CN114094083B - 一种铌改性的钠离子电池多元正极材料及其制备方法、高镍钠离子电池 - Google Patents

一种铌改性的钠离子电池多元正极材料及其制备方法、高镍钠离子电池 Download PDF

Info

Publication number
CN114094083B
CN114094083B CN202111398961.9A CN202111398961A CN114094083B CN 114094083 B CN114094083 B CN 114094083B CN 202111398961 A CN202111398961 A CN 202111398961A CN 114094083 B CN114094083 B CN 114094083B
Authority
CN
China
Prior art keywords
nickel
niobium
positive electrode
ion battery
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111398961.9A
Other languages
English (en)
Other versions
CN114094083A (zh
Inventor
曹扬
李鹏飞
邹景田
彭德招
王�琦
张佳峰
王小玮
张宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202111398961.9A priority Critical patent/CN114094083B/zh
Publication of CN114094083A publication Critical patent/CN114094083A/zh
Application granted granted Critical
Publication of CN114094083B publication Critical patent/CN114094083B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种铌改性的高镍钠离子电池三元正极材料,包括铌掺杂高镍钠离子电池三元正极材料本体NaNixCoyZr1‑x‑y‑zNbzO2和NaNbO3包覆层。还提供一种该材料的制备方法,包括:配制镍源、钴源和锆源的金属混合溶液;将金属混合溶液、沉淀剂溶液、络合剂溶液并流通入反应釜中,进行共沉淀反应,得到前驱体料浆,经陈化后,进行固液分离、洗涤和干燥,得到镍钴锆三元前驱体;将所得镍钴锆三元前驱体、钠源、铌源、添加剂和有机溶剂进行高能球磨、干燥,然后将所得的物料过筛;将过筛所得的物料,进行两段烧结,即得。该材料一致性好、离子电导率较高、高容量、循环性能好。

Description

一种铌改性的钠离子电池多元正极材料及其制备方法、高镍 钠离子电池
技术领域
本发明属于钠离子电池正极材料领域,具体涉及一种铌改性的高镍钠离子电池三元正极材料及其制备方法、高镍钠离子电池。
背景技术
锂离子电池广泛应用于3C数码、电站储能、新能源电动汽车等行业,随着锂离子电池的快速发展,锂资源的需求不断增加,有限的锂资源已严重限制了未来锂离子电池的发展。而位于同一主族与锂具有相似的物理化学性质的钠在全球储量丰富,成本低廉,具有广泛的可用性,钠离子电池也日益受到广大科研工作者的注意。但是,钠离子电池仍存在着低稳定性、低克容量和Jahn-Teller效应引起的结构坍塌等问题,且由于锂离子电池的高容量高循环性能等优异电化学定能使得钠离子电池的发展受到极大限制,因此开发高容量高稳定性的钠离子电池正极材料成为当今时代研究钠离子电池的重点。
发明内容
本发明解决的技术问题是:克服现有技术不足,本发明提供一种简单可行的铌改性的钠离子电池三元正极材料的制备方法,所述方法采用共沉淀法制备镍钴锆三元前驱体,再通过高温固相法制得本发明所述的一种铌改性的钠离子电池三元正极材料,简化了制备过程,提高了产率,利用铌的掺杂和包覆的协同手段,增强了材料的结构稳定性。
为解决上述技术问题,本发明采用如下的技术方案:
一种铌改性的高镍钠离子电池三元正极材料,包括铌掺杂高镍钠离子电池三元正极材料本体和包覆层,所述铌掺杂高镍钠离子电池三元正极材料本体的化学通式为NaNixCoyZr1-x-y-zNbzO2,其中,0.65≤x≤0.8,0<y≤0.2,0.0001≤z≤0.005,所述包覆层为NaNbO3
作为优选,三元正极材料的粒径D10为1~3μm,D90为5~10μm。
作为优选,所述三元正极材料的球形度为0.5~1。
作为优选,包覆层为高镍钠离子电池三元正极材料质量的0.005~0.01%。
作为一个总的发明构思,本发明还提供一种铌改性的高镍钠离子电池三元正极材料的制备方法,包括以下步骤:
(1)配制镍源、钴源和锆源的金属混合溶液;
(2)将金属混合溶液、沉淀剂溶液、络合剂溶液并流通入反应釜中,进行共沉淀反应,得到前驱体料浆,经陈化后,进行固液分离、洗涤和干燥,得到镍钴锆三元前驱体;
(3)将所得镍钴锆三元前驱体、钠源、铌源、添加剂和有机溶剂进行高能球磨、干燥,然后将所得的物料过筛;
(4)将过筛所得的物料,进行两段烧结,得到分散性良好的铌改性的高镍钠离子电池三元正极材料。
作为优选,步骤(3)中,所述高能球磨混合的转速100~1000r/min,球的直径为10~100mm,球磨时间为12~48h,球料比为1:1~20:1;所述的干燥温度为100~150℃,干燥时间为4~12h;所述的过筛的筛网的大小为300~800目。
作为优选,所述添加剂为邻苯二甲酸酯、对苯二甲酸酯、苯甲酸酯、多元醇酯中的一种或多种;添加剂的质量为镍钴锆三元前驱体、钠源和铌源总质量的1%~5%;
所述有机溶剂为甲醇、乙醇、丙酮、异丙醇中的一种或多种;
所述钠源为乙酸钠、草酸钠、海藻酸钠、柠檬酸钠中的一种或多种;
所述铌源为草酸铌、乙酸铌、正丙醇铌中的一种或多种。
作为优选,步骤(3)中,所述镍钴锆三元前驱体、钠源、铌源的金属摩尔比为Na:Ni+Co+Zr:Nb=1.02~1.08:1:0.001~0.01。
作为优选,步骤(2)中,所述共沉淀反应的pH值为8~12,游离氨浓度为6~12g/L(进一步优选游离氨浓度为8~12g/L),反应的温度为45~65℃(进一步优选55~65℃),搅拌速度为100~600r/min(进一步优选300~600r/min),共沉淀反应的时间为12h~48h。
作为优选,所述沉淀剂溶液为碳酸钠、氢氧化钠的一种或多种;所述沉淀剂溶液中沉淀剂的浓度为5~10mol/L;
所述络合剂溶液为氨水溶液;所述络合剂溶液中络合剂的浓度为2~10mol/L;
所述金属混合溶液的金属总浓度为1~4mol/L;
所述镍源为乙酸镍、硝酸镍、硫酸镍中的一种或多种;
所述钴源为硫酸钴、硝酸钴中的一种或多种;
所述锆源为硫酸锆、硝酸锆、乙酸锆、柠檬酸锆一种或多种。
作为优选,步骤(4)中,两段烧结中,第一段烧结温度为300~600℃,时间为3~8h;第二段烧结温度为时间为600~900℃,时间为12~20h。
作为优选,步骤(2)中,所述陈化温度40~55℃,陈化时间为16~24h。
作为一个总的发明构思,本发明还提供一种高镍钠离子电池,包括正极,所述正极采用前述的高镍钠离子电池三元正极材料或前述的制备方法制备的高镍钠离子电池三元正极材料作为正极活性材料。
与现有技术相比,本发明具有以下有益效果:
(1)针对现有钠离子电池三元正极材料通常含锰,存在Jahn-Teller效应引起的结构坍塌等问题,针对该问题,本发明开发了一种新的正极材料NaNixCoyZr1-x-yO2来克服该缺陷,且该正极材料的性能相对较好,然而,申请人发现,该正极材料虽然能够克服该技术问题,但是仍存在稳定性和克容量相对较低,循环性能相对较差。本发明提供一种采用铌进行包覆和掺杂双重改性的三元正极材料,该材料表面形成NaNbO3包覆层,获得了一种一致性好、离子电导率较高、高容量、循环性能好的钠离子电池三元正极材料。
(2)本发明开发了正极材料NaNixCoyZr1-x-yO2消除了Jahn-Teller效应,并通过Nb对该正极材料基体进行改性来获得一种一致性好、离子电导率较高、高容量、循环性能好的钠离子电池三元正极材料。本发明采用高能球磨将前驱体、钠源和铌源混合均匀,并在高能球磨时添加特殊添加剂及有机溶剂,能改善前驱体颗粒的形貌,将共沉淀时附着与颗粒表面的反应不完全的物质通过高能球磨与颗粒分离,且可以有效防止前驱体二次颗粒的破碎,使钠源、铌源、添加剂均匀分散在颗粒表面;最后通过过筛将细小颗粒过滤,可以提高颗粒粒径分布的集中度,进而在烧结过程中减少结块,这种方法操作简单、在改善钠离子电池正极材料形貌的同时,提高了材料的结构稳定性。铌掺杂进入TM层,由于铌的原子半径较大,扩大了晶格间距,起到了支撑材料金属层的作用,稳定了晶格结构,同时有利于钠离子的传输。另外铌的包覆层可以有效减少电极材料与电解液副反应的发生,同时铌酸钠的离子导率较高,提供钠离子的三维快速传输通道,可以增加钠离子传输速率及材料循环稳定性能。该材料具有良好的倍率性能和优异的循环稳定性,且制备方法简单可控。
(3)本发明的制备方法工艺简单、简化了制备过程,成本低廉、适合工业化生产,且对正极材料的电化学性能有明显的的改善。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1制备铌改性的钠离子电池三元正极材料的SEM图。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本文发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。
实施例1
铌改性的钠离子电池三元正极材料制备方法,包括下列步骤:
(1)将硫酸镍、硫酸钴、硝酸锆按摩尔比0.8:0.15:0.05加入去离子水中,搅拌均匀,配制成2mol/L的混合盐溶液;
(2)将步骤(1)得到的混合盐溶液,以及10mol/L的沉淀剂NaOH溶液和6mol/L络合剂NH3·H2O溶液共同加入反应釜内,进行共沉淀反应,并以300rpm速度不断搅拌,控制反应釜的温度为60℃,反应液的氨值为10g/L,pH值为8左右,共沉淀法反应18h,在55℃下陈化16h,得固液混合浆料Ni0.8Co0.15Zr0.05(OH)2
(3)将步骤(2)得到的料浆经过固液分离后,用60℃的去离子水洗涤固体,最后在120℃下干燥4h得到镍钴锆三元前驱体。
(4)按照摩尔比Na:(Ni+Co+Zr)=1.03:1称取一定比例钠源,摩尔比Nb:(Ni+Co+Zr)=0.01:1称取一定比例铌源,量取镍钴锆三元前驱体、钠源、铌源质量比3%苯甲酸酯,按照固液比1:1量取无水乙醇。将钠源、铌源、苯甲酸酯、无水乙醇与步骤(3)所得的镍钴锆三元前驱体高能球磨混合均匀,球磨转速300r/min,球为15mm,球料比为10:1,球磨时间为16h;将球磨后物料在120℃下干燥4h,过800目筛。将得到的物料在纯氧气氛中先在400℃煅烧5h,然后升温至800℃煅烧16h,再降温即得铌改性的三元正极材料,使用颗粒动态光电投影仪检测材料的球形度为0.65(按照标准GB/T 37406-2019)。
采用本实施例铌改性的三元正极材料制成的正极组装成纽扣电池,进行电化学性能测试,在25℃下,0.1C(1C=200mA/g)在2~4V电压范围下的首次放电克容量达190.8mAh/g,循环100圈后容量保持率达93%。
实施例2
铌改性的钠离子电池三元正极材料制备方法,包括下列步骤:
(1)将硫酸镍、硫酸钴、硝酸锆按摩尔比0.65:0.15:0.2加入去离子水中,搅拌均匀,配制成2mol/L的混合盐溶液;
(2)将步骤(1)得到的混合盐溶液,以及10mol/L的沉淀剂NaOH溶液和6mol/L络合剂NH3·H2O溶液共同加入反应釜内,进行共沉淀反应,并以300rpm速度不断搅拌,控制反应釜的温度为55℃,反应液的氨值为10g/L,pH值为9左右,共沉淀法反应18h,在55℃下陈化16h,得固液混合浆料Ni0.6Co0.3Zr0.1(OH)2
(3)将步骤(2)得到的料浆经过固液分离后,用60℃的去离子水洗涤固体,最后在120℃下干燥4h得到镍钴锆三元前驱体。
(4)按照摩尔比Na:(Ni+Co+Zr)=1.05:1称取一定比例钠源,摩尔比Nb:(Ni+Co+Zr)=0.005:1称取一定比例铌源,量取镍钴锆三元前驱体、钠源和铌源总质量比3%苯甲酸酯,按照固液比1:1量取无水乙醇。将钠源、铌源、苯甲酸酯、无水乙醇与步骤(3)所得的镍钴锆三元前驱体高能球磨混合均匀,球磨转速350r/min,球为20mm,球料比为15:1,球磨时间为12h;将球磨后物料在120℃下干燥4h,再过600目筛。将得到的物料在纯氧气氛中先在400℃煅烧5h,然后升温至900℃煅烧16h,再降温即得铌改性的三元正极材料。
采用本实施例铌改性的三元正极材料制成的正极组装成纽扣电池,进行电化学性能测试,在25℃下,0.1C(1C=200mA/g)在2~4V电压范围内,下的首次放电克容量达171.3mAh/g,循环100圈后容量保持率达95%。
对比例1
铌改性的钠离子电池三元正极材料制备方法,包括下列步骤:
(1)将硫酸镍、硫酸钴、硝酸锆按摩尔比0.65:0.15:0.2加入去离子水中,搅拌均匀,配制成2mol/L的混合盐溶液;
(2)将步骤(1)得到的混合盐溶液,以及10mol/L的沉淀剂NaOH溶液和6mol/L络合剂NH3·H2O溶液共同加入反应釜内,进行共沉淀反应,并以300rpm速度不断搅拌,控制反应釜的温度为55℃,反应液的氨值为10g/L,pH值为9左右,共沉淀法反应18h,在55℃下陈化16h,得固液混合浆料Ni0.6Co0.3Zr0.1(OH)2
(3)将步骤(2)得到的料浆经过固液分离后,用60℃的去离子水洗涤固体,最后在120℃下干燥4h得到镍钴锆三元前驱体。
(4)按照摩尔比Na:(Ni+Co+Zr)=1.05:1称取一定比例钠源,摩尔比Nb:(Ni+Co+Zr)=0.005:1称取一定比例铌源,将钠源、铌源与步骤(3)所得的镍钴锆三元前驱体球磨混合均匀,球磨转速100r/min,球为20mm,球料比为15:1,球磨时间为12h。将得到的物料在纯氧气氛中先在400℃煅烧5h,然后升温至900℃煅烧16h,再降温即得铌改性的三元正极材料。
采用本对比例铌改性的三元正极材料制成的正极组装成纽扣电池,进行电化学性能测试,在25℃下,0.1C(1C=200mA/g)在2~4V电压范围内,下的首次放电克容量达169.2mAh/g,循环100圈后容量保持率达83%。
对比例2
镍钴锆钠离子电池三元正极材料制备方法,包括下列步骤:
(1)将硫酸镍、硫酸钴、硝酸锆按摩尔比0.8:0.15:0.05加入去离子水中,搅拌均匀,配制成2mol/L的混合盐溶液;
(2)将步骤(1)得到的混合盐溶液,以及10mol/L的沉淀剂NaOH溶液和6mol/L络合剂NH3·H2O溶液共同加入反应釜内,进行共沉淀反应,并以300rpm速度不断搅拌,控制反应釜的温度为60℃,反应液的氨值为10g/L,pH值为8左右,共沉淀法反应18h,在55℃下陈化16h,得固液混合浆料Ni0.8Co0.15Zr0.05(OH)2
(3)将步骤(2)得到的料浆经过固液分离后,用60℃的去离子水洗涤固体,最后在120摄氏度下干燥4h得到镍钴锆三元前驱体。
(4)按照摩尔比Na:(Ni+Co+Zr)=1.03:1称取一定比例钠源,将钠源与步骤(3)所得的镍钴锆三元前驱体高能球磨混合均匀,球磨转速300r/min,球为15mm,球料比为10:1,球磨时间为16h;将球磨后物料在120℃下干燥4h,再过800目筛。将得到的物料在纯氧气氛中先在400℃煅烧5h,然后升温至900℃煅烧16h,再降温即得NaNi0.8Co0.15Zr0.05O2材料。
采用本对比例的NaNi0.8Co0.15Zr0.05O2材料制成的正极组装成纽扣电池,进行电化学性能测试,在25℃下,0.1C(1C=200mA/g)在2~4V电压范围内,下的首次放电克容量达180.2mAh/g,循环100圈后容量保持率达73%。
对比例3
铌改性的钠离子电池三元正极材料制备方法,包括步骤:
(1)将硫酸镍、硫酸钴、硝酸锆按摩尔比0.8:0.15:0.05加入去离子水中,搅拌均匀,配制成2mol/L的混合盐溶液;
(2)将步骤(1)得到的混合盐溶液,以及10mol/L的沉淀剂NaOH溶液和6mol/L络合剂NH3·H2O溶液共同加入反应釜内,进行共沉淀反应,并以300rpm速度不断搅拌,控制反应釜的温度为60℃,反应液的氨值为10g/L,pH值为8左右,共沉淀法反应18h,在55℃下陈化16h,得固液混合浆料Ni0.8Co0.15Zr0.05(OH)2
(3)将步骤(2)得到的料浆经过固液分离后,用60℃的去离子水洗涤固体,最后在120℃下干燥4h得到镍钴锆三元前驱体。
(4)按照摩尔比Na:(Ni+Co+Zr)=1.03:1称取一定比例钠源,摩尔比Nb:(Ni+Co+Zr)=0.01:1称取一定比例铌源,量取镍钴锆三元前驱体、钠源,按照固液比1:1量取无水乙醇。将钠源、铌源、无水乙醇与步骤(3)所得的镍钴锆三元前驱体高能球磨混合均匀,球磨转速300r/min,球为15mm,球料比为10:1,球磨时间为16h;将球磨后物料在120℃下干燥4h,过800目筛。将得到的物料在纯氧气氛中先在400℃煅烧5h,然后升温至800℃煅烧16h,再降温即得铌改性的三元正极材料,使用颗粒动态光电投影仪检测材料的球形度为0.42(按照标准GB/T 37406-2019)。
采用铌改性的三元正极材料制成的正极组装成纽扣电池,进行电化学性能测试,在25℃下,0.1C(1C=200mA/g)在2~4V电压范围下的首次放电克容量达185.3mAh/g,循环100圈后容量保持率达86%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种铌改性的高镍钠离子电池三元正极材料的制备方法,其特征在于,包括以下步骤:
(1)配制镍源、钴源和锆源的金属混合溶液;
(2)将金属混合溶液、沉淀剂溶液、络合剂溶液并流通入反应釜中,进行共沉淀反应,得到前驱体料浆,经陈化后,进行固液分离、洗涤和干燥,得到镍钴锆三元前驱体;
(3)将所得镍钴锆三元前驱体、钠源、铌源、添加剂和有机溶剂进行高能球磨、干燥,然后将所得的物料过筛;所述钠源为乙酸钠、草酸钠、海藻酸钠和柠檬酸钠中的一种或多种;所述铌源为草酸铌、乙酸铌和正丙醇铌中的一种或多种;
(4)将过筛所得的物料,进行两段烧结,得到分散性良好的铌改性的高镍钠离子电池三元正极材料;所述铌改性的高镍钠离子电池三元正极材料包括铌掺杂高镍钠离子电池三元正极材料本体和包覆层,所述铌掺杂高镍钠离子电池三元正极材料本体的化学通式为NaNixCoyZr1-x-y-zNbzO2,其中,0.65≤x≤0.8,0<y≤0.2,0.0001≤z≤0.005,所述包覆层为NaNbO3
2.如权利要求1所述的铌改性的高镍钠离子电池三元正极材料的制备方法,其特征在于,步骤(3)中,所述高能球磨混合的转速100~1000r/min,球的直径为10~100mm,球磨时间为12~48h,球料比为1:1~20:1;所述的干燥温度为100~150℃,干燥时间为4~12h;所述的过筛的筛网的大小为300~800目。
3.如权利要求1或2所述的铌改性的高镍钠离子电池三元正极材料的制备方法,其特征在于,所述添加剂为邻苯二甲酸酯、对苯二甲酸酯、苯甲酸酯和多元醇酯中的一种或多种;添加剂的质量为镍钴锆三元前驱体、钠源和铌源总质量的1%~5%;
所述有机溶剂为甲醇、乙醇、丙酮和异丙醇中的一种或多种。
4.如权利要求1或2所述的铌改性的高镍钠离子电池三元正极材料的制备方法,其特征在于,步骤(3)中,所述钠源、镍钴锆三元前驱体总金属量、铌源的金属摩尔比Na:Ni+Co+Zr:Nb为1.02~1.08:1:0.001~0.01。
5.如权利要求1或2所述的铌改性的高镍钠离子电池三元正极材料的制备方法,其特征在于,步骤(2)中,所述共沉淀反应的pH值为8~12,游离氨浓度为6~12g/L,反应的温度为45~65℃,搅拌速度为100~600r/min,共沉淀反应的时间为12h~48h。
6.如权利要求1或2所述的铌改性的高镍钠离子电池三元正极材料的制备方法,其特征在于,所述沉淀剂溶液为碳酸钠、氢氧化钠的一种或多种;所述沉淀剂的浓度为5~10mol/L;
所述络合剂溶液为氨水溶液;所述络合剂的浓度为2~10mol/L;
所述金属混合溶液的金属总浓度为1~4mol/L;
所述镍源为乙酸镍、硝酸镍和硫酸镍中的一种或多种;
所述钴源为硫酸钴、硝酸钴中的一种或多种;
所述锆源为硫酸锆、硝酸锆、乙酸锆和柠檬酸锆一种或多种。
7.如权利要求1或2所述的铌改性的高镍钠离子电池三元正极材料的制备方法,其特征在于,步骤(4)中,两段烧结中,第一段烧结温度为300~600℃,时间为3~8h;第二段烧结温度为时间为600~900℃,时间为12~20h。
8.如权利要求1或2所述的铌改性的高镍钠离子电池三元正极材料的制备方法,其特征在于,步骤(2)中,所述陈化温度40~55℃,陈化时间为16~24h。
9.铌改性的高镍钠离子电池三元正极材料,其特征在于,包括如权利要求1~8任意一项所述的制备方法制备得到。
10.一种高镍钠离子电池,包括正极,所述正极采用如权利要求9所述的高镍钠离子电池三元正极材料作为活性物质。
CN202111398961.9A 2021-11-23 2021-11-23 一种铌改性的钠离子电池多元正极材料及其制备方法、高镍钠离子电池 Active CN114094083B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111398961.9A CN114094083B (zh) 2021-11-23 2021-11-23 一种铌改性的钠离子电池多元正极材料及其制备方法、高镍钠离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111398961.9A CN114094083B (zh) 2021-11-23 2021-11-23 一种铌改性的钠离子电池多元正极材料及其制备方法、高镍钠离子电池

Publications (2)

Publication Number Publication Date
CN114094083A CN114094083A (zh) 2022-02-25
CN114094083B true CN114094083B (zh) 2024-02-02

Family

ID=80303600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111398961.9A Active CN114094083B (zh) 2021-11-23 2021-11-23 一种铌改性的钠离子电池多元正极材料及其制备方法、高镍钠离子电池

Country Status (1)

Country Link
CN (1) CN114094083B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606675A (zh) * 2013-12-06 2014-02-26 中国科学院宁波材料技术与工程研究所 一种金属离子掺杂的锂镍钴氧正极材料的制备方法
CN107074579A (zh) * 2014-05-22 2017-08-18 夏普株式会社 含锡化合物
WO2017213462A1 (ko) * 2016-06-09 2017-12-14 한양대학교 산학협력단 소듐 이차전지용 양극활물질, 및 이의 제조 방법
CN109921000A (zh) * 2019-03-22 2019-06-21 河南大学 表面包覆压电材料的锂离子电池正极材料及其制备方法
CN110127777A (zh) * 2019-06-10 2019-08-16 浙江帕瓦新能源股份有限公司 一种湿法掺锆浓度梯度镍钴铝三元前驱体及其制备方法
GB202011681D0 (en) * 2019-10-18 2020-09-09 Echion Tech Limited Active electrode material
CN113314700A (zh) * 2021-05-11 2021-08-27 电子科技大学 一种双重作用改性锂离子电池高镍正极材料及其制备方法
CN113479944A (zh) * 2021-09-07 2021-10-08 中南大学 一种改性高镍三元正极材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368789B2 (en) * 2013-04-16 2016-06-14 Board Of Regents, The University Of Texas System Nanocomposite anode materials for sodium-ion batteries

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606675A (zh) * 2013-12-06 2014-02-26 中国科学院宁波材料技术与工程研究所 一种金属离子掺杂的锂镍钴氧正极材料的制备方法
CN107074579A (zh) * 2014-05-22 2017-08-18 夏普株式会社 含锡化合物
WO2017213462A1 (ko) * 2016-06-09 2017-12-14 한양대학교 산학협력단 소듐 이차전지용 양극활물질, 및 이의 제조 방법
CN109921000A (zh) * 2019-03-22 2019-06-21 河南大学 表面包覆压电材料的锂离子电池正极材料及其制备方法
CN110127777A (zh) * 2019-06-10 2019-08-16 浙江帕瓦新能源股份有限公司 一种湿法掺锆浓度梯度镍钴铝三元前驱体及其制备方法
GB202011681D0 (en) * 2019-10-18 2020-09-09 Echion Tech Limited Active electrode material
CN113314700A (zh) * 2021-05-11 2021-08-27 电子科技大学 一种双重作用改性锂离子电池高镍正极材料及其制备方法
CN113479944A (zh) * 2021-09-07 2021-10-08 中南大学 一种改性高镍三元正极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄永才.《电源技术》2019年总索引(第43卷,1~12期).电源技术.2019,第43卷(第12期),全文. *

Also Published As

Publication number Publication date
CN114094083A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
CN108847477B (zh) 一种镍钴锰酸锂三元正极材料及其制备方法
CN113488634B (zh) 双层包覆改性高镍无钴单晶三元正极材料及其制备方法
CN106505193A (zh) 单晶镍钴锰酸锂正极材料及其制备方法和锂离子电池
CN113845158B (zh) 一种多孔球形结构镍锰酸钠正极材料的制备方法
CN111422926A (zh) 一种核壳结构Al/La共掺杂高镍三元前驱体及其制备方法、以及一种正极材料
CN111916727A (zh) 一种双离子湿法掺杂的三元高镍正极材料及其制备方法
CN111916726B (zh) 高镍无钴正极材料及其制备方法
CN108232182A (zh) 一种改性镍钴锰酸锂正极材料及其制备方法
EP4234498A1 (en) Doped high-nickel ternary material and preparation method therefor
CN112803023B (zh) 一种镧锆共掺杂的高镍三元正极材料及其制备方法和应用
CN107611384A (zh) 一种高性能浓度梯度高镍材料、其制备方法及在锂离子电池的用途
CN108777293B (zh) 一种纳米复合材料及其制备方法和应用
CN115172741A (zh) 三元金属普鲁士蓝类正极材料制备方法及应用
CN116504954A (zh) 一种正极材料及其制备方法和钠离子电池
CN116053444A (zh) 一种掺杂型层状正极材料及其在钠离子电池中的应用
CN114620774A (zh) 一种核壳结构高镍三元前驱体的制备方法和应用
CN112670495A (zh) 一种铁掺杂二氧化锰复合碳纳米管材料及其制备和应用
CN112670496A (zh) 一种铁掺杂二氧化锰复合还原氧化石墨烯材料及制备和应用
CN116864651A (zh) 一种o3型镍铁锰基低镍单晶正极材料及其制备方法与应用
CN113764653B (zh) 双重氧化物包覆修饰的低钴三元正极材料及其制备方法
CN114094083B (zh) 一种铌改性的钠离子电池多元正极材料及其制备方法、高镍钠离子电池
CN113871582B (zh) 一种可用于填充导电材料的钠离子电池镍基正极材料
CN115974153A (zh) 一种低温制备含有氧缺陷氧化钒的方法
CN113443659B (zh) 湿法掺杂与碳包覆共修饰的四元正极材料及其制备方法
CN114906881A (zh) 一种阳离子取代改性类球形镍锰酸钠正极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant