CN107117963B - 一种大尺寸、大跨度锆英石耐火材料的制造工艺 - Google Patents

一种大尺寸、大跨度锆英石耐火材料的制造工艺 Download PDF

Info

Publication number
CN107117963B
CN107117963B CN201710277401.5A CN201710277401A CN107117963B CN 107117963 B CN107117963 B CN 107117963B CN 201710277401 A CN201710277401 A CN 201710277401A CN 107117963 B CN107117963 B CN 107117963B
Authority
CN
China
Prior art keywords
zircon
span
percent
size
refractory material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710277401.5A
Other languages
English (en)
Other versions
CN107117963A (zh
Inventor
李懋强
王大为
侯涛
李学超
石艳雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jundao High Temperature Materials Co ltd
Original Assignee
Shandong Jundao High Temperature Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jundao High Temperature Materials Co ltd filed Critical Shandong Jundao High Temperature Materials Co ltd
Priority to CN201710277401.5A priority Critical patent/CN107117963B/zh
Publication of CN107117963A publication Critical patent/CN107117963A/zh
Application granted granted Critical
Publication of CN107117963B publication Critical patent/CN107117963B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/482Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种大尺寸、大跨度锆英石耐火材料的制造工艺,属于耐火材料技术领域。解决了现有技术生产的耐火材料弯曲蠕变速率大的问题,其包括以下步骤:以锆英石和纯度≥98.50%的二氧化钛为原料,将其进行研磨处理得到颗粒直径0.60μm≤d50≤1.5μm的研磨处理后的颗粒,并且d90/d10=22‑25;经过研磨处理后的颗粒通过造粒机造成直径≤0.25mm的球形团聚颗粒,其水份含量0.2‑0.4%;将球形团聚颗粒用等静压成型,然后素坯在窑炉内烧成,在最高烧成温度1530‑1570℃下至少保持20小时。本发明工艺可用于生产大尺寸、大跨度锆英石耐火材料。

Description

一种大尺寸、大跨度锆英石耐火材料的制造工艺
技术领域
本发明涉及一种大尺寸、大跨度锆英石耐火材料的制造工艺,属于耐火材料技术领域。
背景技术
锆英石(也称锆石)的理论成分是硅酸锆(ZrSiO4),它对熔融的硅酸盐玻璃,特别是硼硅酸盐玻璃,具有优良的抗侵蚀性能,因此被广泛地应用于玻璃工业熔窑,以及用作烧制某些陶瓷或搪瓷制品的窑具。所谓大尺寸、大跨度是指耐火材料制品的三个维度尺寸中至少有二个接近或超过1米,并且其中一个维度(长度方向)的尺寸超过2米。而大跨度是指这种耐火制品在应用时的安装方式是沿其长度方向的中间部分悬空,仅由二端支撑整个制品。由于大尺寸制品的自重很大,并可能再加上其他负载,制品在工作时除高温作用之外还受较大的弯曲应力作用。为保证制品在整个工作周期的尺寸稳定性,要求这种大尺寸、大跨度锆英石制品具有很小的弯曲蠕变,而通常用于玻璃熔窑的锆英石材料的弯曲蠕变性能不能满足要求。国内外一些耐火材料制造厂商在开发用溢流法成型超宽薄膜半导体(TFT)玻璃基板所必须的的锆英石溢流砖时,就注意到如何保证锆英石制品在高温下具有小的弯曲蠕变。他们主要措施是通过在制造锆英石溢流砖的原料中添加氧化钛(TiO2)和氧化铁(Fe2O3)来实现制品具有小的弯曲蠕变性能,有的还要求所用原料需要采用一部分细粉加一部分粒度为0.1~1mm的粗粉。
发明内容
本发明的目的在于提供一种大尺寸、大跨度锆英石耐火材料的制造工艺,具有制备工艺简单,成本低,所得产品高温环境下弯曲蠕变小的特点。
所述的大尺寸、大跨度锆英石耐火材料的制造工艺,包括以下步骤:
(i)以锆英石和纯度≥98.50%的二氧化钛为原料,将其进行研磨处理得到颗粒直径0.60μm≤d50≤1.5μm的研磨处理后的颗粒,并且d90/d10=22-25;
(ii)经过研磨处理后的颗粒通过造粒机造成直径≤0.25mm的球形团聚颗粒,其水份含量0.2-0.4%;
(iii)将球形团聚颗粒用等静压成型,然后素坯在窑炉内烧成,在最高烧成温度1530-1570℃下至少保持20小时。
进一步地,所述的锆英石中ZrO2≥65.50%,SiO2≤34.00%,TiO2≤0.10%,Fe2O3≤0.10%。
进一步地,所述的纯度≥98.50%的二氧化钛和锆英石中的TiO2的总量占总原料的0.15-0.4%。
进一步地,所述的纯度≥98.50%的二氧化钛和锆英石中的TiO2的总量占总原料的0.30-0.35%。
进一步地,步骤(i)所述的研磨处理后的颗粒直径为0.65μm≤d50≤0.7μm,并且d90/d10=22.5-23.0。
进一步地,步骤(ii)所述的球形团聚颗粒直径为0.044-0.21mm,其中水份含量为0.25-0.30%。
进一步地,步骤(i)所述研磨处理是指先将原料经过V型混料机混合10-60分钟,然后转入循环式搅拌磨,同时加入去离子水和聚醇类分散剂,研磨3-10小时。
进一步地,步骤(iii)所述在最高烧成温度1550-1555℃下保持24-48小时。
与现有技术相比,本发明的有益效果是:
本发明通过控制锆英石粉料的粒度及粒度分布,保证了粉料内颗粒既足够细小又利于烧结,又具有合适的粒度分布,在烧成过程中可产生少量小的孔隙。此外通过控制等静压成型粉料的形状、粒度和水份,降低了成型过程的内摩擦力和成型后素坯内结构和水分的均匀。所生产的大尺寸、大跨度锆英石耐火材料体积密度大,平均弯曲蠕变速率小,可以作为毛坯使用,也可以通过机械加工来制造成型8代以上薄膜半导体(TFT)玻璃基板所需的溢流砖,也可以直接用于烧制含硼硅酸盐釉料的大型陶瓷或搪瓷制品所需要的耐火棚板,以及其它具有大跨度结构的高温工程中。
附图说明
图1是锆英石耐火材料三点弯曲试验示意图;
图2是高纯锆英石试样经1650℃烧成的扫描电镜图像;
图3是含有0.3%TiO2的锆英石试样经1535℃烧成的扫描电镜图像;
其中,1、试样;2、下支点;3、上支点;白色箭头所指处是玻璃相。
具体实施方式
下面结合具体实施例对本发明做进一步说明。
实施例1
所述的大尺寸、大跨度锆英石耐火材料的制造工艺,包括以下步骤:
(i)以高纯锆英石99.705份,纯度98.5%TiO2 0.295份为原料,其中所述的锆英石中ZrO2:66.47%、SiO2:32.78%、Fe2O3:0.08%、TiO2:0.01%,整个配料内二氧化钛含量为0.30%,先将原料经过V型混料机混合20分钟,然后转入循环式搅拌磨,同时加入去离子水和聚醇类分散剂,研磨6.3小时,用激光粒度分析仪测定研磨处理后的颗粒直径d50=0.7μm,并且d90/d10=22.9;
(ii)经过研磨处理后的颗粒通过造粒机造成直径0.044-0.21mm的球形团聚颗粒,其水份含量0.26-0.30%;
(iii)将球形团聚颗粒用等静压成型,然后素坯在窑炉内烧成,在最高烧成温度1550℃下保持8天,冷却出窑,烧成后制品尺寸为3100×1150×300mm,体积密度4.52g/cm3,1280℃、7MPa下平均弯曲蠕变速率0.000106/小时。
实施例2
所述的大尺寸、大跨度锆英石耐火材料的制造工艺,包括以下步骤:
(i)以高纯锆英石99.705份,纯度98.5%TiO2 0.295份为原料,其中所述的锆英石中ZrO2:66.47%、SiO2:32.78%、Fe2O3:0.08%、TiO2:0.01%,整个配料内二氧化钛含量为0.30%,先将原料经过V型混料机混合20分钟,然后转入循环式搅拌磨,同时加入去离子水和聚醇类分散剂,研磨6小时,用激光粒度分析仪测定研磨处理后的颗粒直径d50=0.7μm,并且d90/d10=23;
(ii)经过研磨处理后的颗粒通过造粒机造成直径0.044-0.21mm的球形团聚颗粒,其水份含量0.26-0.30%;
(iii)将球形团聚颗粒用等静压成型,然后素坯在窑炉内烧成,在最高烧成温度1535℃下保持8天,冷却出窑,烧成后制品尺寸为3100×1150×300mm,体积密度4.51g/cm3,1280℃、7MPa下平均弯曲蠕变速率0.000138小时。
实施例3
所述的大尺寸、大跨度锆英石耐火材料的制造工艺,包括以下步骤:
(i)以高纯锆英石99.907份,纯度98.5%TiO2 0.093份为原料,其中所述的锆英石中ZrO2:66.30%、SiO2:32.71%、Fe2O3:0.10%、TiO2:0.07%,整个配料内二氧化钛含量为0.16%,先将原料经过V型混料机混合40分钟,然后转入循环式搅拌磨,同时加入去离子水和聚醇类分散剂,研磨5.2小时,用激光粒度分析仪测定研磨处理后的颗粒直径d50=1.1μm,并且d90/d10=23.5;
(ii)经过研磨处理后的颗粒通过造粒机造成直径0.044-0.21mm的球形团聚颗粒,其水份含量0.26-0.30%;
(iii)将球形团聚颗粒用等静压成型,然后素坯在窑炉内烧成,在最高烧成温度1570℃下保持6天,冷却出窑,烧成后制品尺寸为2000×900×70mm,体积密度4.60g/cm3,1220℃、7MPa下平均弯曲蠕变速率0.000148小时。
实施例4
所述的大尺寸、大跨度锆英石耐火材料的制造工艺,包括以下步骤:
(i)以高纯锆英石99.949份,纯度98.5%TiO2 0.051份为原料,其中所述的锆英石中ZrO2:65.51%、SiO2:32.75%、Fe2O3:0.08%、TiO2:0.10%,整个配料内二氧化钛含量为0.15%,先将原料经过V型混料机混合10分钟,然后转入循环式搅拌磨,同时加入去离子水和聚醇类分散剂,研磨3小时,用激光粒度分析仪测定研磨处理后的颗粒直径d50=1.5μm,并且d90/d10=22;
(ii)经过研磨处理后的颗粒通过造粒机造成直径≤0.044mm的球形团聚颗粒,其水份含量0.20-0.26%;
(iii)将球形团聚颗粒用等静压成型,然后素坯在窑炉内烧成,在最高烧成温度1530℃下保持24小时,冷却出窑,烧成后制品尺寸为3000×1050×300mm,体积密度4.55g/cm3,1230℃、7MPa下平均弯曲蠕变速率0.000126小时。
实施例5
所述的大尺寸、大跨度锆英石耐火材料的制造工艺,包括以下步骤:
(i)以高纯锆英石99.644份,纯度98.5%TiO2 0.356份为原料,其中所述的锆英石中ZrO2:66.42%、SiO2:32.77%、Fe2O3:0.03%、TiO2:0.05%,整个配料内二氧化钛含量为0.40%,先将原料经过V型混料机混合60分钟,然后转入循环式搅拌磨,同时加入去离子水和聚醇类分散剂,研磨3小时,用激光粒度分析仪测定研磨处理后的颗粒直径d50=0.60μm,并且d90/d10=25;
(ii)经过研磨处理后的颗粒通过造粒机造成直径0.21-0.25mm的球形团聚颗粒,其水份含量0.30-0.40%;
(iii)将球形团聚颗粒用等静压成型,然后素坯在窑炉内烧成,在最高烧成温度1570℃下保持20小时,冷却出窑,烧成后制品尺寸为2500×1150×90mm,体积密度4.55g/cm3,1280℃、7MPa下平均弯曲蠕变速率0.000114小时。
实施例6
所述的大尺寸、大跨度锆英石耐火材料的制造工艺,包括以下步骤:
(i)以高纯锆英石99.665份,纯度98.5%TiO2 0.335份为原料,其中所述的锆英石中ZrO2:66.52%、SiO2:32.66%、Fe2O3:0.03%、TiO2:0.02%,整个配料内二氧化钛含量为0.35%,先将原料经过V型混料机混合40分钟,然后转入循环式搅拌磨,同时加入去离子水和聚醇类分散剂,研磨3小时,用激光粒度分析仪测定研磨处理后的颗粒直径d50=0.65μm,并且d90/d10=22.5;
(ii)经过研磨处理后的颗粒通过造粒机造成直径0.044-0.21mm的球形团聚颗粒,其水份含量0.26-0.30%;
(iii)将球形团聚颗粒用等静压成型,然后素坯在窑炉内烧成,在最高烧成温度1555℃下保持48小时,冷却出窑,烧成后制品尺寸为2700×1200×100mm,体积密度4.58g/cm3,1230℃、7MPa下平均弯曲蠕变速率0.000128小时。
本发明中,申请人通过全面分析研究锆英石材料的成分、显微结构同高温弯曲蠕变的关系,认为产生高温蠕变的直接原因是材料中存在玻璃相和孔隙。玻璃相及孔隙数量对耐火材料蠕变速率的影响可以分别由下列两个方程看出:
Figure BDA0001278618350000051
Figure BDA0001278618350000052
上述二式中dε/dt为蠕变速率,σ为所施加的应力,Vf为材料中玻璃相的体积分数,η为玻璃相的粘度,G0为材料的剪切模量,p为材料的孔隙率,β为同材料有关的常数。根据上列二式可知为了降低材料的蠕变速率需降低材料中玻璃相和孔隙的含量,蠕变速率越低,则材料在整个服务周期中的总蠕变量也越小。
耐火材料的平均弯曲蠕变速率可以通过在指定温度下的三点弯曲试验中测定试样中心向下弯曲的位移量δ,按照下列式3计算出:
Figure BDA0001278618350000053
式中(dε/dt)av为平均弯曲蠕变速率,t为从蠕变开始至试验结束的总时间,h和l分别为试样的高度和两个下支点之间的跨距(参见图1)。
在锆英石中的氧化钛、氧化铁等杂质独自并不能形成玻璃相,生成玻璃相的必要成分是氧化硅(SiO2),高温下SiO2同TiO2和Fe2O3等杂质起反应才生成玻璃相,而氧化硅主要来自锆英石在烧成过程中的分解。根据ZrO2-SiO2相图可知:纯锆英石(ZrSiO4)在1676℃完全分解,而锆英石内如存在其他金属氧化物杂质,其开始分解温度可低至1540℃。锆英石耐火材料的烧成温度一般在1600℃左右,因此在烧成过程中有一部分锆英石分解成氧化硅和氧化锆:ZrSiO4→SiO2+ZrO2。所生成的氧化硅在烧成的高温下同杂质反应形成玻璃相包裹在锆英石晶粒表面。图2是用高纯锆英石(其中ZrO2:66.47%,SiO2:32.78%,Fe2O3:0.08%,TiO2:0.01%)为原料经过成型和1650℃下保持20小时烧成制成的试样的扫描电镜图像,从图上可明显看出锆英石晶粒之间裹有玻璃状物质(白色箭头所指),经测定这种锆英石试样在1220℃下的平均弯曲蠕变速率为0.0003356/小时,对于大跨度的高温结构此值明显偏大。适当降低烧成温度可以显著减少玻璃相的数量,从而减小弯曲蠕变。但是降低烧成温度会引起制品的致密程度降低即孔隙率增大,耐火材料中孔隙量增高会增大蠕变速率(见式2)从而增大蠕变量。二氧化钛能过促进锆英石材料的烧结,因此根据锆英石原料内本身含有的二氧化钛杂质数量再补充添加适量的二氧化钛,使整个配料内有足够的二氧化钛促进锆英石耐火材料的烧结。图3是含有0.30%TiO2的锆英石试样经1535℃下保持20小时烧成后的扫描电镜图像,从图3中已很难发现如图2所示的那种包裹在晶粒表面的玻璃相,经三点弯曲测试,这种材料在1220℃下的平均弯曲蠕变速率较小,为0.0001464/小时。氧化铁虽然也有促进锆英石烧结的作用,但试验发现(参见表1)在锆英石原料中添加氧化铁不能降低反而能增大材料的平均弯曲蠕变速率,虽然增大作用并不显著。
锆英石耐火材料中孔隙数量太多可增大弯曲蠕变速率,然而对于超大型耐火材料制品而言,其内部存在适当数量的封闭孔隙是必要的,因为大尺寸制品在工作过程中可能因内部温度分布不均匀而产生热应力,导致内部微裂纹扩展,从而造成制品的宏观开裂、破坏。制品内部的微小孔隙可以阻挡微裂纹的扩展,从而提高制品的热稳定性。通过试验发现在大尺寸、大跨度锆英石耐火材料中封闭孔隙率保持在2~3%是合适的。封闭孔隙率可由下列式(4)算出:
Figure BDA0001278618350000061
式中pc为材料的封闭孔隙率,pa为材料的开口孔隙率(显气孔率),ρb为材料的体积密度,ρt为锆英石耐火材料的真密度,对于同一配方的材料而言ρt为常数。pa和ρb可以按照国家标准GB/T2997测定,ρt可以按照国家标准GB/T5071测定,因此通过控制耐火材料的显气孔率和体积密度即可以控制材料内的封闭孔隙率。
表1 不同添加剂及含量的锆英石试样的平均弯曲蠕变速率
Figure BDA0001278618350000062
提高锆英石原料颗粒的细度有助于在较低烧成温度下获得致密产品。但为了防止超大尺寸制品在素坯干燥和烧成过程中出现变形、开裂,需保证成型后素坯内部结构的均匀性,为此首先需在研磨锆英石粉料时控制粒度及粒度分布,以保证粉料内颗粒既足够细小又利于烧结,又具有合适的粒度分布,在烧成过程中可产生少量小的孔隙。此外还要控制等静压成型粉料的形状、粒度和水份,以降低成型过程的内摩擦力和成型后素坯内结构和水分的均匀。

Claims (6)

1.一种大尺寸、大跨度锆英石耐火材料的制造工艺,其特征在于包括以下步骤:
(i)以锆英石和纯度≥98.50%的二氧化钛为原料,将其进行研磨处理得到颗粒直径0.60 um≤d50≤1.5 um的研磨处理后的颗粒,并且d90/d10 = 22-25;
(ii)经过研磨处理后的颗粒通过造粒机造成直径≤0.25mm的球形团聚颗粒,其水份含量0.2-0.4%;
(iii)将球形团聚颗粒用等静压成型,然后素坯在窑炉内烧成,在最高烧成温度1530-1570℃下至少保持20小时,冷却出窑即可;
所述的锆英石中ZrO2≥65.50%,SiO2≤34.00%,TiO2≤0.10%,Fe2O3≤0.10%;所述的纯度≥98.50%的二氧化钛和锆英石中的TiO2的总量占总原料的0.15-0.4%。
2.根据权利要求1所述的大尺寸、大跨度锆英石耐火材料的制造工艺,其特征在于:所述的纯度≥98.50%的二氧化钛和锆英石中的TiO2的总量占总原料的0.30-0.35%。
3.根据权利要求1-2任一权利要求所述的大尺寸、大跨度锆英石耐火材料的制造工艺,其特征在于:步骤(i)所述的研磨处理后的颗粒直径为0.65um≤d50≤0.7um,并且d90/d10 =22.5-23.0。
4.根据权利要求2所述的大尺寸、大跨度锆英石耐火材料的制造工艺,其特征在于:步骤(ii)所述的球形团聚颗粒直径为0.044-0.21mm,其中水份含量为0.25-0.30%。
5.根据权利要求1所述的大尺寸、大跨度锆英石耐火材料的制造工艺,其特征在于:步骤(i)所述研磨处理是指先将原料经过V型混料机混合10-60分钟,然后转入循环式搅拌磨,同时加入去离子水和聚醇类分散剂,研磨3-10小时。
6.根据权利要求1所述的大尺寸、大跨度锆英石耐火材料的制造工艺,其特征在于:步骤(iii)所述在最高烧成温度1550-1555℃下保持24-48小时。
CN201710277401.5A 2017-04-25 2017-04-25 一种大尺寸、大跨度锆英石耐火材料的制造工艺 Active CN107117963B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710277401.5A CN107117963B (zh) 2017-04-25 2017-04-25 一种大尺寸、大跨度锆英石耐火材料的制造工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710277401.5A CN107117963B (zh) 2017-04-25 2017-04-25 一种大尺寸、大跨度锆英石耐火材料的制造工艺

Publications (2)

Publication Number Publication Date
CN107117963A CN107117963A (zh) 2017-09-01
CN107117963B true CN107117963B (zh) 2020-09-18

Family

ID=59726101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710277401.5A Active CN107117963B (zh) 2017-04-25 2017-04-25 一种大尺寸、大跨度锆英石耐火材料的制造工艺

Country Status (1)

Country Link
CN (1) CN107117963B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111825469B (zh) * 2020-07-29 2023-03-17 郑州科信炉料有限公司 一种单铁口高炉用环保无水炮泥及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066624A (en) * 1986-05-07 1991-11-19 Martin & Pagenstecher Gmbh Refractory thixotropic vibration compound for the vibration lining of metallurgical vessels

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100528809C (zh) * 2007-02-02 2009-08-19 淄博工陶耐火材料有限公司 一种大型致密锆英石溢流砖的制备方法
CN102229500A (zh) * 2010-07-27 2011-11-02 广州市石基耐火材料厂 一种高抗折、低膨胀的致密锆英石溢流砖的制备方法
CN103524139B (zh) * 2013-11-04 2015-04-15 淄博工陶耐火材料有限公司 低蠕变锆英石质溢流砖及其制备方法
CN105218121B (zh) * 2015-10-30 2017-05-31 淄博工陶耐火材料有限公司 低蠕变、锆英石不分解的溢流砖及其制备方法
CN106518107B (zh) * 2016-10-18 2019-06-21 中国科学院上海光学精密机械研究所 分层高纯锆英石耐火材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066624A (en) * 1986-05-07 1991-11-19 Martin & Pagenstecher Gmbh Refractory thixotropic vibration compound for the vibration lining of metallurgical vessels

Also Published As

Publication number Publication date
CN107117963A (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
TWI389870B (zh) 以鋯英石為基礎的燒結產品
TWI486322B (zh) 摻雜燒結產物
CN108367993B (zh) 经烧结的耐火锆石复合材料,其制造方法和其用途
US9885109B2 (en) ITO ceramic sputtering targets with reduced In2O3 contents and method of producing it
US20110129784A1 (en) Low thermal expansion doped fused silica crucibles
WO2014073594A1 (ja) 溶融ガラス搬送設備要素、溶融ガラス搬送設備要素の製造方法、溶融ガラス搬送設備要素を含むガラス製造装置、およびガラス物品の製造方法
TWI628153B (zh) 用以形成燒結塊的鋯石材料
US10407349B2 (en) Bonded zirconia refractories and methods for making the same
GB2072220A (en) Composite sinter of silicon nitride/boron nitride and method for manufacturing thereof
CN101605736A (zh) 基于氧化钇的耐火组合物
Shahrestani et al. Effect of additives on slip casting rheology, microstructure and mechanical properties of Si3N4/SiC composites
de Camargo et al. Digital light processing additive manufacturing of in situ mullite-zirconia composites
Liu et al. Inhibiting crystallization of fused silica ceramic at high temperature with addition of α-Si3N4
Fan et al. Thermal-shock stable Al2O3 crucible for superalloy smelting through slip casting with particle gradation
CN107117963B (zh) 一种大尺寸、大跨度锆英石耐火材料的制造工艺
JP2011520758A (ja) 低歪み速度の改良されたジルコン材料および物品
Badiee et al. The effect of nano-TiO2 addition on the properties of mullite-zirconia composites prepared by slip casting
CN114031297A (zh) 一种堇青石基多孔玻璃陶瓷及其制备方法
Shang et al. Enhancing thermal and dielectric properties of MgO–Al2O3–SiO2–B2O3 glass-ceramics through CuO doping
US8796168B2 (en) Modified synthetic xenotime material, article comprising same and method for making the articles
Sardjono The characterization of ceramic alumina prepared by using additive glass beads
Mei et al. Cordierite-based glass-ceramics processed by slip casting
CN102030535B (zh) 氮化锆增强氧氮化铝复合陶瓷材料的制备方法
JP2018016526A (ja) 耐火物用骨材、その製造方法、及びそれを用いた耐火物
JP2017036497A (ja) 酸化物スパッタリングターゲット材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Manufacturing process of a large-sized and large-span zircon refractory material

Effective date of registration: 20230726

Granted publication date: 20200918

Pledgee: Shandong Linyi Luozhuang Rural Commercial Bank Co.,Ltd.

Pledgor: SHANDONG JUNDAO HIGH-TEMPERATURE MATERIALS CO.,LTD.

Registration number: Y2023980049875

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Granted publication date: 20200918

Pledgee: Shandong Linyi Luozhuang Rural Commercial Bank Co.,Ltd.

Pledgor: SHANDONG JUNDAO HIGH-TEMPERATURE MATERIALS CO.,LTD.

Registration number: Y2023980049875

PC01 Cancellation of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Manufacturing process of a large-sized and large-span zircon refractory material

Granted publication date: 20200918

Pledgee: Shandong Linyi Luozhuang Rural Commercial Bank Co.,Ltd.

Pledgor: SHANDONG JUNDAO HIGH-TEMPERATURE MATERIALS CO.,LTD.

Registration number: Y2024980030328

PE01 Entry into force of the registration of the contract for pledge of patent right