CN114100560A - 一种钛基锂离子交换体的制备方法 - Google Patents

一种钛基锂离子交换体的制备方法 Download PDF

Info

Publication number
CN114100560A
CN114100560A CN202111348797.0A CN202111348797A CN114100560A CN 114100560 A CN114100560 A CN 114100560A CN 202111348797 A CN202111348797 A CN 202111348797A CN 114100560 A CN114100560 A CN 114100560A
Authority
CN
China
Prior art keywords
lithium
titanium
powder
ion exchanger
metatitanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111348797.0A
Other languages
English (en)
Other versions
CN114100560B (zh
Inventor
孟强
戴毅華
张磊
杨进锋
班文俊
蔡荣富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huali Materials Co ltd
Chengdu Chemphys Chemical Industry Co Ltd
Original Assignee
Huali Materials Co ltd
Chengdu Chemphys Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huali Materials Co ltd, Chengdu Chemphys Chemical Industry Co Ltd filed Critical Huali Materials Co ltd
Priority to CN202111348797.0A priority Critical patent/CN114100560B/zh
Publication of CN114100560A publication Critical patent/CN114100560A/zh
Priority to AU2022386222A priority patent/AU2022386222A1/en
Priority to PCT/CN2022/129139 priority patent/WO2023083062A1/zh
Priority to JP2023567072A priority patent/JP2024522951A/ja
Priority to CA3215138A priority patent/CA3215138A1/en
Priority to EP22891858.7A priority patent/EP4321246A1/en
Application granted granted Critical
Publication of CN114100560B publication Critical patent/CN114100560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/10Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明为一种钛基锂离子交换体的制备方法。该方法包括步骤1偏钛酸锂前驱体制备,即钛源经球磨与锂源、水按比例均匀混合并添加助剂,超声且升温搅拌反应得偏钛酸锂前驱粉体;步骤2偏钛酸锂粉体制备,包括偏钛酸锂前驱体喷雾干燥、微波煅烧得偏钛酸锂粉体;步骤3洗脱置换,即采用洗脱剂浸出Li得锂离子交换体。该制备方法为固液相接触反应,原料配料比易于精准控制,通过超声加强合成反应,使得反应速率加快,采用微波煅烧有效降低了能耗;通过控制钛比例相对过量可制备孔隙率高、过滤性能良好的偏钛酸锂粉体,制备的锂离子交换体具有良好的提锂性能且钛溶损较低,能够较好地满足实际使用要求。

Description

一种钛基锂离子交换体的制备方法
技术领域
本发明涉及化工新材料制备技术领域,具体为一种钛基锂离子交换体的制备方法。
背景技术
随着科技发展,人们对锂盐的研究也不断深入,除了在化工医药方面重要应用,锂更作为一种新型能源和战略资源,在21世纪备受关注,特别是近年来随着锂电池技术的发展及其在可控核聚变领域中的应用,其作用更为凸显,目前国际需求量以每年7%~11%的速度持续增长。锂也因此被誉为“二十一世纪的能源金属”及“二十一世纪的清洁能源”。在新能源领域有着广阔应用前景,随着市场需求量的不断增大,锂矿石资源储量严重不足,目标转向稀液态资源中锂盐的开发,锂离子筛吸附剂具有良好的吸附选择性,能够经济地从卤水海水中提取分离锂离子,备受行业人员关注。
传统锂离子筛交换前驱体合成方法有溶胶凝胶法、水热法和高温固相法等,前两种工艺由于存在原料成本高、工艺复杂不易控制等问题,较难实现产业化;高温固相合成法工艺较为简单,易于实现量产,但原料粉体混合需进行多次研磨,锂钛比不易控制,合成的锂离子筛钛损偏高;该工艺存在煅烧时间长和温度高等问题,合成粉体粒径也较难控制。因此,我们还需要对该技术进行进一步研究。
发明内容
为解决现有技术中存在的问题,本发明的主要目的在于提供一种偏钛酸锂离子交换体及其制备方法,该方法为固液接触反应,原料配料比易于精准控制且反应过程温和,通过超声波加强合成反应,使得反应时间明显缩短;采用微波煅烧可有效降低煅烧温降,能耗明显降低,通过控制钛比例相对过量可制备粒度分布均匀、孔隙率高、过滤性能良好的偏钛酸锂粉体,制备的锂离子交换体具有较高吸附活性且钛损低,制备的锂离子筛(H2TiO3)粉体能够高选择性识别和吸附盐湖卤水、沉锂母液、高杂质含锂溶液、锂电池回收液以及其他含锂溶液中的Li,具有吸附容量高、吸附速率快、钛损低、循环稳定性好等特点。
为了实现上述发明目的,本发明采用的技术方案如下:
一种钛基锂离子交换体的制备方法,包括以下步骤:
步骤1、制备偏钛酸锂前驱体:将钛源经球磨处理,与锂源、水、金属掺杂试剂混合均匀,并添加助剂,超声波条件下升温搅拌反应,过滤、洗涤得偏钛酸锂前驱体,所述金属掺杂试剂为金属X盐;
步骤2、偏钛酸锂粉体的制备:
A)球磨:将偏钛酸锂前驱体按固液比1:2~1:5调浆,并在浆料中加入造孔剂后充分球磨混合均匀;
B)喷雾干燥:混合均匀的料浆进行喷雾造粒,干燥后得粉体;喷雾造粒温度为150-200℃;
C)煅烧:将步骤B)获得粉体在350-750℃下煅烧6~12小时,快速冷却至室温得到偏钛酸粉体;
步骤3、钛基锂离子交换体制备:
将步骤2煅烧所得粉体与洗脱液混合搅拌,浸洗出锂离子,得钛基锂离子交换体。
作为本申请中一种较好的实施方式,步骤1中所述钛源为偏钛酸锂或二氧化钛,其一次粒度为10~50nm,优选为10nm;比表面积为60~400m2/g,优选300m2/g。
作为本申请中一种较好的实施方式,步骤1中将偏钛酸或二氧化钛与水混合研磨成均一料浆,加水量按固(质量)含量20%-50%计;所述的锂源为固体氢氧化锂,其加入量按锂钛比(摩尔比)2~2.5:1~1.5计,锂钛比(摩尔比)更优选为2.01~2.50:1。
作为本申请中一种较好的实施方式,步骤1中所述金属掺杂剂为金属X盐,掺杂元素X为Mn、V、Fe、Nb、Ce、Mo、Mg、Al中的任意一种或几种的组合,其添加量按钛与掺杂金属的摩尔比=0.8~1.0:0~0.2添加,所述的金属X盐为Mn、V、Fe、Nb、Ce、Mo、Mg、Al中的任意一种或多种金属的可溶性盐或不可溶性盐。
作为本申请中一种较好的实施方式,所述助剂更优选双氧水,加入量为钛摩尔质量的0.5~1.5倍,所述双氧水浓度范围为10~40wt%。
作为本申请中一种较好的实施方式,步骤1中所述超声合成反应条件为:超声波频率优选为30KHZ-60KHZ,反应温度优选为40-110℃,反应时间优选为2-8h;
作为本申请中一种较好的实施方式,步骤1所述喷雾造粒前驱体粉体粒度D50为20~60um,喷雾浆料固含量控制25~60wt%。
作为本申请中一种较好的实施方式,步骤2中煅烧的条件更优选为400~600℃的空气气氛下煅烧3~6小时,更优选的煅烧方式为微波煅烧。
作为本申请中一种较好的实施方式,步骤1喷雾浆料的造孔剂为碳粉、碳纤维粉、碳纳米管、纳米纤维素、蔗糖、葡萄糖、聚乙烯醇、聚砜、聚芳砜、聚乙烯粉末和石蜡粉末中的任意一种或几种的混合物,喷雾浆料造孔剂的添加量为料浆质量的3%~10wt%,喷雾料浆固含量为30-60%。
作为本申请中一种较好的实施方式,步骤3所述洗脱液为硫酸、硝酸、盐酸、乙酸、柠檬酸、Na2S2O6和(NH4)2SO4中的任意一种或几种的组合。
与现有技术相比,本发明的积极效果体现在:
(一)该方法为固液接触反应,原料配料比易于精准控制且反应过程温和,通过超声波加强合成反应,使得反应时间明显缩短;采用微波煅烧可有效降低煅烧温降,能耗明显降低,通过控制钛比例相对过量可制备粒度分布均匀、孔隙率高、过滤性能良好的偏钛酸锂粉体。
(二)制备的锂离子交换体用于盐湖卤水或模拟卤水中提锂时,表现出较高的吸附活性,适用于锂含量0.1g/L-2g/L的模拟卤水,其锂吸附容量达30mg/g~50mg/g。
(三)制备的锂离子交换体吸附选择性高,吸附和解吸速率快,循环使用稳定性好,且钛损<0.01%。
(四)制备工艺中适当的钛过量对吸附容量对锂离子筛吸附性能与过滤性能均有有明显促进作用。
附图说明
图1为本发明所述一种钛基锂离子交换体的制备工艺流程示意图
图2为实施例3制备的钛基锂离子交换体的XRD图谱
图3为实施例3制备的钛基锂离子交换体的SEM显微镜图像
图4为实施例1制备的钛基锂离子交换体的静态吸附动力学曲线图。
具体实施方式
一种钛基锂离子交换体的制备方法,包括以下步骤:
步骤1、制备偏钛酸锂前驱体:将钛源经球磨处理,与锂源、水、金属掺杂试剂混合均匀,并添加助剂,超声波条件下升温搅拌反应,过滤、洗涤得偏钛酸锂前驱体,所述金属掺杂试剂为金属X盐;
步骤2、偏钛酸锂粉体的制备:
A)球磨:将偏钛酸锂前驱体按固液比1:2~1:5调浆,并在浆料中加入造孔剂后充分球磨混合均匀;
B)喷雾干燥:混合均匀的料浆进行喷雾造粒,干燥后得粉体;喷雾造粒温度为150-200℃;
C)煅烧:将步骤B)获得粉体在350-750℃下煅烧6~12小时,快速冷却至室温得到偏钛酸锂粉体;
步骤3、钛基锂离子交换体制备:
将步骤2煅烧所得粉体与洗脱液混合搅拌,浸洗出锂离子,得钛基锂离子交换体。
作为优选,步骤1中所述钛源为偏钛酸锂或二氧化钛,其一次粒度为10~50nm,优选为10nm;比表面积为60~400m2/g,优选300m2/g。
作为优选,步骤1中将偏钛酸或二氧化钛与水混合研磨成均一料浆,加水量按固(质量)含量20%-50%计;所述的锂源为固体氢氧化锂,其加入量按锂钛比(摩尔比)2.01~2.5:1计。
作为优选,步骤1中所述金属掺杂剂为金属X盐,掺杂元素X为Mn、V、Fe、Nb、Ce、Mo、Mg、Al中的任意一种或几种的组合,其添加量按钛与掺杂金属的摩尔比=0.8~1.0:0~0.2添加,所述的金属X盐为Mn、V、Fe、Nb、Ce、Mo、Mg、Al中一种或多种金属的可溶性盐或不可溶性盐。
作为优选,所述助剂更优选双氧水,其加入量为钛摩尔质量的0.5~1.5倍,所述双氧水浓度范围为10~40wt%。
作为优选,步骤1所述喷雾造粒前驱体粉体粒度D50为20~60um,喷雾浆料固含量控制25~60wt%,更优选为45~55wt%。
作为优选,步骤1中超声波升温搅拌反应的条件为,超声波频率优选为30KHZ-60KHZ,反应温度优选为40-110℃,反应时间优选为2-8h。
作为优选,步骤2中煅烧的条件为,400~600℃的空气气氛煅烧3~6小时,更优选煅烧方式为微波煅烧。
作为优选,步骤1喷雾浆料的造孔剂为碳粉、碳纤维粉、碳纳米管、纳米纤维素、蔗糖、葡萄糖、聚乙烯醇、聚砜、聚芳砜、聚乙烯粉末和石蜡粉末中的任意一种或几种的混合物,喷雾浆料造孔剂的添加量为料浆质量的3%~10wt%。
作为优选,步骤3所述洗脱液为硫酸、硝酸、盐酸、乙酸、柠檬酸、Na2S2O6和(NH4)2SO4中的任意一种或几种的组合。
前述本发明主方案及其各进一步选择方案可以自由组合以形成多个方案,均为本发明可采用并要求保护的方案;且本发明,(各非冲突选择)选择之间以及和其他选择之间也可以自由组合。本领域技术人员在了解本发明方案后根据现有技术和公知常识可明了有多种组合,均为本发明所要保护的技术方案,在此不做穷举。
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。本发明对于所述搅拌包括机械搅拌,高速分散等,其具体操作不进行限定,本发明所说的卤水,其具体也不进行限定,本领域技术人员熟知的即可。
以下实例分析数据中K、Ca、Na、Mg、B含量指标均采用ICP光谱法分析,Cl采用分光光度比色法分析,Li、Ti采用原子吸收光谱法分析测定,硫酸根采用硫酸钡浊度法(GB13580.6-92)测定。本申请所记载的%,如无特殊说明,均表示其质量百分含量,即wt%。
以下实施例中所采用的模拟卤水的化学组成如下:
Figure BDA0003354945020000071
实施例1:
步骤1:将40kg偏钛酸与10kg水混合球磨成均一料浆,然后加入10.5kg固体氢氧化锂和2.5g硫酸锰,40KHZ超声条件下,升温至80℃在常压下进行搅拌反应,反应过程逐滴添加双氧水(为钛摩尔量的0.5%),反应2.5h后过滤、洗涤,得偏钛酸锂前驱体。
步骤2、偏钛酸锂粉体制备:
A)球磨:将步骤1所得偏钛酸锂前驱体补加少量水,按固液比1:3.5调浆,并在浆料中加入3%的淀粉,充分球磨混合均匀;
B)喷雾干燥:将步骤A所得浆料进行喷雾预造粒,干燥后得粉体,喷雾预造粒温度为180℃;
C)煅烧:将步骤B获得粉体进行微波煅烧,煅烧温度为410℃,焙烧4h得前驱体Li2TiO3,测孔隙率可达82%。
步骤3、钛基锂离子交换体制备:
将步骤2煅烧所得粉体与洗脱液混合搅拌,浸洗出锂离子,得掺杂锰的锂离子交换体(H2TiO3)。
将制备得到的钛基锂离子交换体(H2TiO3)对模拟卤水进行吸附测试,经测定,该锂离子交换体(H2TiO3)在1h内锂吸附容量为30.5mg/g,连续24h锂饱和吸附容量为46.0mg/g,提锂回收效率为99.1%,洗脱率99.7%%,钛损<0.050%,静态吸附动力学曲线如图4所示,吸附2h已接近平衡。
实施例2:
制备方法与实施例1相似,不同之处在于将实施例1步骤1中掺杂金属盐硫酸锰用硫酸铝代替,制备了掺杂型锂离子交换体;
实施例3:
制备方法与实施例2相似,不同之处在于将实施例2步骤1中掺杂金属盐硫酸锰用草酸氧钒代替,制备了掺杂型锂离子交换体;
对比例1:
制备方法与实施例1相似,不同之处在于将实施例1步骤1中掺杂金属盐硫酸锰用硫酸镁代替,制备了掺杂型锂离子交换体;
对比例2:
制备方法与实施例1相似,不同之处在于将实施例1步骤1中掺杂金属盐硫酸锰用硫酸钴代替,制备了掺杂型锂离子交换体;
对比例3:
制备方法与实施例1相似,不同之处在于将实施例1步骤1中掺杂金属盐硫酸锰用硫酸镍代替,制备了掺杂型锂离子交换体;
以上制备得到的交换体与实施例中制备得到的钛基锂离子交换体(H2TiO3)进行吸附测试;
具体测试结果如下:
Item 1h锂吸附容量 Li回收率 合成时间/h BET/m<sup>2</sup>.g<sup>-1</sup> 前驱体孔隙率
实施例1 30.5mg/g 98.3% 2.5 22.1 72%
实施例2 28.5mg/g 96.6% 2.5 19.5 68%
实施例3 27.6mg/g 94.6% 2.5 16.5 66%
对比例1 17.9mg/g 90.6% 2.5 13.5 53%
对比例2 19.5mg/g 92.1% 2.5 14.7 58%
对比例3 18.3mg/g 91.3% 2.5 13.9. 51%
实施例4:
制备方法与实施例1相似,不同之处在于将实施例1中的前驱体合成反应过程取消超声,反应时间需进行12h,制备了掺杂型锂离子交换体;然后将实施例中制备得到的钛基锂离子交换体(H2TiO3)进行吸附测试,具体测试结果如下:
1h锂吸附容量 饱和锂吸量 Li回收率 吸附剂溶损 前驱体孔隙率
27.1mg/g 43mg/g 95.6% <0.05% 68%
实施例5:
一种钛基锂离子交换体(H2TiO3),制备方法与实施例1相似,不同之处在于将微波煅烧替换为高温炉煅烧,煅烧温度为600℃。然后将实施例中制备得到的钛基锂离子交换体(H2TiO3)进行吸附测试,具体测试结果如下:
1h锂吸附容量 饱和锂吸量 Li回收率 吸附剂溶损 前驱体孔隙率
20.1mg/g 40mg/g 98.6% <0.05% 73%
对比例4:
制备方法同实施例2,不同之处焙烧温度为500℃。
对比例5
制备方法同实施例2,不同之处焙烧温度为700℃。
将实施例2、对比例2和对比例3分别制备得到的锂离子交换体(H2TiO3)进行吸附测试,具体测试结果如下:
饱和锂吸量 Li回收率 吸附剂溶损 前驱体孔隙率
实施例5 40mg/g 98.6% <0.05% 73%
对比例4 26mg/g 91.3% 0.17% 67%
对比例5 33mg/g 93.7% 0.11% 71%
实施例6:
一种钛基锂离子交换体(H2TiO3),制备方法同实施例1相似,不同之处在于将步骤1的固体氢氧化锂加入量按锂钛摩尔比2:1.03(钛过量)添加,然后将制备得到的钛基锂离子交换体(H2TiO3)对模拟卤水进行吸附测试,具体测试结果如下:
1h锂吸附容量 饱和锂吸量 Li回收率 吸附剂溶损 BET/m<sup>2</sup>.g<sup>-1</sup> 前驱体孔隙率
35.1mg/g 50.1mg/g 99.1% <0.01% 19.3 75%
实施例7-9,一种钛基锂离子交换体(H2TiO3),制备方法同实施例6相似,不同之处,改变不同Li/Ti(摩尔比)条件,制备得到的钛基锂离子交换体(H2TiO3)对模拟卤水进行吸附测试,具体测试结果如下:
Figure BDA0003354945020000111
实施例10:
一种钛基锂离子交换体(H2TiO3),制备方法与实施例3相似,不同之处在于将造孔剂替换为壳聚糖,然后将制备得到的钛基锂离子交换体(H2TiO3)对模拟卤水进行吸附测试,具体测试结果如下:
1h锂吸附容量 饱和锂吸量 Li回收率 吸附剂溶损 BET/m<sup>2</sup>.g<sup>-1</sup> 前驱体孔隙率
36.3mg/g 51.5mg/g 98.3% <0.01% 20.3 75%
实施例11:
一种钛基锂离子交换体(H2TiO3),制备方法与实施例3相似,不同之处在于将造孔剂替换为聚砜粉体,然后将制备得到的钛基锂离子交换体(H2TiO3)对模拟卤水进行吸附测试,具体测试结果如下:
1h锂吸附容量 饱和锂吸量 Li回收率 吸附剂Ti损 BET/m<sup>2</sup>.g<sup>-1</sup> 前驱体孔隙率
37.1mg/g 51.9mg/g 98.3% <0.01% 25.3 82%
注:粉体孔隙率测定,取50g干燥至恒重离子交换粉体置于100ml量筒振实后读取体积V1,另取50g干燥至恒重离子交换加入200mL量筒,通过补加水并摇晃量筒得到混合均一料浆,补加水量为m,接着超声15min后静置1h,保证吸附剂吸水饱和后读取总体积V,则孔隙率Φ=(m-V)/V1×100%
注:钛损、洗脱率、回收率中占比%均是按行业标准计算公式所得,质量比。
循环稳定性实验
采用模拟卤水1,对实施例8制备的锂离子交换体(H2TiO3)进行吸附1.5h,接着水洗后过滤,采用0.22mol/L硫酸解析1.5h,接着水洗后过滤,重复100次循环稳定性实验,用ICP测其锂离子的浓度。评价结果如下:
循环次数 Li吸附容量 Li回收率 吸附剂Ti损
1 37.5mg/g 98.3% <0.01%
2 36.1mg/g 99.1% <0.01%
.... .... .... ....
15 35.1mg/g 95.7% <0.01%
16 37.2mg/g 94.7% <0.01%
.... .... .... ....
36 33.2mg/g 95.7% <0.01%
38 31.7mg/g 93.3% <0.01%
.... .... .... ....
60 28.6mg/g 91.3% <0.01%
.... .... .... ....
80 28.1mg/g 91.1% <0.01%
.... .... .... ....
90 27.5mg/g 92.1% <0.01%
.... .... .... ....
100 27.3mg/g 90.1% <0.01%
该锂离子交换体循环100次,粉体吸附剂稳定性良好,平均Li吸附容量稳定在>27mg/g,回收率>90%,Li洗脱率>95%。
不同卤水或含锂溶液吸附实验:
卤水1吸附测试
Figure BDA0003354945020000121
Figure BDA0003354945020000131
测得首次Li吸附容量25.8mg/g,Li回收率97.7%,循环50次后Li吸附容量21.5mg/g,Li回收率95.8%。
卤水2吸附测试
Figure BDA0003354945020000132
测得首次Li吸附容量19.8mg/g,Li回收率98.5%,循环50次后Li吸附容量18.5mg/g,Li回收率95.5%。
沉锂母液吸附测试
Figure BDA0003354945020000133
测得首次Li吸附容量30.8mg/g,Li回收率96.5%,循环50次后Li吸附容量为25.5mg/g,Li回收率为93.5%。
由上表可知,本发明制备的钛基锂离子交换体具有良好的吸附性能和循环稳定性。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本技术领域的普通技术人员来说,还可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种钛基锂离子交换体的制备方法,其特征在于包括如下步骤:
步骤1、制备偏钛酸锂前驱体:将钛源经球磨处理,与锂源、水、金属掺杂剂混合均匀,并添加助剂,在超声条件下升温搅拌反应,过滤、洗涤得偏钛酸锂前驱体;
步骤2、偏钛酸锂粉体的制备:
A)球磨:将偏钛酸锂前驱体按固液比1:2~1:5加水调浆,并在浆料中加入造孔剂后充分球磨混合均匀;
B)喷雾干燥:混合均匀的料浆进行喷雾造粒,干燥后得粉体;喷雾造粒温度为150-200℃;
C)煅烧:将步骤B)获得粉体在350-750℃下煅烧6~12小时,快速冷却至室温得到偏钛酸锂粉体;
步骤3、钛基锂离子交换体制备:
将步骤2煅烧所得粉体与洗脱液混合搅拌,浸洗出锂离子,得钛基锂离子交换体。
2.根据权利要求1所述的制备方法,其特征在于:步骤1中所述的钛源为偏钛酸或二氧化钛,偏钛酸或二氧化钛的一次粒度均为10-50nm,比表面积为60~400m2/g;所述的锂源为氢氧化锂;步骤1中所述金属掺杂剂为金属X盐,掺杂元素X为Mn、V、Fe、Nb、Ce、Mo、Mg、Al中的任意一种或几种的组合,其添加量按钛与掺杂金属的摩尔比=0.8~1.0:0~0.2添加,所述的金属X盐为Mn、V、Fe、Nb、Ce、Mo、Mg、Al中一种或多种金属的可溶性盐或不可溶性盐。
3.根据权利要求1或2所述的制备方法,其特征在于:钛源与水混合,加水量为固体质量的20%-50%;氢氧化锂的加入量按锂钛摩尔比2~2.5:1~1.5计;钛与金属掺杂剂的摩尔比为0.8~1.0:0~0.2。
4.根据权利要求1所述的制备方法,其特征在于:所述的助剂为双氧水、氨水、柠檬酸、草酸中的一种,加入量为钛摩尔质量的0~1.5倍。
5.根据权利要求1所述的制备方法,其特征在于步骤1中超声条件下,升温搅拌反应的参数为:超声波频率为20KHZ-60KHZ,反应温度为20~120℃,反应时间为4~24h。
6.根据权利要求1所述的制备方法,其特征在于:步骤1中煅烧方式为高温炉煅烧或微波煅烧。
7.根据权利要求1所述的制备方法,其特征在于:步骤1中喷雾造粒的前驱体粉体粒度D50为20~60um,喷雾浆料固含量控制25~60%。
8.根据权利要求1所述的制备方法,其特征在于:所述的造孔剂为淀粉、碳粉、碳纤维粉、碳纳米管、纳米纤维素、蔗糖、壳聚糖、葡萄糖、聚乙烯醇、聚砜、聚芳砜、聚乙烯粉末和石蜡粉末中的任意一种或几种的混合物,造孔剂的添加量为料浆质量的3%~10%。
9.根据权利要求1所述的制备方法,其特征在于:所述的洗脱液为硫酸、硝酸、盐酸、乙酸、柠檬酸、Na2S2O6和(NH4)2SO4中的任意一种。
10.一种偏钛酸锂离子交换体,其特征在于:由权利要求1~9任一所述的方法制备得到。
CN202111348797.0A 2021-11-15 2021-11-15 一种钛基锂离子交换体的制备方法 Active CN114100560B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202111348797.0A CN114100560B (zh) 2021-11-15 2021-11-15 一种钛基锂离子交换体的制备方法
AU2022386222A AU2022386222A1 (en) 2021-11-15 2022-11-02 Method for preparing titanium-based lithium ion exchanger
PCT/CN2022/129139 WO2023083062A1 (zh) 2021-11-15 2022-11-02 一种钛基锂离子交换体的制备方法
JP2023567072A JP2024522951A (ja) 2021-11-15 2022-11-02 チタン系リチウムイオン交換体の製造方法
CA3215138A CA3215138A1 (en) 2021-11-15 2022-11-02 Preparation method for titanium-based lithium ion exchanger
EP22891858.7A EP4321246A1 (en) 2021-11-15 2022-11-02 Method for preparing titanium-based lithium ion exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111348797.0A CN114100560B (zh) 2021-11-15 2021-11-15 一种钛基锂离子交换体的制备方法

Publications (2)

Publication Number Publication Date
CN114100560A true CN114100560A (zh) 2022-03-01
CN114100560B CN114100560B (zh) 2023-07-25

Family

ID=80395506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111348797.0A Active CN114100560B (zh) 2021-11-15 2021-11-15 一种钛基锂离子交换体的制备方法

Country Status (6)

Country Link
EP (1) EP4321246A1 (zh)
JP (1) JP2024522951A (zh)
CN (1) CN114100560B (zh)
AU (1) AU2022386222A1 (zh)
CA (1) CA3215138A1 (zh)
WO (1) WO2023083062A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083062A1 (zh) * 2021-11-15 2023-05-19 成都开飞高能化学工业有限公司 一种钛基锂离子交换体的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023290A1 (en) * 1995-12-22 1997-07-03 Ivo Power Engineering Oy Granular titanate ion exchangers and method for preparation thereof
CN103991908A (zh) * 2014-05-08 2014-08-20 华东理工大学 通过阳离子掺杂调控锂离子筛稳定性的方法
JP2016195981A (ja) * 2015-04-06 2016-11-24 日本化学工業株式会社 吸着剤及び吸着剤の製造方法
CN109173976A (zh) * 2018-09-07 2019-01-11 成都理工大学 一种高效分离提取卤水中锂的偏钛酸型锂吸附剂的合成方法
CN110975795A (zh) * 2019-12-20 2020-04-10 南京工业大学 一种提锂吸附剂的合成方法
CN113274971A (zh) * 2021-03-12 2021-08-20 北京泰丰先行新能源科技有限公司 一种钛型锂离子筛及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114100560B (zh) * 2021-11-15 2023-07-25 成都开飞高能化学工业有限公司 一种钛基锂离子交换体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023290A1 (en) * 1995-12-22 1997-07-03 Ivo Power Engineering Oy Granular titanate ion exchangers and method for preparation thereof
CN103991908A (zh) * 2014-05-08 2014-08-20 华东理工大学 通过阳离子掺杂调控锂离子筛稳定性的方法
JP2016195981A (ja) * 2015-04-06 2016-11-24 日本化学工業株式会社 吸着剤及び吸着剤の製造方法
CN109173976A (zh) * 2018-09-07 2019-01-11 成都理工大学 一种高效分离提取卤水中锂的偏钛酸型锂吸附剂的合成方法
CN110975795A (zh) * 2019-12-20 2020-04-10 南京工业大学 一种提锂吸附剂的合成方法
CN113274971A (zh) * 2021-03-12 2021-08-20 北京泰丰先行新能源科技有限公司 一种钛型锂离子筛及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083062A1 (zh) * 2021-11-15 2023-05-19 成都开飞高能化学工业有限公司 一种钛基锂离子交换体的制备方法

Also Published As

Publication number Publication date
JP2024522951A (ja) 2024-06-24
WO2023083062A1 (zh) 2023-05-19
CN114100560B (zh) 2023-07-25
AU2022386222A1 (en) 2023-10-26
EP4321246A1 (en) 2024-02-14
CA3215138A1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
Li et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources
Yao et al. Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U (VI) and 241Am (III) efficient removal: batch and EXAFS studies
Shi et al. Synthesis and properties of Li1. 6Mn1. 6O4 and its adsorption application
WO2019109831A1 (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
CN104525094B (zh) 一种锰系离子筛吸附剂及其前驱体的制备方法
CN100444953C (zh) 一种水滑石/碳纳米管异质结构材料及其制备方法
CN106311190A (zh) 多孔锰系锂离子筛吸附剂的制备方法
Chen et al. Highly stable and activated Cerium-based MOFs superstructures for ultrahigh selective uranium (VI) capture from simulated seawater
CN115155510B (zh) 一种铝盐提锂功能材料的制备方法
CN112791691B (zh) 一种包覆型锂离子筛及其制备方法
CN108579661B (zh) 一种掺杂改性锂离子筛及其制备方法、应用
CN110787790B (zh) 海胆状金属氧化物多孔光催化材料及其制备方法和应用
Zhang et al. Practical synthesis of manganese oxide MnO2· 0.5 H2O for an advanced and applicable lithium ion-sieve
CN112919530B (zh) 介孔二氧化钛材料及其制备方法和催化剂及其制备方法以及烟气脱硝方法
CN111559760A (zh) 一种磁性水滑石及其制备方法和应用
CN114100560B (zh) 一种钛基锂离子交换体的制备方法
CN110180489B (zh) 一种掺硫富锂锰系锂吸附剂及其制备方法和应用
CN109078601B (zh) 一种纳米管状锰氧化物锂离子筛吸附剂的制备方法
CN107970918B (zh) 一种球形脱硝催化剂及其制备方法
Yu et al. Efficient removal of bismuth with supersoluble amorphous antimony acids: an insight into synthesis mechanism and Sb (V)-Bi (III) interaction behaviors
CN111298758B (zh) 镧掺杂镁铁氧体复合材料及其制备方法与应用
CN107199010A (zh) 一种多级核壳结构提锂材料及其制备方法
CN111704160A (zh) 一种选择性提取锂的钛基离子筛及制备方法和应用
CN113617327B (zh) 一种纳米单晶锰系锂吸附剂的合成方法
CN109126771A (zh) 非贵金属VOCs催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant