CN114180980A - 一种自增韧99氧化铝陶瓷基板及其制备方法 - Google Patents

一种自增韧99氧化铝陶瓷基板及其制备方法 Download PDF

Info

Publication number
CN114180980A
CN114180980A CN202111635809.8A CN202111635809A CN114180980A CN 114180980 A CN114180980 A CN 114180980A CN 202111635809 A CN202111635809 A CN 202111635809A CN 114180980 A CN114180980 A CN 114180980A
Authority
CN
China
Prior art keywords
alumina
self
ceramic substrate
toughening
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111635809.8A
Other languages
English (en)
Other versions
CN114180980B (zh
Inventor
孙健
王高强
江楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deyang Sanhuan Technology Co ltd
Nanchong Three Circle Electronics Co Ltd
Original Assignee
Deyang Sanhuan Technology Co ltd
Nanchong Three Circle Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deyang Sanhuan Technology Co ltd, Nanchong Three Circle Electronics Co Ltd filed Critical Deyang Sanhuan Technology Co ltd
Priority to CN202111635809.8A priority Critical patent/CN114180980B/zh
Publication of CN114180980A publication Critical patent/CN114180980A/zh
Application granted granted Critical
Publication of CN114180980B publication Critical patent/CN114180980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种自增韧99氧化铝陶瓷基板及其制备方法,属于陶瓷材料技术领域。所述自增韧99氧化铝陶瓷基板包括如下组分:氧化铝99.0~99.75wt%、氧化镁0.05~0.3wt%、二氧化硅0.05~0.2wt%和钛源0.05~0.6wt%,所述钛源的含量以Ti4+含量计。本发明通过配方优化在99氧化铝陶瓷中引入特定量的Ti源,使得柱状晶的生长得到很好地控制,通过(104)主晶面的快速生长形成Al2TiO5长柱状晶粒,且将晶粒占比控制在9.46%~38.54%,长径比控制在1.24~4.03,达到99氧化铝陶瓷自增韧的效果,使其抗弯强度>550MPa,断裂韧性>4.5MPa·m1/2

Description

一种自增韧99氧化铝陶瓷基板及其制备方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种自增韧99氧化铝陶瓷基板及其制备方法。
背景技术
氧化铝陶瓷材料具备高硬度、高强度、高热导、耐腐蚀等优良性能,是目前世界上生产量最大、应用面最广的工业陶瓷材料,它不仅作为电子工业中电路衬底材料、发动机零部件材料而被广泛应用,而且作为耐高温、抗腐蚀、耐磨损的机械零部件材料取代金属和合金也取得了显著效果。但是,氧化铝陶瓷结构属于刚玉型,具有离子键的特性,使得滑移系统远没有金属那么多,这导致其缺乏一定的韧性和塑性,断裂韧性较差,通常只有3~4MPa·m1/2
业内通常采用提高氧化铝含量的方式来提高陶瓷的性能,但随着氧化铝含量的提升,会导致陶瓷烧结能垒变高,需要更高的温度才能完成烧结,一般需要达到1600℃以上,现有烧结设备难以满足,存在设备限制较大和能耗较高的缺陷。针对上述烧结温度过高的问题,现有技术一般会通过细化粉体的方式,将粉体粒度控到0.5~1.0μm,使烧结温度下降至1550~1600℃,但该配方工艺对陶瓷的断裂韧性提升不明显,只能稳定在3.5~4MPa·m1 /2左右。
发明内容
为解决上述现有技术中存在的不足之处,本发明的目的在于提供一种自增韧99氧化铝陶瓷基板及其制备方法。
为达到其目的,本发明所采用的技术方案为:
一种自增韧99氧化铝陶瓷基板,其中含有Al2TiO5长柱状晶,且晶粒占比为9.46%~38.54%,长径比为1.24~4.03。
优选地,所述自增韧99氧化铝陶瓷基板包括如下组分:氧化铝99.0wt%~99.75wt%、氧化镁0.05wt%~0.3wt%、二氧化硅0.05wt%~0.2wt%和钛源0.05wt%~0.6wt%,所述钛源的含量以Ti4+含量计。该配方可制得抗弯强度>550MPa,断裂韧性>4.5MPa·m1/2的自增韧99氧化铝陶瓷基板。
本发明中,钛源的主要作用是提供Ti4+,在高温烧结过程中,游离的Ti4+会与Al2O3形成Al2TiO5,由于Ti4+的离子半径大于Al3+的离子半径,因此形成Al2TiO5时会发生晶格畸变,加快晶格扩散,降低氧化铝陶瓷的烧结温度,其中(104)主晶面生长速度最为明显,从而表现出明显的异向生长,形成Al2TiO5长柱状晶,且在高温下Ti4+可能转变成半径较大的Ti3 +,从而加剧晶格畸变,使活性更高,更能有效促进烧结,当柱状晶长径比与数量很好的匹配时,能很好的提高产品的抗弯强度和断裂韧性。长柱晶须增韧机制是裂纹桥接增韧,在外力作用下裂纹发生了扩展,裂纹两相对表面间的距离相应增大,起桥接作用的晶须两端将受到一个拉应力作用,相应地,裂纹两相对表面间将受到一个压应力作用,使得裂纹扩展阻力得以提高。结合本发明的烧结工艺,能达到很好地控制晶粒生长的目的。
配方中,当Ti4+的含量为0.05wt%~0.6wt%时,可使柱状晶的数量不断增多,晶粒占比为9.46%~38.54%,长径比为1.24~4.03,最终使得99氧化铝陶瓷的断裂韧性提高至4.5MPa·m1/2以上,抗弯强度提高至550MPa以上。若Ti4+的含量低于0.05wt%,对晶粒各晶面生长速度、尺寸和占比无明显作用,造成晶粒不规则生长,形成的间隙较多,陶瓷的断裂韧性较差;若Ti4+的含量超过0.6wt%时,会造成柱状晶粒过度长大,导致其占比相对减少,陶瓷的弯曲强度下降。
氧化镁(MgO)的加入可形成均匀的液相烧结,阻止氧化铝晶粒的长大;而SiO2在Al2O3表面形成的莫来石相可以以晶须状存在,达到补强增韧的效果。
优选地,所述自增韧99氧化铝陶瓷基板包括如下组分:氧化铝99.2wt%~99.5wt%、氧化镁0.1wt%~0.3wt%、二氧化硅0.05wt%~0.2wt%和钛源0.2wt%~0.45wt%,所述钛源的含量以Ti4+含量计。该配方可制得抗弯强度>578MPa,断裂韧性>5.3MPa·m1/2的自增韧99氧化铝陶瓷基板。
优选地,所述自增韧99氧化铝陶瓷基板包括如下组分:氧化铝99.35wt%~99.45wt%、氧化镁0.15wt%~0.2wt%、二氧化硅0.05wt%~0.1wt%和钛源0.3wt%~0.4wt%,所述钛源的含量以Ti4+含量计。该配方可制得抗弯强度>583MPa,断裂韧性>5.5MPa·m1/2的自增韧99氧化铝陶瓷基板。
优选地,所述氧化铝为纯度≥99%的高纯亚微米级氧化铝粉体。
优选地,所述氧化铝的平均粒径D50为0.5~1μm。
所述钛源包括但不限于:氧化钛、磷酸钛、次氯酸钛、硫酸氧钛、硼酸钛、硫酸钛、四氯化钛、四氮化三钛中的至少一种。
本发明还提供了一种所述自增韧99氧化铝陶瓷基板的制备方法,其包括:
(1)球磨:按配方比例称量氧化铝、氧化镁、二氧化硅和钛源,混合,得到粉体料,将粉体料在球磨溶剂、粘合剂和分散剂的作用下进行球磨混合,使粉体料的平均粒度D50在0.4~0.6μm,出料后脱去溶剂,得到固含量为75%~85%的浆料;
(2)流延成型:将所述浆料通过流延成型制备厚度为0.29~0.49mm的素坯;
(3)烧结:采用两步烧结法烧结所述素坯,第一段烧结的升温速率为2~4℃/min,温度为1485~1515℃,保温时间为20~40min,然后以5~7℃/min的速率降温至1435~1465℃进行第二段烧结,保温时间为320~340min,制得所述自增韧99氧化铝陶瓷基板。
晶粒的生长过程包括等轴生长、异向生长、快速长大三个过程;本发明通过添加Ti源来控制晶粒异向生长,使(104)主晶面的生长速度比其他方向的快,逐渐形成柱状晶粒,且随着Ti源的添加量增多,(104)晶面的生长速度也随之加快,晶粒的长宽比差距逐渐变大,柱状晶占比随之增加,故而使得陶瓷的断裂韧性和弯曲强度都有明显的提高。但由于晶粒生长也受助烧温度和保温时间的影响,且各个晶面的生长速度有所不同,因此本发明通过调节烧结过程中的温度曲线,设计了两步烧结法制备产品,先通过第一段的高温烧结来提供晶粒驱动能,促使晶粒扩散,然后再通过第二段的特定温度区间的降温保温来促进晶粒生长,配合该烧结体系可充分控制晶粒的生长,达到性能提升的目的,最终成功在较低温度下(1435~1515℃)烧结出柱状晶结构晶粒,使陶瓷产品的抗弯强度提高至4.5MPa·m1/2以上,抗弯强度提高至550MPa以上。
烧结过程中,若温度变化速率过大,会导致产品在高温过程中的内应力增大,从而产生裂纹。若温度变化速率过小会影响烧结效果,且会导致烧结时间延长,能耗增加,生产效率低。
优选地,所述球磨包括如下步骤:
(a)向所述粉体料中加入球磨溶剂,球磨预分散,得到平均粒度D50≤0.8μm的预分散浆料;
(b)向所述预分散浆料中加入粘合剂和分散剂,球磨混合,得到平均粒度D50在0.4~0.6μm的浆料;
(c)将所述浆料进行脱泡和陈腐,脱泡后浆料的粘度控制为6500~8500cps,陈腐后浆料的粘度控制为7500~9500cps,制得固含量为75%~85%的浆料。
优选地,所述球磨溶剂为有机溶剂,其添加量为所述粉体料质量的30%~40%。
优选地,所述有机溶剂选自苯乙烯、三氯乙烯、三乙醇胺中的至少一种。
优选地,所述粘合剂选自羟丙基甲基纤维素、乙基纤维素、邻苯二甲酸二辛脂中的至少一种。
优选地,所述粘合剂的添加量为所述粉体料质量的5%~10%。
优选地,所述分散剂选自丙烯酸酯、丙二醇甲醚醋酸酯、聚乙烯吡咯烷酮中的至少一种。
优选地,所述分散剂的添加量为所述粉体料质量的0.5%~0.8%。
优选地,所述流延成型的流延速度为0.5~1.1m/s。所述流延速度太快会导致膜带干燥不完全,流延速度太慢又会导致膜带容易卷曲开裂,而采用本发明提供的流延速度则可较好地避免上述这些问题发生。
与现有技术相比,本发明的有益效果为:本发明通过配方优化在99氧化铝陶瓷中引入特定量的Ti源添加剂,使得柱状晶的生长得到很好地控制,通过(104)主晶面的快速生长形成柱状晶粒,且将晶粒占比控制在9.46%~38.54%,长径比控制在1.24~4.03,达到99氧化铝陶瓷自增韧的效果,使其抗弯强度>550MPa,断裂韧性>4.5MPa·m1/2,同时还将烧结温度成功降至1435~1515℃,大大节省了能耗和设备成本,降低了烧结难度。
附图说明
图1为本发明原料球磨预分散的SEM图;
图2为本发明实施例4烧结体的SEM图;
图3为本发明对比例2烧结体的SEM图。
具体实施方式
下面将结合实施例对本发明的技术方案作进一步描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明实施例中所使用的原料可通过市售购买获得,且平行实验使用的都是同一种。实施例和对比例使用的氧化铝为纯度≥99%的高纯亚微米级氧化铝粉体,平均粒径为0.5~1μm;二氧化硅为纯度≥99%的高纯石英砂。
测试方法:
1、晶粒占比和长径比:先利用扫描电子显微镜拍摄照片,然后对所拍摄的照片使用Nano Measurer软件(粒径分布计算软件)计算长径比和晶粒占比。
2、抗弯强度:使用电子万能材料试验机,三点抗弯测试,试样使用激光划片制样,试样的尺寸为b×l×h=24×40×1mm,跨距:30mm,测试速度:0.5mm/min;
3、断裂韧性:压痕法(即压痕裂纹直接测量法,简称DCM)。压痕法的优点是简而易行,不需大型测试设备,也不需精确规格的试件,按硬度测试要求手工研磨,机械抛光后,在维氏硬度仪上预制压痕。压头载荷98N,加载时间15s,共测10个点,再根据压痕周围裂纹的长度c,使用公式KIC=δ(E/H)1/2×P/c3/2就可求出材料的断裂韧性,式中E和H分别为材料弹性模量和硬度,P为压痕压制荷载,δ为无关的无量纲常数,其经验值为0.016。
4、热导率:使用激光导热仪测试热扩散系数:样品划片为直径10mm圆片测试;使用低温DSC测试比热容:样品划片为直径5mm圆片测试;热导率λ=热扩散系数α×密度ρ×比热c;
实施例1~7
实施例1~7提供了一种自增韧99氧化铝陶瓷基板,其配方比例如表1所示,其制备方法如下:
(1)球磨,包括步骤a~c:
a:按表1的配方比例称量钛源、氧化铝、氧化硅和氧化镁,混合,得到粉体料,向粉体料中加入球磨溶剂(球磨溶剂的加入量为粉体料质量的30%,球磨溶剂为三乙醇胺,除此之外还可采用苯乙烯或三氯乙烯作为球磨溶剂),进行球磨预分散,球磨分散时间为20~25h,使粉体的平均粒度D50≤0.8μm,得到预分散浆料;对该预分散浆料进行SEM分析,分析结果见性能测试(1);
b:向预分散浆料中加入粘合剂和分散剂(粘合剂的添加量为粉体质量的8%,实际上5~10%均可;粘合剂为羟丙基甲基纤维素,除此之外还可采用乙基纤维素或邻苯二甲酸二辛脂作为粘合剂;分散剂的添加量为粉体质量的0.6%,实际上0.5~0.8%均可;分散剂为丙烯酸酯,除此之外还可采用丙二醇甲醚醋酸酯或聚乙烯吡咯烷酮作为分散剂),球磨混合30~40h,使粉体的平均粒度D50为0.4~0.6μm,得到浆料;
c:将浆料进行脱泡和陈腐处理,其中,脱泡时间为5~10h,浆料粘度控制在6500~8500cps,陈腐时间为10~20h,浆料粘度控制在7500~9500cps,得到固含量为75%~85%的浆料;
(2)流延成型:将浆料通过流延成型制备厚度为0.29~0.49mm的素坯片,流延速度为0.5~1.1m/s;
(3)两步烧结:先对素坯片进行第一段烧结(烧结温度和保温时间见表2),第一段烧结的升温速率为2~4℃/min,然后以5~7℃/min的速率降温至目标温度进行第二段烧结(烧结温度和保温时间见表2),制得自增韧99氧化铝陶瓷基板。
对比例1~2提供了一种氧化铝陶瓷基板,其配方比例如表1所示,制备方法参考实施例1~7的制备方法。
实际生产中,除了使用实施例和对比例中所使用的钛源种类,还可以使用其它钛源种类,例如:磷酸钛、次氯酸钛、硫酸氧钛、硼酸钛、四氯化钛、四氮化三钛等。
表1
编号 Al<sub>2</sub>O<sub>3</sub>/wt% Ti源/wt% MgO/wt% SiO<sub>2</sub>/wt%
实施例1 99.75 Ti<sup>4+</sup>/0.05(Ti(SO<sub>4</sub>)<sub>2</sub>/0.25) 0.05 0.15
实施例2 99.65 Ti<sup>4+</sup>/0.1(TiO<sub>2</sub>/0.17) 0.15 0.10
实施例3 99.50 Ti<sup>4+</sup>/0.2(Ti(SO<sub>4</sub>)<sub>2</sub>/1.0) 0.10 0.20
实施例4 99.45 Ti<sup>4+</sup>/0.3(Ti(SO<sub>4</sub>)<sub>2</sub>/1.5) 0.20 0.05
实施例5 99.35 Ti<sup>4+</sup>/0.4(Ti(SO<sub>4</sub>)<sub>2</sub>/2.01) 0.15 0.10
实施例6 99.20 Ti<sup>4+</sup>/0.45(Ti(SO<sub>4</sub>)<sub>2</sub>/2.26) 0.30 0.05
实施例7 99.00 Ti<sup>4+</sup>/0.6(Ti(SO<sub>4</sub>)<sub>2</sub>/3.01) 0.20 0.20
对比例1 99.75 0 0.10 0.15
对比例2 99.00 Ti<sup>4+</sup>/0.9(Ti(SO<sub>4</sub>)<sub>2</sub>/4.51) 0.05 0.05
注:上表实施例1的Ti源项中,Ti4+/0.05表示Ti4+的加入量为0.05wt%,相对应的钛源Ti(SO4)2的加入量为0.25wt%,其它组同理。
表2
Figure BDA0003440100810000071
Figure BDA0003440100810000081
性能测试
(1)预分散浆料的SEM分析结果:图1为实施例1的预分散浆料的SEM图(其它实施例的分析结果与实施例1相似,故不再赘举附图)。由图1可以看出,原料球磨预分散中氧化铝的分散均匀,形状不规则,图中标识的氧化铝粒径分别为0.59μm、0.70μm、0.82μm、0.84μm,平均粒径D50控制合适。
(2)分别测定实施例1~7和对比例1~2所制备的陶瓷基板的晶面(104)强度I、以及Al2TiO5长柱状晶的占比和长径比,结果如表3所示。
表3
长径比 长柱状晶占比 晶面(104)强度I
实施例1 1.24 9.46% 2480
实施例2 2.58 18.38% 2735
实施例3 3.14 26.69% 3127
实施例4 3.92 38.54% 3752
实施例5 3.95 36.12% 4016
实施例6 4.03 32.47% 4165
实施例7 4.01 26.35% 4279
对比例1 1.14 7.49% 2357
对比例2 3.97 12.18% 4301
从表3可看出:Ti4+的引入量从对比例1、实施例1、实施例2、实施例3到实施例4逐渐增多,(104)晶面的生长速度比其他方向快,逐渐形成Al2TiO5柱状晶粒,当Ti4+含量为0.3%时,柱状晶粒分布较好,形状较规则,占比为38.54%,长径比为3.92,如图2所示,图中标识的柱状晶粒径分别为3.23μm、6.87μm、7.23μm,晶粒尺寸差距不大,增韧效果较好。
(3)分别测定实施例1~7和对比例1~2所制备的陶瓷基板的三点弯曲强度、断裂韧性和热导率,取每组测试的最小值记录,记录结果如表4所示。
表4
编号 抗弯强度(MPa) 断裂韧性(MPa·m<sup>1/2</sup>) 热导率(W/m·K)
实施例1 550.38 4.57 29.91
实施例2 561.37 4.93 29.15
实施例3 578.04 5.31 28.58
实施例4 589.35 5.75 28.11
实施例5 583.11 5.54 27.47
实施例6 580.15 5.48 26.96
实施例7 556.72 4.84 26.37
对比例1 421.17 3.07 31.74
对比例2 492.46 3.45 31.28
从表4可看出:实施例1~7的陶瓷基板具有较好的性能,抗弯强度>550MPa,断裂韧性>4.5MPa·m1/2,同时热导率也能满足应用要求,均达到26W/m·K以上。
综合分析实施例1~7和对比例1~2可看出,随着Ti4+添加量的增加,陶瓷基板的断裂韧性和抗弯强度呈现先提高后降低的趋势,呈峰型走向,这是因为Ti4+与Al2O3形成Al2TiO5,促进晶格扩散,逐渐形成规则排列的柱状晶,起桥接作用的晶须占比越高,故断裂韧性和弯曲强度都有明显的提高。从对比例2和实施例7的结果可知,当Ti4+含量较高时,烧结过程中柱状晶过度生长,从而导致桥接作用的晶须占比下降,导致陶瓷基板的断裂韧性和抗弯强度变差,如图3所示。当Ti4+的添加量为0.3%时,陶瓷基板的断裂韧性为5.75MPa·m1/2,抗弯强度为589.35MPa,达到最好。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种自增韧99氧化铝陶瓷基板,其特征在于,所述自增韧99氧化铝陶瓷基板中含有Al2TiO5长柱状晶,且晶粒占比为9.46%~38.54%,长径比为1.24~4.03。
2.如权利要求1所述的自增韧99氧化铝陶瓷基板,其特征在于,包括如下组分:氧化铝99.0wt%~99.75wt%、氧化镁0.05wt%~0.3wt%、二氧化硅0.05wt%~0.2wt%和钛源0.05wt%~0.6wt%,所述钛源的含量以Ti4+含量计。
3.如权利要求2所述的自增韧99氧化铝陶瓷基板,其特征在于,包括如下组分:氧化铝99.2wt%~99.5wt%、氧化镁0.1wt%~0.3wt%、二氧化硅0.05wt%~0.2wt%和钛源0.2wt%~0.45wt%,所述钛源的含量以Ti4+含量计。
4.如权利要求3所述的自增韧99氧化铝陶瓷基板,其特征在于,包括如下组分:氧化铝99.35wt%~99.45wt%、氧化镁0.15wt%~0.2wt%、二氧化硅0.05wt%~0.1wt%和钛源0.3wt%~0.4wt%,所述钛源的含量以Ti4+含量计。
5.如权利要求2~4任一项所述的自增韧99氧化铝陶瓷基板,其特征在于,所述氧化铝的平均粒径D50为0.5~1μm。
6.一种如权利要求1~5任一项所述的自增韧99氧化铝陶瓷基板的制备方法,其特征在于,包括:
(1)球磨:按配方比例称量氧化铝、氧化镁、二氧化硅和钛源,混合,得到粉体料,将粉体料在球磨溶剂、粘合剂和分散剂的作用下进行球磨混合,使粉体料的平均粒度D50在0.4~0.6μm,出料后脱去溶剂,得到固含量为75%~85%的浆料;
(2)流延成型:将所述浆料通过流延成型制备厚度为0.29~0.49mm的素坯;
(3)烧结:采用两步烧结法烧结所述素坯,第一段烧结的升温速率为2~4℃/min,温度为1485~1515℃,保温时间为20~40min,然后以5~7℃/min的速率降温至1435~1465℃进行第二段烧结,保温时间为320~340min,制得所述自增韧99氧化铝陶瓷基板。
7.如权利要求6所述的自增韧99氧化铝陶瓷基板的制备方法,其特征在于,所述球磨包括如下步骤:
(a)向所述粉体料中加入球磨溶剂,球磨预分散,得到平均粒度D50≤0.8μm的预分散浆料;
(b)向所述预分散浆料中加入粘合剂和分散剂,球磨混合,得到平均粒度D50在0.4~0.6μm的浆料;
(c)将所述浆料进行脱泡和陈腐,脱泡后浆料的粘度控制为6500~8500cps,陈腐后浆料的粘度控制为7500~9500cps,制得固含量为75%~85%的浆料。
8.如权利要求6所述的自增韧99氧化铝陶瓷基板的制备方法,其特征在于,所述球磨溶剂为有机溶剂。
9.如权利要求6所述的自增韧99氧化铝陶瓷基板的制备方法,其特征在于,所述粘合剂选自羟丙基甲基纤维素、乙基纤维素、邻苯二甲酸二辛脂中的至少一种。
10.如权利要求6所述的自增韧99氧化铝陶瓷基板的制备方法,其特征在于,所述分散剂选自丙烯酸酯、丙二醇甲醚醋酸酯、聚乙烯吡咯烷酮中的至少一种。
CN202111635809.8A 2021-12-28 2021-12-28 一种自增韧99氧化铝陶瓷基板及其制备方法 Active CN114180980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111635809.8A CN114180980B (zh) 2021-12-28 2021-12-28 一种自增韧99氧化铝陶瓷基板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111635809.8A CN114180980B (zh) 2021-12-28 2021-12-28 一种自增韧99氧化铝陶瓷基板及其制备方法

Publications (2)

Publication Number Publication Date
CN114180980A true CN114180980A (zh) 2022-03-15
CN114180980B CN114180980B (zh) 2023-06-23

Family

ID=80606370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111635809.8A Active CN114180980B (zh) 2021-12-28 2021-12-28 一种自增韧99氧化铝陶瓷基板及其制备方法

Country Status (1)

Country Link
CN (1) CN114180980B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925399A (zh) * 2022-11-01 2023-04-07 南充三环电子有限公司 一种抗热震陶瓷基板及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360564A2 (en) * 1988-09-20 1990-03-28 Ngk Insulators, Ltd. Method of producing a ceramic material for insert casting
JPH08208317A (ja) * 1995-01-31 1996-08-13 Kyocera Corp アルミナ質焼結体およびその製造方法
JPH09183648A (ja) * 1995-12-28 1997-07-15 Kyocera Corp アルミナ質焼結体
JPH10212157A (ja) * 1997-01-29 1998-08-11 Kyocera Corp アルミナ質焼結体およびその製造方法
JPH10330151A (ja) * 1997-05-27 1998-12-15 Kyocera Corp アルミナ質焼結体およびその製法
JP2013075777A (ja) * 2011-09-29 2013-04-25 Taiheiyo Cement Corp アルミナ質焼結体及びその製造方法
CN103189329A (zh) * 2010-11-01 2013-07-03 昭和电工株式会社 氧化铝质烧结体、磨粒和砂轮
CN106810214A (zh) * 2017-01-05 2017-06-09 中北大学 一种电子封装用低成本高强氧化铝陶瓷基片的制备方法
CN108530041A (zh) * 2018-04-13 2018-09-14 华南理工大学 一种高纯高强氧化铝陶瓷及其低温制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0360564A2 (en) * 1988-09-20 1990-03-28 Ngk Insulators, Ltd. Method of producing a ceramic material for insert casting
JPH08208317A (ja) * 1995-01-31 1996-08-13 Kyocera Corp アルミナ質焼結体およびその製造方法
JPH09183648A (ja) * 1995-12-28 1997-07-15 Kyocera Corp アルミナ質焼結体
JPH10212157A (ja) * 1997-01-29 1998-08-11 Kyocera Corp アルミナ質焼結体およびその製造方法
JPH10330151A (ja) * 1997-05-27 1998-12-15 Kyocera Corp アルミナ質焼結体およびその製法
CN103189329A (zh) * 2010-11-01 2013-07-03 昭和电工株式会社 氧化铝质烧结体、磨粒和砂轮
JP2013075777A (ja) * 2011-09-29 2013-04-25 Taiheiyo Cement Corp アルミナ質焼結体及びその製造方法
CN106810214A (zh) * 2017-01-05 2017-06-09 中北大学 一种电子封装用低成本高强氧化铝陶瓷基片的制备方法
CN108530041A (zh) * 2018-04-13 2018-09-14 华南理工大学 一种高纯高强氧化铝陶瓷及其低温制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
崔旭: ""Al2TiO5/Al2O3陶瓷复合材料的晶粒异向生长"", 《人工晶体学报》 *
崔旭: ""Al2TiO5/Al2O3陶瓷复合材料的晶粒异向生长"", 《人工晶体学报》, vol. 39, no. 4, 31 August 2010 (2010-08-31), pages 982 - 987 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925399A (zh) * 2022-11-01 2023-04-07 南充三环电子有限公司 一种抗热震陶瓷基板及其制备方法
CN115925399B (zh) * 2022-11-01 2023-12-12 南充三环电子有限公司 一种抗热震陶瓷基板及其制备方法

Also Published As

Publication number Publication date
CN114180980B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN112142450B (zh) 一种氧化锆复合氧化铝陶瓷烧结体及其制备方法和应用
CN108409336A (zh) 氮化硅陶瓷及其制备方法
CN111892415A (zh) 一种碳化硅晶须/氧化铝陶瓷复合材料及其制备方法
CN112939582A (zh) 一种掺杂氧化锆的氧化铝陶瓷及其制备方法
CN110105057A (zh) 陶瓷手臂及其制备方法、真空吸附机械手和晶圆传输装置
WO2021070502A1 (ja) 高延性モリブデン合金材
CN114180980B (zh) 一种自增韧99氧化铝陶瓷基板及其制备方法
CN110540429B (zh) 一种氮化铝烧结体及应用
US5322823A (en) Ceramic composites and process for its production
Fan et al. Thermal-shock stable Al2O3 crucible for superalloy smelting through slip casting with particle gradation
CN107385367B (zh) 一种细晶低氧型多相Mo-Si-B合金的制备方法
CN115849885B (zh) 高纯高强度氧化铝陶瓷基板及其制备方法
CN112979282B (zh) 一种氧化铝陶瓷烧结体及其制备方法和应用
CN102030535B (zh) 氮化锆增强氧氮化铝复合陶瓷材料的制备方法
CN108329018B (zh) 一种增韧氧化铝复合陶瓷及其制备方法
CN114644525A (zh) 添加废弃料的复合匣钵及其制备方法
CN106927840B (zh) 抗热震复相陶瓷材料及基于该材料的陶瓷漏嘴的制备
CN107382343B (zh) 一种AlON-BN复相陶瓷材料及其制备方法、应用
JPH0553747B2 (zh)
WO2010023813A1 (ja) 窒化珪素結合SiC耐火物の製造方法
CN107117963B (zh) 一种大尺寸、大跨度锆英石耐火材料的制造工艺
CN114920567B (zh) 一种氧化铝浆料的制备方法及制成的氧化铝浆料
JP2650049B2 (ja) セラミック切削工具及びその製造方法
CN115284186B (zh) 一种低温陶瓷结合剂金刚石砂轮及其制备方法
JPS6251913B2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant