CN114163252A - 一种超高温碳化硅陶瓷基复合材料的制备方法及超高温碳化硅陶瓷基复合材料 - Google Patents

一种超高温碳化硅陶瓷基复合材料的制备方法及超高温碳化硅陶瓷基复合材料 Download PDF

Info

Publication number
CN114163252A
CN114163252A CN202111581325.XA CN202111581325A CN114163252A CN 114163252 A CN114163252 A CN 114163252A CN 202111581325 A CN202111581325 A CN 202111581325A CN 114163252 A CN114163252 A CN 114163252A
Authority
CN
China
Prior art keywords
silicon carbide
ultrahigh
temperature
composite material
carbide ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111581325.XA
Other languages
English (en)
Inventor
李涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Chengwei Precision Machinery Manufacturing Co ltd
Original Assignee
Chengdu Chengwei Precision Machinery Manufacturing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Chengwei Precision Machinery Manufacturing Co ltd filed Critical Chengdu Chengwei Precision Machinery Manufacturing Co ltd
Priority to CN202111581325.XA priority Critical patent/CN114163252A/zh
Publication of CN114163252A publication Critical patent/CN114163252A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

一种超高温碳化硅陶瓷基复合材料的制备方法及超高温碳化硅陶瓷基复合材料。本发明公开了一种超高温碳化硅陶瓷基复合材料的制备方法,包括以下步骤:①将二维平纹碳化硅纤维布裁剪为方形;②将裁剪好的碳化硅纤维布叠层,并用碳化硅纤维缝合线缝合为一整体,定型得到碳化硅纤维预制体;③将碳化硅纤维预制体放入化学气相沉积炉中进行化学气相沉积,制备热解碳界面层;④将含有抗烧蚀组元的陶瓷粉体与前驱体溶液配制成浸渍浆料;⑤将③中的预制件在④中的浸渍液中真空高压浸渍;⑥将⑤中的预制件取出沥干后高压固化;⑦将⑥高压固化后的预制件高温裂解;⑧反复进行⑤~⑦步,直至预制体的重量变化小于目标值或设定值。本发明提高了碳化硅陶瓷基复合材料的抗氧化性能和抗烧蚀性能。

Description

一种超高温碳化硅陶瓷基复合材料的制备方法及超高温碳化 硅陶瓷基复合材料
技术领域
本发明涉及陶瓷基复合材料制备领域,特别涉及一种超高温碳化硅陶瓷基复合材料的制备方法及一种超高温碳化硅陶瓷基复合材料。
背景技术
为了满足新型航空航天器热端部件如超音速飞行器头锥、翼前缘及航空发动机等愈加苛刻的服役环境,需要发展更长寿命、耐更高温度和结构功能一体化的超高温陶瓷基复合材料。目前,世界范围内研究最多、应用最成功和最广泛的便是碳化硅陶瓷基复合材料(SiC matrix ceramic composites,CMC–SiC)。
但是,在1500℃以上,SiC氧化产物SiO2的抗氧化保护作用被严重削弱。为提高CMC–SiC复合材料的耐高温、抗烧蚀和抗氧化性能,以满足其在高超音速飞行器及航空发动机上的应用,需对其进行基体改性。
目前对基体的改性尚缺乏成功将Hf、Zr、Ta等抗烧蚀组元引入碳化硅陶瓷基以提高碳化硅陶瓷基复合材料的耐高温能力的方法和手段。
发明内容
本发明公开了一种超高温碳化硅陶瓷基复合材料的制备方法,该方法提高了制成的碳化硅陶瓷基复合材料的抗氧化性能和抗烧蚀性能。
一种超高温碳化硅陶瓷基复合材料的制备方法,包括以下步骤:
①将二维平纹碳化硅纤维布裁剪为方形;
②将裁剪好的碳化硅纤维布叠层,并用碳化硅纤维缝合线缝合为一整体,定型得到碳化硅纤维预制体;
③将碳化硅纤维预制体放入化学气相沉积炉中进行化学气相沉积,制备热解碳界面层;
④将含有抗烧蚀组元的陶瓷粉体与前驱体溶液配制成浸渍浆料,其中陶瓷粉体含量为2~20wt%,粘度为50~400mPa·s;
⑤将③中的预制件在④中的浸渍液中真空高压浸渍;
⑥将⑤中的预制件取出沥干后高压固化;
⑦将⑥高压固化后的预制件高温裂解,在氮气气氛中以5~10℃/min的升温速率升至1000~1200℃,保温60~120min,自然降温至室温;
⑧反复进行⑤~⑦步,直至预制体的重量变化小于目标值或设定值。
在本申请的一个或多个具体地实施方式中,所述③中,化学气相沉积反应中,先驱体为:丙烷,沉积温度:800~1150℃,保温时间:8~16h,炉内压力:1~2kPa,界面厚度为:60~800nm。
在本申请的一个或多个具体地实施方式中,所述抗烧蚀组元为Si3N4、SiC、ZrB2、ZrC、HfC、HfB2、BN和B4C中的一种或多种。
在本申请的一个或多个具体地实施方式中,所述抗烧蚀组元其颗粒粒径小于100nm。
在本申请的一个或多个具体地实施方式中,所述前驱体溶液为聚碳硅烷溶液。
在本申请的一个或多个具体地实施方式中,所述真空高压浸渍中:真空度为-0.09MPa,保真空1~3h;2~6MPa,保压1~3h。
在本申请的一个或多个具体地实施方式中,所述高压固化中,固化温度:200~400℃,固化压力:2~4MPa,固化时间:2~8h。
在本申请的一个或多个具体地实施方式中,所述高温裂解中,在氮气气氛中以5~10℃/min的升温速率升至1000~1200℃,保温60~120min,自然降温至室温。
在本申请的一个或多个具体地实施方式中,所述目标值或设定值为1%。
本发明还提供一种浸渍浆料。
一种超高温碳化硅陶瓷基复合材料,所述超高温碳化硅陶瓷基复合材料为上述的超高温碳化硅陶瓷基复合材料的制备方法制备而成。
发明原理及有益效果:
本申请通过化学气相沉积热解碳界面层,在将浸渍浆料制备时将含有抗烧蚀组元的陶瓷粉体引入前驱体溶液,真空高压浸渍等手段,制成的碳化硅陶瓷基复合材料中ZrB2和ZrC颗粒均匀地弥散在SiC连续相中,形成了ZrB2-ZrC-SiC复相陶瓷基体。由于ZrB2、ZrC颗粒与SiC紧密地结合在一起,可在高温氧化环境中产生协同效应,有利于提高复合材料的抗氧化性能和抗烧蚀性能。而且,在碳化硅陶瓷基复合材料中,SiC相均匀遍布于基体中,形成了连续相,ZrB2和ZrC纳米颗粒均匀弥散在基体中。而且粒径小于100nm的ZrB2和ZrC颗粒有利于显著提高复合材料基体中各相的比表面积和陶瓷活性,并在超高温氧化环境应用时产生强烈的协同效应。
具体实施方式
下面将对本发明作进一步说明。
一种超高温碳化硅陶瓷基复合材料的制备方法,包括以下步骤:
①将二维平纹碳化硅纤维布裁剪为300mm*250mm的长方形;
②将裁剪好的碳化硅纤维布叠层为厚度为2~5mm,并用碳化硅纤维缝合线缝合为一整体,采用石墨模具进行定型得到碳化硅纤维预制体;
③将碳化硅纤维预制体放入化学气相沉积炉中制备热解碳界面层,先驱体为:丙烷,沉积温度:800~1150℃,保温时间:8~16h,炉内压力:1~2kPa,界面厚度为:60~800nm;
④将含有抗烧蚀组元的陶瓷粉体,如Si3N4、SiC、ZrB2、ZrC、HfC、HfB2、BN和B4C中的一种或多种与聚碳硅烷前驱体溶液配制成浸渍浆料,其中陶瓷粉体含量为2~20wt%,粘度控制在50~400mPa·s;
⑤将③中的预制件放入真空高压浸渍罐中,注入④中的浸渍液淹没预制件,抽真空至-0.09MPa,保真空1~3h,加压至2~6MPa,保压1~3h;真空压力浸渍使得浸渍浆料完全浸润多孔疏松的预制件。
⑥将⑤中的预制件取出沥干模具表面浸渍液,装入高压固化炉进行固化,固化温度:200~400℃,固化压力:2~4MPa,固化时间:2~8h;
⑦将⑥中的预制件装入高温裂解炉裂解中,在氮气气氛中以5~10℃/min的升温速率升至1000~1200℃,保温60~120min,自然降温至室温;
⑧反复进行⑤~⑦步,直至预制体的重量变化小于1%,完成复合材料的制备。
实施例1
①将二维平纹碳化硅纤维布裁剪为300mm*250mm的长方形;
②将裁剪好的碳化硅纤维布叠层为厚度为2~5mm,并用碳化硅纤维缝合线缝合为一整体,采用石墨模具进行定型得到碳化硅纤维预制体;
③将碳化硅纤维预制体放入化学气相沉积炉中制备热解碳界面层,先驱体为:丙烷,沉积温度:1000℃,保温时间:10h,炉内压力:1.2kPa,丙烷界面厚度为:100nm;
④将ZrB2陶瓷粉体与聚碳硅烷前驱体溶液(溶剂为二甲苯)配制成浸渍浆料,其中陶瓷粉体含量为10wt%,粘度控制在80mPa·s;
⑤将③中的预制件放入真空高压浸渍罐中,注入④中的浸渍液淹没预制件,抽真空至-0.09MPa,保真空3h,加压至4MPa,保压2h;
⑥将⑤中的预制件取出沥干模具表面浸渍液,装入高压固化炉进行固化,固化温度:300℃,固化压力:3MPa,固化时间:6h;
⑦将⑥中的预制件装入高温裂解炉裂解中,在氮气气氛中以5℃/min的升温速率升至1200℃,保温120min,自然降温至室温;
⑧反复进行⑤~⑦步,直至预制体的重量变化小于1%,完成复合材料的制备。
实施例2
①将二维平纹碳化硅纤维布裁剪为300mm*250mm的长方形;
②将裁剪好的碳化硅纤维布叠层为厚度为2~5mm,并用碳化硅纤维缝合线缝合为一整体,采用石墨模具进行定型得到碳化硅纤维预制体;
③将碳化硅纤维预制体放入化学气相沉积炉中制备热解碳界面层,先驱体为:丙烷,沉积温度:1000℃,保温时间:10h,炉内压力:1.2kPa,丙烷界面厚度为:100nm;
④将ZrC陶瓷粉体与聚碳硅烷前驱体溶液(溶剂为二甲苯)配制成浸渍浆料,其中陶瓷粉体含量为10wt%,粘度控制在80mPa·s;
⑤将③中的预制件放入真空高压浸渍罐中,注入④中的浸渍液淹没预制件,抽真空至-0.09MPa,保真空3h,加压至4MPa,保压2h;
⑥将⑤中的预制件取出沥干模具表面浸渍液,装入高压固化炉进行固化,固化温度:300℃,固化压力:3MPa,固化时间:6h;
⑦将⑥中的预制件装入高温裂解炉裂解中,在氮气气氛中以5℃/min的升温速率升至1200℃,保温120min,自然降温至室温;
⑧反复进行⑤~⑦步,直至预制体的重量变化小于1%,完成复合材料的制备。
实施例3
①将二维平纹碳化硅纤维布裁剪为300mm*250mm的长方形;
②将裁剪好的碳化硅纤维布叠层为厚度为2~5mm,并用碳化硅纤维缝合线缝合为一整体,采用石墨模具进行定型得到碳化硅纤维预制体;
③将碳化硅纤维预制体放入化学气相沉积炉中制备热解碳界面层,先驱体为:丙烷,沉积温度:1000℃,保温时间:10h,炉内压力:1.2kPa,丙烷界面厚度为:100nm;
④将HfC陶瓷粉体与聚碳硅烷前驱体溶液(溶剂为二甲苯)配制成浸渍浆料,其中陶瓷粉体含量为10wt%,粘度控制在80mPa·s;
⑤将③中的预制件放入真空高压浸渍罐中,注入④中的浸渍液淹没预制件,抽真空至-0.09MPa,保真空3h,加压至4MPa,保压2h;
⑥将⑤中的预制件取出沥干模具表面浸渍液,装入高压固化炉进行固化,固化温度:300℃,固化压力:3MPa,固化时间:6h;
⑦将⑥中的预制件装入高温裂解炉裂解中,在氮气气氛中以5℃/min的升温速率升至1200℃,保温120min,自然降温至室温;
⑧反复进行⑤~⑦步,直至预制体的重量变化小于1%,完成复合材料的制备。
将实施例1-3制成的的陶瓷基复合材料参照GJB 323A-96、GB/T14390-2008等标准测试密度、孔隙率、烧蚀及1500℃强度等性能,结果如下表1。
表1
Figure BDA0003426147320000071
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种超高温碳化硅陶瓷基复合材料的制备方法,包括以下步骤:
①将二维平纹碳化硅纤维布裁剪为方形;
②将裁剪好的碳化硅纤维布叠层,并用碳化硅纤维缝合线缝合为一整体,定型得到碳化硅纤维预制体;
③将碳化硅纤维预制体放入化学气相沉积炉中进行化学气相沉积,制备热解碳界面层;
④将含有抗烧蚀组元的陶瓷粉体与前驱体溶液配制成浸渍浆料,其中陶瓷粉体含量为2~20wt%,粘度为50~400mPa·s;
⑤将③中的预制件在④中的浸渍液中真空高压浸渍;
⑥将⑤中的预制件取出沥干后高压固化;
⑦将⑥高压固化后的预制件高温裂解;
⑧反复进行⑤~⑦步,直至预制体的重量变化小于目标值或设定值。
2.根据权1所述的超高温碳化硅陶瓷基复合材料的制备方法,其特征在于,所述③中,化学气相沉积反应中,先驱体为:丙烷,沉积温度:800~1150℃,保温时间:8~16h,炉内压力:1~2kPa,界面厚度为:60~800nm。
3.根据权1-2任一所述的超高温碳化硅陶瓷基复合材料的制备方法,其特征在于,所述抗烧蚀组元为Si3N4、SiC、ZrB2、ZrC、HfC、HfB2、BN和B4C中的一种或多种。
4.根据权3所述的超高温碳化硅陶瓷基复合材料的制备方法,其特征在于,所述抗烧蚀组元其颗粒粒径小于100nm。
5.根据权1-4任一所述的超高温碳化硅陶瓷基复合材料的制备方法,其特征在于,所述前驱体溶液为聚碳硅烷溶液。
6.根据权1-5任一所述的超高温碳化硅陶瓷基复合材料的制备方法,其特征在于,所述真空高压浸渍中:真空度为-0.09MPa,保真空1~3h;2~6MPa,保压1~3h。
7.根据权1-6任一所述的超高温碳化硅陶瓷基复合材料的制备方法,其特征在于,所述高压固化中,固化温度:200~400℃,固化压力:2~4MPa,固化时间:2~8h。
8.根据权1-7任一所述的超高温碳化硅陶瓷基复合材料的制备方法,其特征在于,所述高温裂解中,在氮气气氛中以5~10℃/min的升温速率升至1000~1200℃,保温60~120min,自然降温至室温。
9.根据权1-8任一所述的超高温碳化硅陶瓷基复合材料的制备方法,其特征在于,所述目标值或设定值为1%。
10.一种超高温碳化硅陶瓷基复合材料,其特征在于,所述超高温碳化硅陶瓷基复合材料为权1-9任一所述的超高温碳化硅陶瓷基复合材料的制备方法制备而成。
CN202111581325.XA 2021-12-22 2021-12-22 一种超高温碳化硅陶瓷基复合材料的制备方法及超高温碳化硅陶瓷基复合材料 Pending CN114163252A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111581325.XA CN114163252A (zh) 2021-12-22 2021-12-22 一种超高温碳化硅陶瓷基复合材料的制备方法及超高温碳化硅陶瓷基复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111581325.XA CN114163252A (zh) 2021-12-22 2021-12-22 一种超高温碳化硅陶瓷基复合材料的制备方法及超高温碳化硅陶瓷基复合材料

Publications (1)

Publication Number Publication Date
CN114163252A true CN114163252A (zh) 2022-03-11

Family

ID=80487736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111581325.XA Pending CN114163252A (zh) 2021-12-22 2021-12-22 一种超高温碳化硅陶瓷基复合材料的制备方法及超高温碳化硅陶瓷基复合材料

Country Status (1)

Country Link
CN (1) CN114163252A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804905A (zh) * 2022-05-10 2022-07-29 山东工业陶瓷研究设计院有限公司 一种复合材料制备方法
CN115180983A (zh) * 2022-08-01 2022-10-14 航天特种材料及工艺技术研究所 一种陶瓷基复合材料基体的高熵陶瓷改性方法和由此制得的高熵改性复合材料
CN115650752A (zh) * 2022-10-17 2023-01-31 航天特种材料及工艺技术研究所 一种超高温陶瓷改性SiC/SiC复合材料的制备方法
CN115650753A (zh) * 2022-10-17 2023-01-31 航天特种材料及工艺技术研究所 一种梯度抗氧化SiC/SiC复合材料制备方法
CN115745644A (zh) * 2022-11-14 2023-03-07 航天特种材料及工艺技术研究所 一种碳纤维增韧的陶瓷基复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0919571D0 (en) * 2009-11-09 2009-12-23 Faria Julio J Improved method for manufacture of carbon fibre reinforced ceramic composites
CN103058711A (zh) * 2012-12-14 2013-04-24 西北工业大学 一种通过超高温陶瓷粉基体改性制备超高温陶瓷基复合材料的方法
CN107226707A (zh) * 2017-06-27 2017-10-03 中航复合材料有限责任公司 一种SiC/Si‑B‑C‑Zr陶瓷基复合材料的制备方法
CN108395266A (zh) * 2018-03-28 2018-08-14 中国航发北京航空材料研究院 一种纤维增强复相陶瓷基复合材料的制备方法
CN108424160A (zh) * 2018-03-28 2018-08-21 中国航发北京航空材料研究院 一种短周期碳化硅纤维增强碳化硅复合材料的制备方法
CN112079646A (zh) * 2020-09-17 2020-12-15 中国航空制造技术研究院 一种碳化硅纤维增强碳化硅陶瓷基复合材料的制备方法
CN112142486A (zh) * 2020-09-11 2020-12-29 中国航发北京航空材料研究院 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0919571D0 (en) * 2009-11-09 2009-12-23 Faria Julio J Improved method for manufacture of carbon fibre reinforced ceramic composites
CN103058711A (zh) * 2012-12-14 2013-04-24 西北工业大学 一种通过超高温陶瓷粉基体改性制备超高温陶瓷基复合材料的方法
CN107226707A (zh) * 2017-06-27 2017-10-03 中航复合材料有限责任公司 一种SiC/Si‑B‑C‑Zr陶瓷基复合材料的制备方法
CN108395266A (zh) * 2018-03-28 2018-08-14 中国航发北京航空材料研究院 一种纤维增强复相陶瓷基复合材料的制备方法
CN108424160A (zh) * 2018-03-28 2018-08-21 中国航发北京航空材料研究院 一种短周期碳化硅纤维增强碳化硅复合材料的制备方法
CN112142486A (zh) * 2020-09-11 2020-12-29 中国航发北京航空材料研究院 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法
CN112079646A (zh) * 2020-09-17 2020-12-15 中国航空制造技术研究院 一种碳化硅纤维增强碳化硅陶瓷基复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
向秋玲等: "HfB_2-ZrB_2-SiC改性C/C复合材料的制备及性能", 《粉末冶金材料科学与工程》, no. 02, 15 April 2020 (2020-04-15), pages 118 - 124 *
李瑛娟等: "炭素生产机械设备", 合肥工业大学出版社, pages: 223 - 86 *
黄伯云等, 合肥工业大学出版社 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804905A (zh) * 2022-05-10 2022-07-29 山东工业陶瓷研究设计院有限公司 一种复合材料制备方法
CN114804905B (zh) * 2022-05-10 2023-12-01 山东工业陶瓷研究设计院有限公司 一种复合材料制备方法
CN115180983A (zh) * 2022-08-01 2022-10-14 航天特种材料及工艺技术研究所 一种陶瓷基复合材料基体的高熵陶瓷改性方法和由此制得的高熵改性复合材料
CN115180983B (zh) * 2022-08-01 2023-03-10 航天特种材料及工艺技术研究所 一种陶瓷基复合材料基体的高熵陶瓷改性方法和由此制得的高熵改性复合材料
CN115650752A (zh) * 2022-10-17 2023-01-31 航天特种材料及工艺技术研究所 一种超高温陶瓷改性SiC/SiC复合材料的制备方法
CN115650753A (zh) * 2022-10-17 2023-01-31 航天特种材料及工艺技术研究所 一种梯度抗氧化SiC/SiC复合材料制备方法
CN115650753B (zh) * 2022-10-17 2024-01-16 航天特种材料及工艺技术研究所 一种梯度抗氧化SiC/SiC复合材料制备方法
CN115650752B (zh) * 2022-10-17 2024-01-16 航天特种材料及工艺技术研究所 一种超高温陶瓷改性SiC/SiC复合材料的制备方法
CN115745644A (zh) * 2022-11-14 2023-03-07 航天特种材料及工艺技术研究所 一种碳纤维增韧的陶瓷基复合材料及其制备方法
CN115745644B (zh) * 2022-11-14 2023-08-22 航天特种材料及工艺技术研究所 一种碳纤维增韧的陶瓷基复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN114163252A (zh) 一种超高温碳化硅陶瓷基复合材料的制备方法及超高温碳化硅陶瓷基复合材料
EP3549926B1 (en) Method for preparing c/c-sic composite material part
CN109265188B (zh) 一种碳纤维增强硼化铪-硼化钽-碳陶瓷基复合材料及其制备方法
CN110627517B (zh) 一种梯度超高温陶瓷基复合材料及其制备方法
WO2021120636A1 (zh) 3D打印制备碳纤维增强SiC陶瓷基复合材料的方法
CN110028330B (zh) 一种陶瓷基复合材料及其制备方法
CN106882974B (zh) 一种高HfC含量C/HfC-SiC复合材料的制备方法
CN101224990A (zh) 耐超高温陶瓷基复合材料及其制备方法
CN111070726A (zh) 纤维增强SiC基复合材料加筋承热结构的整体成型方法
CN112409009B (zh) 一种基于液相浸渍和原位转化提高热结构复合材料抗氧化性能的方法
CN107226707B (zh) 一种SiC/Si-B-C-Zr陶瓷基复合材料的制备方法
CN110563479A (zh) 一种超高温陶瓷基复合材料及其制备方法
CN110627514A (zh) 一种C/SiC-HfB2复合材料及其制备方法
CN110655414B (zh) 一种碳纤维增强碳-铪钽碳固溶体复合材料及其制备方法
CN112645725B (zh) 一种带有台阶结构的陶瓷基复合材料构件及其制备方法
CN112645723A (zh) 一种颗粒增强超高温陶瓷基复合材料的制备方法
CN106882976B (zh) 一种C/HfC-ZrC-SiC复合材料的制备方法
CN114853478B (zh) 一种梯度陶瓷基复合材料及其制备方法
CN113121253B (zh) 一种超高温C/SiHfBCN陶瓷基复合材料及其制备方法
CN110028329B (zh) 一种高导热陶瓷基复合材料及其制备方法
US6261692B1 (en) Carbon-carbon composites containing ceramic power and method for preparing the same
CN114685169A (zh) 一种基于浆料叠层设计的纤维增强碳化硅陶瓷基复合材料的制备方法
CN112457035A (zh) 一种Hf-Ta-C增强的C/SiC陶瓷基复合材料的制备方法
CN112110743A (zh) 一种制备碳/碳陶复合材料刹车盘的cvi、pip和rmi联合工艺
CN109095939B (zh) 一种碳化钨界面层改性的碳化硅纤维增强碳化硅复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220311