CN114082438A - 一种负载型氮掺杂金属基介孔分子筛催化剂及其制备方法和应用 - Google Patents

一种负载型氮掺杂金属基介孔分子筛催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN114082438A
CN114082438A CN202110728499.8A CN202110728499A CN114082438A CN 114082438 A CN114082438 A CN 114082438A CN 202110728499 A CN202110728499 A CN 202110728499A CN 114082438 A CN114082438 A CN 114082438A
Authority
CN
China
Prior art keywords
molecular sieve
mesoporous molecular
doped metal
nitrogen
sieve catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110728499.8A
Other languages
English (en)
Other versions
CN114082438B (zh
Inventor
樊星
刘亚丽
路瑶
王敏华
曹晓辉
赵国明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN202110728499.8A priority Critical patent/CN114082438B/zh
Publication of CN114082438A publication Critical patent/CN114082438A/zh
Application granted granted Critical
Publication of CN114082438B publication Critical patent/CN114082438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/03Catalysts comprising molecular sieves not having base-exchange properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载型氮掺杂金属基介孔分子筛催化剂的制备方法,将介孔分子筛载体MCM‑41,三聚氰胺,双氰胺和乙二胺加入乙醇中,充分搅拌;采用浸渍法将Co(NO3)2·6H2O,Ni(NO3)2·6H2O,Cu(NO3)2·3H2O加入上述配制好的溶液中,在60℃搅拌12h,使活性组分和改性载体充分混合;混合液在5000r速度下离心分离,之后去除上清液,剩余沉淀物真空干燥、研磨得到粉末状固体;粉末状固体在管式炉中以3℃min‑1升温速率升到700℃,煅烧4h,得到氮掺杂金属基介孔分子筛催化剂。该催化剂应用于含氧化合物的加氢脱氧中,具有催化活性高、重复利用性好等特点。

Description

一种负载型氮掺杂金属基介孔分子筛催化剂及其制备方法和 应用
技术领域
本发明涉及多相催化技术领域,特别是涉及一种用于含氧有机化合物催化加氢脱氧反应的氮掺杂的金属基介孔分子筛催化剂及其制备方法。
背景技术
在含氧化合物催化加氢脱氧研究中常用到的是非均相催化剂,在非均相催化剂中,金属主要影响催化剂的加氢效果,载体主要影响催化剂的脱氧效果,因此金属的选择和催化剂载体的表面性质对催化性能的影响都很大。
当直接把金属负载到载体时,由于金属与载体之间作用力比较弱,在催化过程中容易浸出,其催化活性受到限制,因此重复利用效果较差。对载体结构进行修饰可以有效地改变其性质,加强载体和金属之间的作用力,特别是,当加入氮掺杂碳材料时,可以形成M-N-C键(M代表金属),C更易于与载体键合,而N可以更好的连接金属与C,同时N原子可以有效的在催化过程中转移电子,从而增加催化效果,弥补以上缺陷。Li等研究了使用双氰胺改性的Co/SiO2-CN 催化剂对费托合成反应的影响,结果表明,使用双氰胺作为氮源对载体SiO2改性之后,不仅能够提高氧化态钴的还原性,同时有利于把电子转移到零价钴粒子,最终结果表明改性之后的催化剂在费托合成中有更高的周转频率值。
含氧化合物在加氢脱氧反应中要想达到较好的效果,多使用的催化剂是贵金属催化剂,为了降低生产成本,非贵金属催化剂得到广泛应用,近年来,双金属和三金属催化剂也得到了广泛的研究。本专利使用氮掺杂的方式对介孔分子筛载体进行改性,加强金属和载体之间的相互作用,使用三种非贵金属之间的协同作用,对含氧化合物混合物进行催化加氢脱氧。
发明内容
为了克服上述现有技术的不足,本发明的目的在于提供了一种负载型氮掺杂金属基介孔分子筛催化剂的制备方法。
为了实现上述目的,本发明采用的技术方案是:
一种负载型氮掺杂金属基介孔分子筛催化剂的制备方法,包括如下步骤:
S1:将载体介孔分子筛MCM-41干燥处理,去除载体中的水分;
S2:将介孔分子筛载体MCM-41,三聚氰胺,双氰胺和乙二胺加入乙醇中,充分搅拌,所述三聚氰胺,双氰胺和乙二胺的质量比为1:1:1;
S3:采用浸渍法按照Co:Ni:Cu为5:3:2的比例将Co(NO3)2·6H2O, Ni(NO3)2·6H2O,Cu(NO3)2·3H2O加入步骤S2配制好的溶液中,在60℃搅拌12h,使活性组分和改性载体充分混合;
S4:将步骤S3混合液在5000r速度下离心分离15min,之后去除上清液,剩余沉淀物真空干燥、研磨得到粉末状固体;
S5:将步骤S4得到的粉末状固体在管式炉中以3℃min-1升温速率升到 700℃,煅烧4h,得到氮掺杂金属基介孔分子筛催化剂。
优选地,步骤S5中煅烧后保温时间4h,使用载气为氮气。
优选地,将上述方法制备的催化剂应用于含氧化合物混合物的加氢脱氧。
优选地,含氧化合物主要是苄基苯基醚,二苯醚,二萘醚,苯甲醚,对含氧化合物的反应条件是,反应温度180℃,初始氢气压力1MPa,反应时间120min,催化剂的用量20mg,含氧化合物用量40mg。
与现有技术相比,本发明的优势在于:本发明采用MCM-41作为载体,通过浸渍法制备了负载型氮掺杂金属基介孔分子筛催化剂,将本催化剂用于含氧化合物的加氢脱氧中,具有催化活性高、重复利用性好等特点,原材料中三聚氰胺,双氰胺和乙二胺,以及Co、Ni和Cu之间互相协同,提高催化性能。
附图说明
图1为本发明实施例1制备的负载型氮掺杂金属基介孔分子筛催化剂的SEM 图;
图2为本发明实施例1制备的负载型氮掺杂金属基介孔分子筛催化剂的TEM 图;
图3为本发明实施例4制备的负载型氮掺杂金属基介孔分子筛催化剂的循环使用效果图。
具体实施方式
为了加深对本发明的理解,下面结合附图和实施例对本发明进一步说明,该实施例仅用于解释本发明,并不对本发明的保护范围构成限定。
实施例1:
以MCM-41为载体,一种负载型氮掺杂金属基介孔分子筛催化剂的制备方法,具体操作步骤如下:
1)将载体介孔分子筛MCM-41放于鼓风干燥箱内干燥处理4h,去除载体中的水分,然后放于干燥器中备用;
2)依次称取0.2g三聚氰胺,0.2g双氰胺和0.2g乙二胺,加入含有1.0g的干燥后的MCM-41载体的圆底烧瓶中,加入80ml乙醇,充分搅拌,。
3)在上述溶液中加入0.49gCo(NO3)2·6H2O,0.30g Ni(NO3)2·6H2O和0.15g Cu(NO3)2·3H2O,之后在60℃充分搅拌12h,混合均匀。
4)得到的混合液在5000r速度下离心分离15min,之后去除上清液,将沉淀物放于小烧杯,真空干燥12h,研磨得到粉末状固体。
5)得到的粉末状固体在管式炉中以3℃min-1升温速率升到700℃,煅烧4h,过程中管式炉中通入氮气保护气,得到负载型氮掺杂金属基介孔分子筛催化剂 Co-Ni-Cu/MCM-41-NC。
将实施例1制得的负载型氮掺杂金属基介孔分子筛催化剂置于扫描电子显微镜中检测,结果如图1所示。如图1所示,采用SEM分析载体MCM-41和 Co-Ni-Cu/MCM-41-NC催化剂的结构特征。图1(a)载体表面形貌与图1(b)催化剂表面形貌相比较,加入氮掺杂碳材料之后,载体结构改变,在催化剂表面形成了石墨烯层,石墨烯功能层在煅烧过程中可以作为温和的还原剂,使氧化态金属生成零价金属,增加催化活性,另外其还可以更好的把金属固定在载体表面,避免在反应过程中浸出。
将实施例1制得的Co-Ni-Cu/MCM-41-NC催化剂和载体MCM-41置于透射电镜下观察,结果如图2所示。由图2(b)Co-Ni-Cu/MCM-41-NC催化剂的透射电镜图可见,当加入氮掺杂碳材料之后,图2(a)载体结构改变,同时观察到金属粒子具有较好的分散性,能够为催化剂提高较多的活性位点,更有利于催化反应。
实施例2:
本实施例除步骤2)中加入了0.6g三聚氰胺,其他均与实施例1相同。
实施例3:
本实施例除步骤2)中加入了0.6g双氰胺,其他均与实施例1相同。
实施例4:
本实施例除步骤2)中加入了0.6g乙二胺,其他均与实施例1相同。
实施例5:
本实施例除步骤3)中加入了0.94gCo(NO3)2·6H2O,其他均与实施例1相同。
实施例6:
本实施例除步骤3)中加入了0.94g Ni(NO3)2·6H2O,其他均与实施例1相同。
实施例7:
本实施例除步骤3)中加入了0.94g Cu(NO3)2·3H2O,其他均与实施例1相同。
应用例1:
实施例1-7制备的催化剂用于含氧化合物催化加氢脱氧,具体操作步骤如下:
1)将10mg苄基苯基醚,10mg二苯醚,10mg二萘醚,10mg苯甲醚、20 ml的正己烷加入到100ml的高压反应釜中,并分别加入实施例1-7制备的催化剂20mg。
2)室温下,使用N2置换高压反应釜中的空气三次之后,接着充入H2使得高压反应釜内的初始氢气压力为1MPa。
3)将高压反应釜置于加热炉内,升温速率是8℃/min,加热至反应温度为 180℃并维持反应时间为120min。
4)反应结束后将高压反应釜冷却至常温,将所得产物进行过滤并进行分析,结果如下表所示。
不同催化剂对含氧化合物的催化加氢效果
Figure 1
Figure BDA0003138409000000051
从表中可以看出制备的负载型氮掺杂Co-Ni-Cu/MCM-41-NC金属催化剂对含氧化合物混合物,有较好的催化效果,经过GC/MS分析,其转化率都在90.0%以上。特别是,该催化剂对苄基苯基醚和二苯醚的催化加氢脱氧效果最好,转化率达到100.0%。同时对产物选择性的研究结果表明,本发明合成的催化剂 Co-Ni-Cu/MCM-41-NC具有催化活性高、烷烃选择性高等特点。
应用例2:
实施例1制备的负载型氮掺杂金属基介孔分子筛催化剂的重复使用性能研究,操作步骤如下:
1)将40mg二苯醚,20ml的正己烷和20mg Co-Ni-Cu/MCM-41-NC金属催化剂加入到100ml的高压反应釜中。
2)室温下,使用N2置换高压反应釜中的空气三次之后,接着充入H2使得高压反应釜内的初始氢气压力为1MPa。
3)将高压反应釜置于加热炉内,升温速率是8℃/min,加热至反应温度为 180℃并维持反应时间为120min。
4)反应结束后将高压反应釜冷却至常温,将所得产物进行过滤并进行分析。
5)过滤得到的催化剂进行回收,之后重复上述步骤1-4,循环使用5次,结果如图3所示。
从图3可以看出,经过五次循环后,二苯醚的转化率略有下降,由原来的 100%下降到81.8%,说明Co-Ni-Cu/MCM-41-NC催化剂在二苯醚加氢脱氧反应中具有良好的稳定性,是一种很有应用前景的催化剂。
本发明的实施例公布的是较佳的实施例,但并不局限于此,本领域的普通技术人员,极易根据上述实施例,领会本发明的精神,并做出不同的引申和变化,但只要不脱离本发明的精神,都在本发明的保护范围内。

Claims (5)

1.一种负载型氮掺杂金属基介孔分子筛催化剂的制备方法,其特征在于,包括如下步骤:
S1:将载体介孔分子筛MCM-41干燥处理,去除载体中的水分;
S2:将介孔分子筛载体MCM-41,三聚氰胺,双氰胺和乙二胺加入乙醇中,充分搅拌,所述三聚氰胺,双氰胺和乙二胺的质量比为1:1:1;
S3:采用浸渍法按照Co:Ni:Cu为5:3:2的比例将Co(NO3)2·6H2O,Ni(NO3)2·6H2O,Cu(NO3)2·3H2O加入步骤S2配制好的溶液中,在60℃搅拌12h,使活性组分和改性载体充分混合;
S4:将步骤S3混合液在5000r速度下离心分离,之后去除上清液,剩余沉淀物真空干燥、研磨得到粉末状固体;
S5:将步骤S4得到的粉末状固体在管式炉中以3℃min-1升温速率升到700℃,煅烧4h,得到氮掺杂金属基介孔分子筛催化剂。
2.根据权利要求1所述的负载型氮掺杂金属基介孔分子筛催化剂的制备方法,其特征在于,步骤S5中煅烧后保温时间4h,使用载气为氮气。
3.权利要求1或2所述制备方法制备的负载型氮掺杂金属基介孔分子筛催化剂。
4.根据权利要求3所述制备方法制备的负载型氮掺杂金属基介孔分子筛催化剂应用于含氧化合物的加氢脱氧。
5.根据权利要求3所述制备方法制备的负载型氮掺杂金属基介孔分子筛催化剂应用于苄基苯基醚,二苯醚,二萘醚或苯甲醚的加氢脱氧。
CN202110728499.8A 2021-06-29 2021-06-29 一种负载型氮掺杂金属基介孔分子筛催化剂及其制备方法和应用 Active CN114082438B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110728499.8A CN114082438B (zh) 2021-06-29 2021-06-29 一种负载型氮掺杂金属基介孔分子筛催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110728499.8A CN114082438B (zh) 2021-06-29 2021-06-29 一种负载型氮掺杂金属基介孔分子筛催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114082438A true CN114082438A (zh) 2022-02-25
CN114082438B CN114082438B (zh) 2024-01-30

Family

ID=80296012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110728499.8A Active CN114082438B (zh) 2021-06-29 2021-06-29 一种负载型氮掺杂金属基介孔分子筛催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114082438B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115414960A (zh) * 2022-09-23 2022-12-02 东南大学 一种加氢脱氧催化剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105268467A (zh) * 2014-07-16 2016-01-27 青岛蓝农谷农产品研究开发有限公司 一种介孔分子筛负载Cu-Ni双金属催化剂的制备方法
CN109590012A (zh) * 2018-12-21 2019-04-09 万华化学集团股份有限公司 一种氮掺杂碳包覆双纳米金属催化剂及其制备方法和用途
CN110227536A (zh) * 2019-05-28 2019-09-13 东南大学 一种用于辛酸加氢脱氧的NiMoW/MCM-41复合催化剂及其制备和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105268467A (zh) * 2014-07-16 2016-01-27 青岛蓝农谷农产品研究开发有限公司 一种介孔分子筛负载Cu-Ni双金属催化剂的制备方法
CN109590012A (zh) * 2018-12-21 2019-04-09 万华化学集团股份有限公司 一种氮掺杂碳包覆双纳米金属催化剂及其制备方法和用途
CN110227536A (zh) * 2019-05-28 2019-09-13 东南大学 一种用于辛酸加氢脱氧的NiMoW/MCM-41复合催化剂及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUO LI, ET.AL: ""Nitrogen-doped carbon species: a promising nonmetallic promoter for the Co/SiO2 Fischer-Tropsch synthesis catalyst"", 《CATALYSIS SCIENCE & TECHNOLOGY》, vol. 6, no. 7, pages 2188 - 2194 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115414960A (zh) * 2022-09-23 2022-12-02 东南大学 一种加氢脱氧催化剂的制备方法

Also Published As

Publication number Publication date
CN114082438B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
CN110813359B (zh) 一种以氮掺杂多孔碳材料为载体的钌基氨合成催化剂及其制备方法
Yang et al. Enhanced catalytic performances by surface silylation of Cu (II) Schiff base-containing SBA-15 in epoxidation of styrene with H2O2
CN112495417A (zh) 一种铁单原子催化剂及其制备方法和应用
CN109939693B (zh) CoMn2O4双金属氧化物催化剂、制备方法及应用
CN107413366B (zh) 一种苯酚加氢催化剂的制备方法
CN113083297B (zh) 一种高活性极低负载量钌催化剂Ru@ZIF-8的制备及其在催化加氢方面的应用
Qi et al. Solvent-free aerobic oxidation of alcohols over palladium supported on MCM-41
Rostamizadeh et al. Au anchored to (α-Fe2O3)-MCM-41-HS as a novel magnetic nanocatalyst for water-medium and solvent-free alkyne hydration
Kim et al. Synergy effects of Al2O3 promoter on a highly ordered mesoporous heterogeneous Rh-g-C3N4 for a liquid-phase carbonylation of methanol
CN114082438A (zh) 一种负载型氮掺杂金属基介孔分子筛催化剂及其制备方法和应用
CN109879265B (zh) 一种介孔氮掺杂碳材料及其制备方法和用途
CN109046442B (zh) 多级孔分子筛负载铂铁双金属催化剂及其制备和应用
CN115650829B (zh) 一种由生物质酚类化合物光催化制备环己酮类化合物的方法
CN108067225B (zh) 一种催化湿式氧化催化剂的制备方法和有机废水处理方法
CN114588940B (zh) 一种用于酚类化合物加氢的镍基催化剂及其制备方法和应用
CN116178244A (zh) 一种富勒烯吡咯烷衍生物及其制备方法与应用
CN111167515B (zh) 单分子杂多酸镶嵌的蜂窝状炭材料负载的纳米金属催化剂及其制备方法和应用
KR20180090001A (ko) 불균일계 촉매의 제조 방법 및 이를 이용한 화합물 제조 방법
CN109433206B (zh) 具有中心辐射状孔道介孔氧化硅负载铜催化剂制备方法
CN110882726A (zh) Cu掺杂MOF-5型催化剂及其制备方法和应用
CN114054023A (zh) 一种合金单原子催化剂的制备方法和应用
CN114471724B (zh) Au-Pd NPs@NMOF-Ni超薄纳米片复合材料及其制备方法和应用
CN117358291B (zh) 一种用于制备氧杂双环十六烯的催化剂及其制备方法和应用
CN110947398A (zh) 一种功能化磁性碳纳米管纳米催化剂的制备方法及其在Heck反应中的应用
CN108722434A (zh) 一种Cu-Pd/C催化剂中金属粒子的再分散方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant