogen production rate of water splitting is basically stable at 0.8cm 3 min -1 cm -2 , which shows that the CGO/(CGO-GSFT) oxygen permeable membrane not only has high oxygen permeability, but also confirms its excellent stability in harsh working environments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种具有氧化物薄层的多层陶瓷膜制备方法和应用,将由萤石型氧化物和钙钛矿型或尖晶石型氧化物构成的复合材料预成型,然后在与Al 2O 3接触条件下高温热处理,即得到具有萤石型氧化物薄层的多层陶瓷膜。其中萤石型氧化物薄层的致密度可调,厚度可控且最薄可达约1微米,多层陶瓷各层之间兼容良好,无剥离或分层现象。另外,本发明提供的多层陶瓷制备工艺简易,重复性好,易于规模化放大。这种多层陶瓷作为混合导体膜时,在含H 2、CO 2、CH 4、H 2S气氛下连续稳定工作超过1000个小时,作为透氧膜稳定高效地进行工业副产氢驱动水分解制氢。另外,本发明提供的多层陶瓷制备技术有望被用于固体氧化物燃料电池、高温电解电池、气体传感器等领域。

Description

一种具有氧化物薄层的多层陶瓷膜制备方法和应用 技术领域
本发明涉及一种具有氧化物薄层的多层陶瓷膜制备方法和应用,所制备的多层陶瓷膜可作为混合导体透氧膜兼具稳定性和透氧性能,被用于提纯工业副产氢获取氢气,此外本发明涉及的多层陶瓷简易制备技术有望被用于固体氧化物燃料电池、高温电解池、气体传感器等领域。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
多层陶瓷是许多能量转换和电子器件的基本结构。例如,固体氧化物燃料电池(SOFC)和电解电池(SOEC)主要由电解质层、负极(阴极)层和正极(阳极)层构成;陶瓷电容器主要包括三层:陶瓷介质、内电极和外电极;氧气传感器由固态电解质和两侧扩散电极层构成;陶瓷催化膜反应器主要包括多孔支撑层、致密分离层和多孔催化层构成。因此,多层陶瓷的可控制备是上述能量转换和电子器件广泛应用的关键技术,尤其是具有致密薄层、层与层之间兼容性良好、热化学稳定的多层陶瓷是高效低成本能量转换和电子器件的重点和难点。
下面以陶瓷催化膜反应器在氢气提纯领域的应用为例详细介绍多层陶瓷技术的发展现状和面临的问题。氢能产业是具有战略性和先导性的新兴产业,代表未来技术变革和能源发展的重要方向。通过提纯工业副产氢获取燃料氢气是现阶段 比较现实和价廉的制氢方式,有利于降低氢燃料电池的运行成本。燃料氢气中微量CO杂质的存在能够快速毒化燃料电池催化剂,因此开发不含CO的氢气(CO≦0.2ppm)制备技术成为氢能研究的一个重要方向。
由于氧离子-电子混合导体透氧膜对氧气的传输具有100%的选择性,将高温水分解反应和工业副产氢燃烧反应耦合在混合导体透氧膜的两侧,低纯氢气的燃烧可以促进陶瓷膜另一侧水分解所生成氧气的原位移除,从而可以高效地促进水分解,直接获得不含CO的氢气。但是传统钴基、铁基透氧膜难以兼具稳定性和透氧性能。尤其在富含H 2、CH 4、CO等还原性气体或CO 2和H 2S酸性气氛下,膜材料中的Co或Fe离子易于被深度还原或者膜表面形成碳酸盐或硫酸盐,致使膜结构降解,透氧性能和机械强度降低。为此,有学者设计开发出不含Co或Fe的掺杂CeO 2(Ce 0.9Gd 0.1O 2-δ、Pr xCe 0.9-xGd 0.1O 1.95-δ),它们在低氧分压气氛下表现出氧离子-电子混合导电性,而且在含H 2、CO 2、CO、H 2S等苛刻气氛中具有优异的稳定性,有望作为透氧膜耦合水分解和工业副产氢氧化制取不含CO的氢气。
为了提高氢气的产率,要求尽可能减小掺杂CeO 2致密层的厚度,因此将CeO 2薄层担载在支撑层上形成多层非对称结构透氧膜是关键核心技术。目前常见制备多层陶瓷的工艺包括流延-层压-烧结、干压-涂敷-烧结、磁控溅射、喷雾热解等。这些方法通常需要经历多步热处理、特殊的设备,工艺繁琐、耗时、操作不便。另外,由于不同层之间的热化学膨胀系数不同,高温热处理时层与层之间易分层剥离,制约透氧膜在副产氢提纯领域的广泛应用。
发明内容
本发明针对常见混合导体膜在氢气提纯条件下不能兼具稳定性和氧渗透性能的难题,提出采用界面反应诱导策略构筑具有掺杂氧化铈薄层的多层陶瓷膜, 同时该策略同样适用于制备掺杂氧化锆基多层结构,用于固体氧化物燃料电池、电解电池和气体传感器。
为实现上述技术目的,本发明采用如下技术方案:
本发明的第一个方面,提供了一种具有氧化物薄层的多层陶瓷膜制备方法,包括:
以萤石型氧化物和钙钛矿型或尖晶石型氧化物为原料制成复合材料,然后,预成型,得到坯体;
将所述坯体的表面与Al 2O 3接触,进行烧结,即得。
本发明制得了兼具稳定性和氧渗透性能的多层陶瓷膜,且制备方法具有简易、高效、重复性好的特点。
本发明的第二个方面,提供了上述的方法制备的具有氧化物薄层的多层陶瓷膜,所述多层陶瓷膜包括两层或三层结构;
其中,两层结构由单相萤石型CAO或BZO薄层和复合材料层构成;
三层结构包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧复合材料多孔层;或者包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧CAO或BZO薄层。
本发明的第三个方面,提供了上述的多层陶瓷膜在从含氧混合气中选择性分离氧以及用于烃类的催化部分氧化、分解H 2O制氢或制备燃料电池中的应用。
本发明的有益效果在于:
(1)与传统的多层陶瓷制备方法不同,本发明方法利用界面诱导相分离策略,将萤石结构氧化物(掺杂氧化铈或氧化锆)和钙钛矿或尖晶石结构氧化物均匀混合得到复合粉末,经过预成型后,与氧化铝进行表面接触(以氧化铝作为界 面诱导剂),在一定温度下使原本混合均匀的双相复合材料产生界面相分离,形成双层或三层结构,即得到掺杂氧化铈或氧化锆基多层陶瓷,其中掺杂氧化铈或氧化锆层致密度可调,厚度可调节并且可达到~1微米,各层之间热兼容,没有出现鼓起或分层等现象。
(2)需要特别说明的是,与传统方法将萤石结构氧化物作为薄层原料溅射、喷涂或沉积在支撑层形成多层结构不同,本发明首次发现:可以采用氧化铝作为诱导剂与多相复合陶瓷材料接触,在一定温度下,氧化铝诱导复合陶瓷材料的界面发生相分离,直接得到由氧化物薄层(来源于本体材料)和本体复合材料支撑层构成的多层结构,其中氧化物薄层致密度和厚度易于调节,例如:两层结构由单相萤石型CAO或BZO薄层和本体复合材料层构成;或,三层结构包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧复合材料多孔层;或者包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧CAO或BZO薄层。
(3)本发明提供的萤石型氧化物基多层陶瓷制备方法简单,重复性好,易于规模化放大,突破传统多步法制备工艺。这种多层结构作为混合导体膜时,在含H 2、CO 2、CH 4、H 2S苛刻环境下连续稳定工作超过1000个小时,同时兼具优异的氧离子传输能力,作为新型强韧陶瓷透氧膜稳定高效地进行工业副产氢驱动的水分解制氢。
(4)由本发明提供的一种制备掺杂氧化铈或氧化锆基多层陶瓷简易制备技术有望被用于固体氧化物燃料电池、高温电解池、气体传感器等领域。
(5)本申请的操作方法简单、成本低、具有普适性,易于规模化生产。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例2制得的CGO/(CGO-GSFT)两层结构膜的X射线衍射和扫描电镜表征图。
图2为本发明实施例2提供的60CGO-40GSFT坯体在1350℃保温10个小时后,CGO/(CGO-GSFT)两层结构的扫描电镜表征图。
图3为本发明实施例2提供的CGO-GSFT坯体表面滴涂纳米Al 2O 3胶体溶液后,经高温烧结后的样品表面SEM-EDX图。
图4为本发明实施2提供的CSO-SSFT中空纤维膜坯体表面喷涂Al 2O 3胶体溶液后,经过高温烧结后样品表面SEM图。
图5为本发明实施例3制得的CGO/(CGO-GSFT)/(CGO-GSFT)三层陶瓷膜扫描电镜表征图。
图6为本发明实施例4提供的尺寸大于5cm x 5cm的CGO/(CGO-GSFT)两层陶瓷的扫描电镜表征图。
图7为本发明实施例5提供的采用界面自组装策略制备的其他多层陶瓷的X射线衍射图,包含60mol.%Ce 0.9Gd 0.1O 2-δ-40mol.%Gd 0.1Sr 0.9FeO 3-δ(CGO-GdSF)、60mol.%Ce 0.9Gd 0.1O 2-δ-40mol.%SrFe 0.8Co 0.2O 3-δ(CGO-SFCo)、60mol.%Ce 0.9Gd 0.1O 2-δ-40mol.%SrFe 0.5Ce 0.5O 3-δ(CGO-SFCe)、60mol.%Ce 0.9Gd 0.1O 2-δ-40mol.%La 0.2Sr 0.8Fe 0.8Co 0.2O 3-δ(CGO-LaSFCo)、60mol.%Ce 0.9Pr 0.1O 2-δ-40mol.%Pr 0.6Sr 0.4FeO 3-δ(CPO-PrSF)、60mol.%Ce 0.9Pr 0.1O 2-δ-40mol.%Pr 0.6Sr 0.4Fe 0.8Co 0.2O 3-δ(CPO-PrSFCo)、60mol.%Ce 0.9Sm 0.1O 2-δ-40mol.%La 0.1Sr 0.9FeO 3-δ(CSO-LaSF)、60mol.%Ce 0.9Sm 0.1O 2-δ-40mol.%Sm 0.1Sr 0.9FeO 3-δ(CSO-SmSF)。
图8为本发明实施例5提供的采用界面自组装策略一步热处理60mol.%Ce 0.8Gd 0.1O 2-δ-40mol.%NiFe 2O 4(CGO-NFO)和60mol.%Ce 0.9Pr 0.1O 2-δ-40mol.%Mn 1.5Co 1.5O 4(CPO-MCO)复合坯体后样品的上下表面的X射线衍射图和截面扫描电镜图。
图9为本发明实施例6提供的采用界面自组装策略一步热处理Y 0.08Zr 0.92O 2-δ-CoFe 2O 4(YSZ-CFO)复合坯体后样品的上下表面的X射线衍射图和截面扫描电镜图。
图10为本发明实施例2提供的CGO/(CGO-GSFT)两层陶瓷作为混合导体透氧膜进行空气分离、甲烷氧化和水分解制氢性能测试。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
一种具有氧化物薄层的多层陶瓷膜制备方法和应用,其特征在于,包含以下步骤:将由萤石型氧化物和钙钛矿型或尖晶石型氧化物构成的复合材料预成型,然后在与Al 2O 3接触条件下高温热处理,即得到萤石型氧化物薄层的多层陶瓷膜。
所述的萤石型氧化物化学组成表达式为Ce 1-aA aO 2-δ(CAO)或B bZr 1-bO 2-δ(BZO),其中A选自La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb中的一种或几种,0≤a≤1,δ为氧晶格缺陷数。B选自Y、Sc、Yb、Pr、Bi、Er、Ce中的一种或几种,0≤b≤1,δ为氧晶格缺陷数。
所述的钙钛矿型氧化物化学组成表达式为M mSr 1-mFe 1-nN nO 3-δ(MSFNO),其中M选自La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Ba、 Ca、Bi中的一种或几种;N选自Mg、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、Y、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Al、In、W、La、Gd、Ce中的一种或几种;0≤m≤0.5,0≤n≤0.5,δ为氧晶格缺陷数。
所述的尖晶石型氧化物化学组成表达式为X 3-yY yO 4(XYO),其中X选自Mg、Fe、Co、Ni、Mn、Zn、Cd中的一种或几种,Y选自Al、Fe、Co、Cr、Ga、Mn中的一种或几种,0≤y≤3。
所述复合材料的制备方法包括但不限于球磨混合法、固相反应法、溶胶-凝胶法,只需将粉末混合均匀即可。所述预成型方法包括干压法、相转化法和挤压成型法。
所述Al 2O 3是Al 2O 3刚玉片、Al 2O 3粉末或纳米Al 2O 3胶体溶液。
所述与Al 2O 3的接触方式包括预成型复合体放置在Al 2O 3刚玉片上面,或者夹在两个Al 2O 3刚玉片中间,或者涂敷纳米Al 2O 3胶体溶液。
所述具有萤石型氧化物薄层的多层陶瓷膜包括两层或三层结构,层与层之间粘连良好。两层结构由单相萤石型CAO或BZO薄层和复合材料层构成。三层结构包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧复合材料多孔层;或者包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧CAO或BZO薄层。
所述具有萤石型氧化物薄层的多层陶瓷膜用于从含氧混合气中选择性分离氧以及用于烃类的催化部分氧化、分解H 2O制氢或燃料电池领域。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。
实施例1:溶胶-凝胶法制备CGO-GSFT复合粉末
按照60mol.%Ce 0.9Gd 0.1O 2-δ-40mol.%Gd 0.1Sr 0.9Fe 0.9Ti 0.1O 3-δ化学计量比将Ce(NO 3) 4、Gd(NO 3) 3、Sr(NO 3) 2和Fe(NO 3) 3分别溶于水中,之后向混合液中加入柠檬酸和乙二胺四乙酸(EDTA),其中柠檬酸、乙二胺四乙酸及金属离子的摩尔比为1.5:1:1,搅拌一段时间后,再加入适量氨水调节溶液pH值为9,获得澄清溶液。之后将化学计量比的钛酸四丁酯溶于等摩尔比的乳酸、乙醇和冰醋酸,形成的含Ti离子溶液与之前的澄清溶液混合,形成60CGO-40GSFT前驱体溶液。搅拌一段时间后,将前驱体溶液于120℃脱水处理获得深色溶胶,然后以5℃/min的升温速率从室温升至950℃煅烧10个小时,再以相同的速率降至室温获得混合均匀的60CGO-40GSFT粉体。
实施例2:掺杂CeO 2基双层陶瓷膜的制备
称取适量60CGO-40GSFT粉体,150MPa的压力下制得坯体,将坯体放置在Al 2O 3基底上,从室温升至1450℃,保温10个小时后降至室温,获得(60CGO-40GSFT)/CGO双层结构膜。如图1所示,烧结后的样品上表面呈现立方萤石和立方钙钛矿双相结构,但是与Al 2O 3基底接触的下表面只有CGO相,扫描电镜发现下表面CGO层致密、厚度大约为5μm,说明与Al 2O 3基底接触的界面在高温热处理时发生相分离,界面自组装形成(60CGO-40GSFT)/CGO双层结构。
在上述基础上,降低烧结温度至1350℃,与Al 2O 3基底接触的下表面CGO致密层厚度降低为大约1μm,如图2所示。另外,在CGO-GSFT坯体表面滴涂纳米Al 2O 3胶体溶液,经过高温烧结后,表面涂敷有Al 2O 3胶体的一侧出现CGO富集,如图3所示。对于相转化预成型坯体,首先配置一定固含量的铸膜液,经过球磨混合和脱泡后,采用干湿相转化纺丝技术制备预成型的60mol% Ce 0.8Sm 0.2O 2-δ–40mol%Sm 0.2Sr 0.8Fe 0.6Ti 0.4O 3-δ(CSO-SSFT)中空纤维膜坯体,然后在坯体表面喷涂Al 2O 3胶体溶液,经高温烧结后,涂敷Al 2O 3胶体的表面出现CSO富集,如图4所示。以上结果表明,界面富集的萤石型氧化物薄层的厚度可以通过改变烧结条件进行调控,不同氧化铝都能够引起复合材料坯体界面富集。
实施例3:掺杂CeO 2基三层陶瓷的制备
按照本发明实施例1制备CGO-GSFT粉末,然后称取适量CGO-GSFT粉末与淀粉、碳纤维球磨混合(质量比为70:24:6),球磨转速为500转/min,球磨后干燥备用。相似地,称取适量CGO-GSFT粉末与淀粉球磨混合(质量比为90:10),球磨转速为500转/min,球磨后干燥备用。
分别称取0.15g CGO-GSFT粉体、0.15g含淀粉的CGO-GSFT粉末、0.9g含淀粉和碳纤维的CGO-GSFT粉末(淀粉和碳纤维在高温时被气化使陶瓷形成多孔结构),按照先后顺序铺覆在磨具中,150MPa的压力下制得坯体,将坯体放置α-Al 2O 3基底上,经过一次烧结后,获得(CGO-GSFT)/(CGO-GSFT)/CGO三层结构透氧膜。如图5所示,扫描电镜图表明烧结后的样品呈现三层结构,与Al 2O 3基底接触的表面为CGO致密层,厚度约3μm;与之相连的是致密度较高、厚度大约100μm的CGO-GSFT中间层;与中间层相连的是CGO-GSFT多孔支撑层。通过电镜发现,三层之间粘连良好,没有出现分层、脱落和鼓起现象。
实施例4:大尺寸掺杂CeO 2基双层陶瓷的制备
按照本发明实施例1制备CGO-GSFT粉末,称取约20g 60CGO-40GSFT粉体,均匀放置在8cm*10cm的长方形磨具中,70MPa的压力下等待2分钟后制得坯体,将坯体裁剪为~7cm*7cm的正方形坯体,然后将其放在Al 2O 3粉末上面,从室温升至1450℃,保温10个小时后降至室温,获得大小约5cm*5cm的 (CGO-GSFT)/CGO双层结构透氧膜。如图6所示,烧结后的片状样品平整、没有发现弯曲、分层或者裂纹,同时与Al 2O 3粉末接触的下表面呈现立方萤石结构,CGO层的厚度大约3-5μm。
实施例5:其他CeO 2基双层陶瓷膜的制备
按照实施例1中采用溶胶-凝胶法制备CGO-GdSF、CGO-SFCo、CGO-SFCe、CGO-LaSFCo、CPO-PrSF、CPO-PrSFCo、CSO-LaSF、CSO-SmSF八种不同的粉末。分别称取适量复合粉体,150MPa的压力下制得坯体,将坯体放置α-Al 2O 3基底上,从室温升至1400℃,保温10个小时后降至室温,获得八种氧化铈基双层陶瓷。如图7所示八种坯体经过一步烧结后双层陶瓷的上下表面X射线衍射图,发现八种样品的下表面均只有氧化铈的衍射峰,上表面包含萤石相和钙钛矿相,说明以上八种坯体经过热处理后,与Al 2O 3接触的一侧均发生界面相分离,自组装形成双层结构。
另外,按照实施例2制备CGO-NFO和CPO-MCO粉末,然后分别称取适量复合粉体,150MPa的压力下制得坯体,将坯体放置Al 2O 3基底上,从室温升至1400℃,保温10个小时后降至室温。如图8为烧结后样品上下表面X射线衍射图和横截面扫描电镜图,发现CGO-NFO烧结后样品的下表面呈现CGO衍射峰,没有发现NFO尖晶石结构。相似地,CPO-MCO烧结后样品的下表面保存CPO衍射峰,但是MCO衍射峰消失,说明CGO-NFO和CPO-MCO坯体经过热处理后,与Al 2O 3接触的一侧发生界面相分离形成双层结构。
实施例6 YSZ基多层陶瓷的制备
按照实施例1采用EDTA-柠檬酸法制备Y 0.08Zr 0.92O 2-δ-CoFe 2O 4(YSZ-CFO)复合粉末,经过压制成型后放置在Al 2O 3基底上烧结,烧结温度为1450℃,保 温时间为5个小时。图9为烧结后样品上下表面X射线衍射图和横截面扫描电镜图,发现YSZ-CFO烧结后样品的下表面呈现YSZ衍射峰,没有发现CFO尖晶石结构,说明界面自组装策略也适用于YSZ-CFO体系。
对上述实施例2获得的多层陶瓷作为混合导体透氧膜进行空气分离、甲烷氧化和水分解制氢性能测试:
将实例2中所制备的(CGO-GSFT)/CGO两层透氧膜密封后放置在高温管式炉中,当温度达到925℃时,将膜两侧分别通入Air和He(F (Air)=30cm 3min -1;F (He)=20cm 3min -1)、Air和CO 2(F (Air)=20cm 3min -1;F (CO2)=10cm 3min -1)、Air和CH 4(F (Air)=20cm 3min -1;F (CH4)=6cm 3min -1)、H 2O-Ar和CH 4(F (H2O)=16cm 3min -1;F (Ar)=4cm 3min -1;F (CH4)=6cm 3min -1)、H 2O-He和CH 4-H 2-CO 2-N 2(F (H2O)=16cm 3min -1;F (He)=4cm 3min -1;F (CH4)=4cm 3min -1;F (H2)=6cm 3min -1;F(CO 2)=1cm 3min -1,F(N 2)=2cm 3min -1)、H 2O-He和CH 4-H 2-CO 2-N 2-H 2S(F (H2O)=16cm 3min -1;F (He)=4cm 3min -1;F (CH4)=4cm 3min -1;F (H2)=6cm 3min -1;F(CO 2)=1cm 3min -1,F(N 2)=2cm 3min -1;H 2S=37ppm)六种不同的工况下。采用气相色谱仪对透氧膜两侧出口气体在线检测,如图10所示,在超过1000个小时内,透氧膜在以上六种不同工况下的氧渗透通量随时间的变化。随着膜两侧氧分压梯度的增加,CGO/(CGO-GSFT)两层透氧膜的氧渗透透量逐渐增加,在Air/CH 4工况下耦合氧分离和甲烷转化反应,氧渗透性能达到0.6cm 3min -1cm -2。另外,当CGO/(CGO-GSFT)透氧膜暴露在模拟焦炉煤气和水蒸汽气氛,透氧膜依然能够连续稳定运行超过700个小时,水分解制氢产率基本稳定在0.8cm 3min -1cm -2,这说明CGO/(CGO-GSFT)透氧膜不仅具有较高的氧渗透性能,同时再次证实了其在苛刻的工作环境下具有优异的稳定性。
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,包括:
    以萤石型氧化物和钙钛矿型或尖晶石型氧化物为原料制成复合材料,然后,预成型,得到坯体;
    将所述坯体的表面与Al 2O 3接触,进行烧结,即得。
  2. 如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述的萤石型氧化物化学组成表达式为Ce 1-aA aO 2-δ或B bZr 1-bO 2-δ,其中A选自La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb中的一种或几种,0≤a≤1,δ为氧晶格缺陷数;B选自Y、Sc、Yb、Pr、Bi、Er、Ce中的一种或几种,0≤b≤1,δ为氧晶格缺陷数。
  3. 如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述的钙钛矿型氧化物化学组成表达式为M mSr 1-mFe 1-nN nO 3-δ,其中M选自La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Ba、Ca、Bi中的一种或几种;N选自Mg、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、Y、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Al、In、W、La、Gd、Ce中的一种或几种;0≤m≤0.5,0≤n≤0.5,δ为氧晶格缺陷数。
  4. 如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述的尖晶石型氧化物化学组成表达式为X 3-yY yO 4,其中X选自Mg、Fe、Co、Ni、Mn、Zn、Cd中的一种或几种,Y选自Al、Fe、Co、Cr、Ga、Mn中的一种或几种,0≤y≤3。
  5. 如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述复合材料的制备方法包括球磨混合法、固相反应法或溶胶-凝胶法。
  6. 如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于, 所述预成型方法包括干压法、相转化法和挤压成型法。
  7. 如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述坯体的表面与Al 2O 3接触的具体方式为将胚体放置在Al 2O 3刚玉片上面,或者夹在两个Al 2O 3刚玉片中间,或者涂敷纳米Al 2O 3胶体溶液。
  8. 如权利要求1所述的具有氧化物薄层的多层陶瓷膜制备方法,其特征在于,所述Al 2O 3是Al 2O 3刚玉片、Al 2O 3粉末或纳米Al 2O 3胶体溶液。
  9. 权利要求1-8任一项所述的方法制备的具有氧化物薄层的多层陶瓷膜,其特征在于,所述多层陶瓷膜包括两层或三层结构;
    优选地,两层结构由单相萤石型CAO或BZO薄层和复合材料层构成;
    或,三层结构包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧复合材料多孔层;或者包括一侧单相CAO或BZO薄层、中间复合材料致密层、另一侧CAO或BZO薄层。
  10. 权利要求9所述的多层陶瓷膜在从含氧混合气中选择性分离氧以及用于烃类的催化部分氧化、分解H 2O制氢或制备燃料电池中的应用。
PCT/CN2022/091517 2022-01-14 2022-05-07 一种具有氧化物薄层的多层陶瓷膜制备方法和应用 WO2023134092A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22919732.2A EP4393898A1 (en) 2022-01-14 2022-05-07 Preparation method for multilayer ceramic membrane having oxide thin layer, and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210044306.1 2022-01-14
CN202210044306.1A CN114349508B (zh) 2022-01-14 2022-01-14 一种具有氧化物薄层的多层陶瓷膜制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023134092A1 true WO2023134092A1 (zh) 2023-07-20

Family

ID=81091176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091517 WO2023134092A1 (zh) 2022-01-14 2022-05-07 一种具有氧化物薄层的多层陶瓷膜制备方法和应用

Country Status (3)

Country Link
EP (1) EP4393898A1 (zh)
CN (1) CN114349508B (zh)
WO (1) WO2023134092A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349508B (zh) * 2022-01-14 2022-11-29 中国科学院青岛生物能源与过程研究所 一种具有氧化物薄层的多层陶瓷膜制备方法和应用
CN114920549B (zh) * 2022-05-30 2023-04-25 东南大学 一种以前驱液为粘结剂制备氧化物陶瓷纳米纤维膜的方法
CN115714194A (zh) * 2022-12-01 2023-02-24 中国科学院青岛生物能源与过程研究所 一种具有电解质薄层的固体氧化物半电池及其制备方法
CN116283309A (zh) * 2022-12-07 2023-06-23 中国科学院青岛生物能源与过程研究所 一种具有双保护层的陶瓷透氧膜及其制备方法与应用
CN116514549A (zh) * 2023-05-05 2023-08-01 上海大学 一种三相混合导体透氧膜材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045951A1 (en) * 2000-12-04 2002-06-13 Praxair Technology, Inc. Ceramic membrane structure and oxygen separation method
US20110183221A1 (en) * 2008-06-27 2011-07-28 Serra Alfaro Jose Manuel Catalytic layer for oxygen activation on ionic solid electrolytes at high temperature
CN103272488A (zh) * 2013-05-23 2013-09-04 南京工业大学 多层复合陶瓷氧渗透膜及其制备和应用
CN113332863A (zh) * 2021-07-09 2021-09-03 辽宁石油化工大学 一种具有高表面催化活性双相透氧膜的制备方法
CN114349508A (zh) * 2022-01-14 2022-04-15 中国科学院青岛生物能源与过程研究所 一种具有氧化物薄层的多层陶瓷膜制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996622A (ja) * 1995-09-29 1997-04-08 Matsushita Electric Ind Co Ltd ガスセンサおよびその製造方法
CN101733048B (zh) * 2009-12-25 2012-07-25 中国科学技术大学 用于气相氧化反应的中空纤维膜反应器及其制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045951A1 (en) * 2000-12-04 2002-06-13 Praxair Technology, Inc. Ceramic membrane structure and oxygen separation method
US20110183221A1 (en) * 2008-06-27 2011-07-28 Serra Alfaro Jose Manuel Catalytic layer for oxygen activation on ionic solid electrolytes at high temperature
CN103272488A (zh) * 2013-05-23 2013-09-04 南京工业大学 多层复合陶瓷氧渗透膜及其制备和应用
CN113332863A (zh) * 2021-07-09 2021-09-03 辽宁石油化工大学 一种具有高表面催化活性双相透氧膜的制备方法
CN114349508A (zh) * 2022-01-14 2022-04-15 中国科学院青岛生物能源与过程研究所 一种具有氧化物薄层的多层陶瓷膜制备方法和应用

Also Published As

Publication number Publication date
EP4393898A1 (en) 2024-07-03
CN114349508B (zh) 2022-11-29
CN114349508A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2023134092A1 (zh) 一种具有氧化物薄层的多层陶瓷膜制备方法和应用
Shao et al. Intermediate-temperature solid oxide fuel cells
CA2736078C (en) A method, a solid oxide fuel cell and a catalyst for the production of light hydrocarbons from gas with high methane content
JP4302981B2 (ja) 少なくとも2つの相を含む伝導性材料
Kiebach et al. A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment
Zuo et al. Solid oxide fuel cells
EP2030674A1 (en) Membrane with a stable nenosized microstructure and method for producing same
Hou et al. A novel in situ diffusion strategy to fabricate high performance cathodes for low temperature proton-conducting solid oxide fuel cells
Bai et al. A comprehensive review on oxygen transport membranes: Development history, current status, and future directions
Han et al. Effect of enhanced oxygen reduction activity on oxygen permeation of La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ membrane decorated by K2NiF4-type oxide
DK2183044T3 (en) Cheap thin film oxygen membranes
JP2004513867A5 (zh)
CA2990603A1 (en) Dual function composite oxygen transport membrane
Cassidy Trends in the processing and manufacture of solid oxide fuel cells
Dunyushkina Solid oxide fuel cells with a thin film electrolyte: A review on manufacturing technologies and electrochemical characteristics
Yang et al. Developing an ultrafine Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for efficient solid oxide fuel cells
Danilov et al. Fundamental understanding and applications of protonic Y‐and Yb‐coped Ba (Ce, Zr) O3 perovskites: state‐of‐the‐art and perspectives
Chen et al. A dense oxygen separation membrane with a layered morphologic structure
Kovalevsky et al. Processing and characterization of La0. 5Sr0. 5FeO3-supported Sr1− xFe (Al) O3–SrAl2O4 composite membranes
EP2030668A1 (en) Robust mixed conducting membrane structure
CN113332863A (zh) 一种具有高表面催化活性双相透氧膜的制备方法
KR20140038795A (ko) 복합혼합전도층이 코팅된 지지체 및 복합혼합전도층이 코팅된 지지체의 제조방법
CN111085112B (zh) 一种梯度多孔自支撑对称陶瓷膜的制备方法及其应用
Chen et al. Improved oxygen permeability of Ce0. 8Sm0. 2O2− δ–PrBaCo2O5+ δ dual-phase membrane by surface-modifying porous layer
KR20150028545A (ko) 지지체식 전기화학셀의 제조방법 및 이에 의해 제조된 전기화학셀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919732

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022919732

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022919732

Country of ref document: EP

Effective date: 20240327