CN114214726A - 一种利用等离子体增强原子层沉积制备压电ain薄膜的方法 - Google Patents

一种利用等离子体增强原子层沉积制备压电ain薄膜的方法 Download PDF

Info

Publication number
CN114214726A
CN114214726A CN202111484161.9A CN202111484161A CN114214726A CN 114214726 A CN114214726 A CN 114214726A CN 202111484161 A CN202111484161 A CN 202111484161A CN 114214726 A CN114214726 A CN 114214726A
Authority
CN
China
Prior art keywords
film
substrate
piezoelectric
ain
atomic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111484161.9A
Other languages
English (en)
Inventor
陆桥宏
何东旺
曹俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Zishuo Technology Co ltd
Original Assignee
Jiangsu Zishuo Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Zishuo Technology Co ltd filed Critical Jiangsu Zishuo Technology Co ltd
Priority to CN202111484161.9A priority Critical patent/CN114214726A/zh
Publication of CN114214726A publication Critical patent/CN114214726A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种利用等离子体增强原子层沉积制备压电AIN薄膜的方法,涉及压电薄膜制备技术领域,先对基片表面清洁和烘干,之后放入磁控溅射机内,进行真空热处理,待基片的温度降至室温后,向真空腔体内通入的氩气,使用射频磁控溅射方法沉积AIN多晶薄膜,将压电AIN薄膜放入原子层沉积装置的反应腔体中,并通入气态硅烷,该气态硅烷与压电AIN薄膜反应,向反应腔内通入氧气等离子体,并与气态硅烷和压电AIN薄膜反应获得产物的外露基团反应,以此生成氧化硅,具备了通过采用等离子体增强原子层沉积制备压电AIN薄膜,可以进一步的去除薄膜中的杂质,从而获得更低的电阻率和更高的薄膜致密度,提高了工作效率的效果。

Description

一种利用等离子体增强原子层沉积制备压电AIN薄膜的方法
技术领域
本发明涉及压电薄膜制备技术领域,具体为一种利用等离子体增强原子层沉积制备压电AIN薄膜的方法。
背景技术
Ⅲ-Ⅴ族化合物氮化铝是一种具有六角铅锌矿结构的宽禁带半导体材料,具有高热导率、低热膨胀系数、高电阻率、高压电系数、高声表面波传播速度、击穿电压高、化学性质稳定以及良好的光学性能等,因此氮化铝材料在机械、微电子、光学以及电子元器件、声表面波器件、薄膜体声波器件等通信和功率半导体器件领域有着广阔的应用前景。
目前市场中的压电氮化铝薄膜,因为含有较多杂质,导致电阻率较高,并且薄膜致密度较低,降低了工作效率。
发明内容
本发明的目的在于提供一种利用等离子体增强原子层沉积制备压电AIN薄膜的方法,具备了通过采用等离子体增强原子层沉积制备压电AIN薄膜,可以进一步的去除薄膜中的杂质,从而获得更低的电阻率和更高的薄膜致密度,提高了工作效率的效果,解决了目前市场中的压电氮化铝薄膜,因为含有较多杂质,导致电阻率较高,并且薄膜致密度较低,降低了工作效率的问题。
为实现上述目的,本发明提供如下技术方案:一种利用等离子体增强原子层沉积制备压电AIN薄膜的方法,包括以下步骤:
步骤S1:先对基片表面进行抛光处理,再对其清洁和烘干,之后放入磁控溅射机内,正常启动磁控溅射机,对腔体抽真空至5×10-4Pa以下;
步骤S2:将基片加热到350~450℃,进行真空热处理,待基片的温度降至室温后,向真空腔体内通入的氩气,打开中频溅射电源预溅射清洗溅射靶表面15分钟;
步骤S3:使用射频磁控溅射方法沉积具有压应力或者张应力的AIN多晶薄膜;
步骤S4:使用射频磁控溅射方法在步骤S3中所得的AIN多晶薄膜上沉积与该氮化铝多晶薄膜具有对应张应力或者压应力的AIN多晶薄膜;
步骤S5:反复交替进行步骤S3和步骤S4得到压电AIN薄膜;
步骤S6:将步骤S5中的压电AIN薄膜放入原子层沉积装置的反应腔体中,加热,再向反应腔体内通入气态硅烷,该气态硅烷与压电AIN薄膜反应,反应过程中不断通入载气以保持反应腔内的气压恒定;
步骤S7:向反应腔内通入氧气等离子体,并与步骤S7中气态硅烷和压电AIN薄膜反应获得产物的外露基团反应,反应过程中不断通入载气以保持反应腔内的气压恒定,以此生成氧化硅;
步骤S8:重复步骤S6和步骤S7,直至所述氧化硅的厚度达到预设厚度值。
可选的,所述步骤S1中依次使用P400、P600、P800、P1200及P2000的水磨砂纸对基片进行表面抛光处理。
可选的,所述步骤S1中将基片依次放入丙酮、异丙醇和乙醇溶液中用超声波清洗15min,然后用去离子水冲洗10min,再用干燥氮气吹干。
可选的,所述步骤S2中氩气为高纯氩气,氩气纯度为99.999%。
可选的,所述步骤S2中溅射靶为纯度99.999%的铝靶。
可选的,所述步骤S2中溅射靶为双铝靶平行布置,基片固定在溅射靶前方的夹具上,夹具在自转的同时围绕双铝靶中心做行星旋转。
可选的,所述步骤S1中基片为载玻片、硅片或镀上金属电极的硅片。
可选的,所述步骤S6中气态硅烷分子和氧气等离子体的流量优选设定为50~500标准毫升每分钟,载气的流量优选为50~100标准毫升每分钟。
与现有技术相比,本发明的有益效果如下:
一、本发明通过采用等离子体增强原子层沉积制备压电AIN薄膜,可以进一步的去除薄膜中的杂质,从而获得更低的电阻率和更高的薄膜致密度,提高了工作效率。
二、本发明通过采用等离子体增强原子层沉积的方式在压电AIN薄膜表面包覆氧化硅包覆层,并且氧等离子体的氧化性更强;降低在生成氧化硅的过程中的反应温度,避免对纳米晶薄膜本身的性能造成破坏,进而使得反应可以在低温下进行,避免高温反应过程中对压电AIN薄膜的破坏,提高成品的质量。
三、本发明采用超声波清洗,强超声波在液体中传播时,由于非线性作用,会产生声空化,在空化气泡突然闭合时发出的冲击波可在其周围产生上千个大气压力,对污层的直接反复冲击,一方面破坏污物与清洗件表面的吸附,能够极大的去除基片表面的杂质,提高成品的质量。
四、本发明溅射靶为双铝靶平行布置,基片固定在溅射靶前方的夹具上,夹具在自转的同时围绕双铝靶中心做行星旋转,从而实现大面积均匀制膜,进一步提高了成品的质量。
附图说明
图1为本发明工艺流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种技术方案:一种利用等离子体增强原子层沉积制备压电AIN薄膜的方法,包括以下步骤:
步骤S1:先对基片表面进行抛光处理,再对其清洁和烘干,之后放入磁控溅射机内,正常启动磁控溅射机,对腔体抽真空至5×10-4Pa以下。
步骤S2:将基片加热到350~450℃,进行真空热处理,待基片的温度降至室温后,向真空腔体内通入的氩气,打开中频溅射电源预溅射清洗溅射靶表面15分钟。
步骤S3:使用射频磁控溅射方法沉积具有压应力或者张应力的AIN多晶薄膜。
步骤S4:使用射频磁控溅射方法在步骤S3中所得的AIN多晶薄膜上沉积与该氮化铝多晶薄膜具有对应张应力或者压应力的AIN多晶薄膜。
步骤S5:反复交替进行步骤S3和步骤S4得到压电AIN薄膜。
步骤S6:将步骤S5中的压电AIN薄膜放入原子层沉积装置的反应腔体中,加热,再向反应腔体内通入气态硅烷,该气态硅烷与压电AIN薄膜反应,反应过程中不断通入载气以保持反应腔内的气压恒定。
步骤S7:向反应腔内通入氧气等离子体,并与步骤S7中气态硅烷和压电AIN薄膜反应获得产物的外露基团反应,反应过程中不断通入载气以保持反应腔内的气压恒定,以此生成氧化硅,通过等离子体的引入,可以去除薄膜中的杂质,从而获得更低的电阻率和更高的薄膜致密度,提高了工作效率,并通过在压电AIN薄膜表面包覆氧化硅包覆层,从而降低在生成氧化硅的过程中的反应温度,避免对纳米晶薄膜本身的性能造成破坏,进而使得反应可以在低温下进行,避免高温反应过程中对压电AIN薄膜的破坏,提高成品的质量。
步骤S8:重复步骤S6和步骤S7,直至氧化硅的厚度达到预设厚度值。
进一步的,步骤S1中依次使用P400、P600、P800、P1200及P2000的水磨砂纸对基片进行表面抛光处理,通过采用砂纸对基片逐级打磨,使基片表面更为光滑,从而方便后续处理,提高成品的质量。
进一步的,步骤S1中将基片依次放入丙酮、异丙醇和乙醇溶液中用超声波清洗15min,然后用去离子水冲洗10min,再用干燥氮气吹干,超声波清洗采用弹性介质中的粒子振荡,强超声波在液体中传播时,由于非线性作用,会产生声空化,在空化气泡突然闭合时发出的冲击波可在其周围产生上千个大气压力,对污层的直接反复冲击,一方面破坏污物与清洗件表面的吸附,能够极大的去除基片表面的杂质,提高产品的工作效率。
为了提高成品质量,进一步的,步骤S2中氩气为高纯氩气,氩气纯度为99.999%。
为了保证溅射效果,进一步的,步骤S2中溅射靶为纯度99.999%的铝靶,并且相较于其它靶材,铝靶材的价格较低,能够降低企业生产成品。
进一步的,步骤S2中溅射靶为双铝靶平行布置,基片固定在溅射靶前方的夹具上,夹具在自转的同时围绕双铝靶中心做行星旋转,并设置溅射靶与基片的距离为7~9cm,以便实现最佳的溅射效果,通过把基片固定在溅射靶前方的夹具上,夹具在自转的同时围绕双铝靶中心做行星旋转,从而实现大面积均匀制膜,进一步提高了成品的质量。
进一步的,步骤S1中基片为载玻片、硅片或镀上金属电极的硅片,载玻片价格较低,并且透光性好,硅是最常见应用最广的半导体材料,单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加;有显著的半导电性。
进一步的,步骤S6中气态硅烷分子和氧气等离子体的流量优选设定为50~500标准毫升每分钟,载气的流量优选为50~100标准毫升每分钟,当流量设置过高时,气态硅烷分子和氧气等离子体分子不能进入反应腔体,当流量设置过低时,会导致清洗不充分,不能完全清除气态硅烷分子或氧气等离子体分子。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

1.一种利用等离子体增强原子层沉积制备压电AIN薄膜的方法,其特征在于,包括以下步骤:
步骤S1:先对基片表面进行抛光处理,再对其清洁和烘干,之后放入磁控溅射机内,正常启动磁控溅射机,对腔体抽真空至5×10-4Pa以下;
步骤S2:将基片加热到350~450℃,进行真空热处理,待基片的温度降至室温后,向真空腔体内通入的氩气,打开中频溅射电源预溅射清洗溅射靶表面15分钟;
步骤S3:使用射频磁控溅射方法沉积具有压应力或者张应力的AIN多晶薄膜;
步骤S4:使用射频磁控溅射方法在步骤S3中所得的AIN多晶薄膜上沉积与该氮化铝多晶薄膜具有对应张应力或者压应力的AIN多晶薄膜;
步骤S5:反复交替进行步骤S3和步骤S4得到压电AIN薄膜;
步骤S6:将步骤S5中的压电AIN薄膜放入原子层沉积装置的反应腔体中,加热,再向反应腔体内通入气态硅烷,该气态硅烷与压电AIN薄膜反应,反应过程中不断通入载气以保持反应腔内的气压恒定;
步骤S7:向反应腔内通入氧气等离子体,并与步骤S7中气态硅烷和压电AIN薄膜反应获得产物的外露基团反应,反应过程中不断通入载气以保持反应腔内的气压恒定,以此生成氧化硅;
步骤S8:重复步骤S6和步骤S7,直至所述氧化硅的厚度达到预设厚度值。
2.根据权利要求1所述的利用等离子体增强原子层沉积制备压电AIN薄膜的方法,其特征在于:所述步骤S1中依次使用P400、P600、P800、P1200及P2000的水磨砂纸对基片进行表面抛光处理。
3.根据权利要求1所述的利用等离子体增强原子层沉积制备压电AIN薄膜的方法,其特征在于:所述步骤S1中将基片依次放入丙酮、异丙醇和乙醇溶液中用超声波清洗15min,然后用去离子水冲洗10min,再用干燥氮气吹干。
4.根据权利要求1-3中任意一项所述的利用等离子体增强原子层沉积制备压电AIN薄膜的方法,其特征在于:所述步骤S2中氩气为高纯氩气,氩气纯度为99.999%。
5.根据权利要求1所述的利用等离子体增强原子层沉积制备压电AIN薄膜的方法,其特征在于:所述步骤S2中溅射靶为纯度99.999%的铝靶。
6.根据权利要求4所述的利用等离子体增强原子层沉积制备压电AIN薄膜的方法,其特征在于:所述步骤S2中溅射靶为双铝靶平行布置,基片固定在溅射靶前方的夹具上,夹具在自转的同时围绕双铝靶中心做行星旋转。
7.根据权利要求1所述的利用等离子体增强原子层沉积制备压电AIN薄膜的方法,其特征在于:所述步骤S1中基片为载玻片、硅片或镀上金属电极的硅片。
8.根据权利要求1所述的利用等离子体增强原子层沉积制备压电AIN薄膜的方法,其特征在于:所述步骤S6中气态硅烷分子和氧气等离子体的流量优选设定为50~500标准毫升每分钟,载气的流量优选为50~100标准毫升每分钟。
CN202111484161.9A 2021-12-07 2021-12-07 一种利用等离子体增强原子层沉积制备压电ain薄膜的方法 Pending CN114214726A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111484161.9A CN114214726A (zh) 2021-12-07 2021-12-07 一种利用等离子体增强原子层沉积制备压电ain薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111484161.9A CN114214726A (zh) 2021-12-07 2021-12-07 一种利用等离子体增强原子层沉积制备压电ain薄膜的方法

Publications (1)

Publication Number Publication Date
CN114214726A true CN114214726A (zh) 2022-03-22

Family

ID=80699977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111484161.9A Pending CN114214726A (zh) 2021-12-07 2021-12-07 一种利用等离子体增强原子层沉积制备压电ain薄膜的方法

Country Status (1)

Country Link
CN (1) CN114214726A (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162876A (ja) * 1986-12-25 1988-07-06 Nissin Electric Co Ltd プラズマcvd法薄膜のアニ−ル方法
JPH082984A (ja) * 1994-06-17 1996-01-09 Sumitomo Electric Ind Ltd 窒化アルミニウム薄膜基板製造法
KR100639886B1 (ko) * 2005-09-07 2006-11-01 주식회사 아이피에스 반도체 소자의 갭 필을 이용하는 유에스지 증착 방법
CN1887815A (zh) * 2006-07-20 2007-01-03 上海交通大学 AlN/SiO2纳米多层硬质薄膜
CN101280412A (zh) * 2007-12-29 2008-10-08 电子科技大学 一种氮化铝压电薄膜及其制备方法
CN101368263A (zh) * 2008-09-28 2009-02-18 西北工业大学 氮化硅/氧化硅双层增透保护薄膜的制备方法
KR20090106112A (ko) * 2008-04-04 2009-10-08 울산대학교 산학협력단 다결정 탄화규소 버퍼층위에 마이크로 또는 나노전자기계시스템용 질화알루미늄막 증착방법
CN103668092A (zh) * 2012-09-24 2014-03-26 中国科学院大连化学物理研究所 一种等离子体辅助磁控溅射沉积方法
CN104561900A (zh) * 2014-12-16 2015-04-29 兰州空间技术物理研究所 一种低吸收率氧化硅薄膜的制备方法
CN105529998A (zh) * 2014-09-30 2016-04-27 天津市泛凯科贸有限公司 一种aln压电薄膜
CN110684964A (zh) * 2019-10-22 2020-01-14 华中科技大学 基于等离子体原子层沉积的包覆纳米晶薄膜的方法及产品
JP2020117787A (ja) * 2019-01-25 2020-08-06 神港精機株式会社 マグネトロンスパッタ法による成膜装置および成膜方法
CN112467005A (zh) * 2020-11-18 2021-03-09 福建中晶科技有限公司 一种多复合层图形化蓝宝石衬底的制备方法
CN113140618A (zh) * 2021-03-31 2021-07-20 福建中晶科技有限公司 一种蓝宝石复合衬底及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162876A (ja) * 1986-12-25 1988-07-06 Nissin Electric Co Ltd プラズマcvd法薄膜のアニ−ル方法
JPH082984A (ja) * 1994-06-17 1996-01-09 Sumitomo Electric Ind Ltd 窒化アルミニウム薄膜基板製造法
KR100639886B1 (ko) * 2005-09-07 2006-11-01 주식회사 아이피에스 반도체 소자의 갭 필을 이용하는 유에스지 증착 방법
CN1887815A (zh) * 2006-07-20 2007-01-03 上海交通大学 AlN/SiO2纳米多层硬质薄膜
CN101280412A (zh) * 2007-12-29 2008-10-08 电子科技大学 一种氮化铝压电薄膜及其制备方法
KR20090106112A (ko) * 2008-04-04 2009-10-08 울산대학교 산학협력단 다결정 탄화규소 버퍼층위에 마이크로 또는 나노전자기계시스템용 질화알루미늄막 증착방법
CN101368263A (zh) * 2008-09-28 2009-02-18 西北工业大学 氮化硅/氧化硅双层增透保护薄膜的制备方法
CN103668092A (zh) * 2012-09-24 2014-03-26 中国科学院大连化学物理研究所 一种等离子体辅助磁控溅射沉积方法
CN105529998A (zh) * 2014-09-30 2016-04-27 天津市泛凯科贸有限公司 一种aln压电薄膜
CN104561900A (zh) * 2014-12-16 2015-04-29 兰州空间技术物理研究所 一种低吸收率氧化硅薄膜的制备方法
JP2020117787A (ja) * 2019-01-25 2020-08-06 神港精機株式会社 マグネトロンスパッタ法による成膜装置および成膜方法
CN110684964A (zh) * 2019-10-22 2020-01-14 华中科技大学 基于等离子体原子层沉积的包覆纳米晶薄膜的方法及产品
CN112467005A (zh) * 2020-11-18 2021-03-09 福建中晶科技有限公司 一种多复合层图形化蓝宝石衬底的制备方法
CN113140618A (zh) * 2021-03-31 2021-07-20 福建中晶科技有限公司 一种蓝宝石复合衬底及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALVARO ARTIEDA等: "High-Q AlN/SiO2 Symmetric Composite Thin Film Bulk Acoustic Wave Resonators", IE TRANSACTIONS ON ULTRASONICS,, vol. 55, no. 11, XP011238956, DOI: 10.1109/TUFFC.953 *

Similar Documents

Publication Publication Date Title
Mortet et al. Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures
JP3801730B2 (ja) プラズマcvd装置及びそれを用いた薄膜形成方法
TW200524833A (en) Methods of finishing quartz glass surfaces and components made by the methods
WO2021047643A1 (zh) 电子设备外盖增强纳米膜及其制备方法和应用
CN104862659B (zh) 一种氮化铝薄膜的中频磁控反应溅射方法
CN110581212A (zh) 一种单晶单畴压电薄膜及其制备方法
CN110155991A (zh) 一种氧化还原石墨烯和氮掺杂石墨烯的制备方法
JP3146112B2 (ja) プラズマcvd装置
CN103594306A (zh) 一种金刚石/金属复合材料夹持杆及制备方法
CN106367727A (zh) 一种利用掩膜法制备带自支撑框架的金刚石真空窗口的方法
CN101323971A (zh) 一种利用缓冲层制备高质量ZnO薄膜的方法
CN211142151U (zh) 一种氮化物和金属薄膜沉积与修整设备
CN115867105A (zh) 一种同步制备两片复合压电衬底的方法
CN117604471B (zh) 一种硅基氮化铝复合衬底及其制备方法
CN114214726A (zh) 一种利用等离子体增强原子层沉积制备压电ain薄膜的方法
US8614012B2 (en) Coated article and method for making same
TWI248481B (en) Surface acoustic wave device
CN106917088A (zh) 一种制备高度C轴取向的ScAlN薄膜的工艺
CN102296278A (zh) 一种氮化铝薄膜的制备方法
CN113355650B (zh) AlN-金刚石热沉、制备方法和应用以及半导体激光器封装件
CN114231949A (zh) 一种利用原子层沉积法制备SnO2薄膜的方法
JP2006332427A (ja) 光起電力装置の製造方法およびそれに用いるエッチング装置
JP2002290182A (ja) 表面弾性波素子用基板の製造方法
CN111155070B (zh) 一种低温制备多晶硅膜材料的方法、得到的产品和用途
CN111139452B (zh) 一种低温制备非晶硅膜材料的方法、得到的产品和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220322