CN114057408B - 用于钢筋光电阴极保护的z型异质结光阳极膜及其制备方法和应用 - Google Patents

用于钢筋光电阴极保护的z型异质结光阳极膜及其制备方法和应用 Download PDF

Info

Publication number
CN114057408B
CN114057408B CN202210053172.XA CN202210053172A CN114057408B CN 114057408 B CN114057408 B CN 114057408B CN 202210053172 A CN202210053172 A CN 202210053172A CN 114057408 B CN114057408 B CN 114057408B
Authority
CN
China
Prior art keywords
photo
concentration
solution
anode film
steel bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210053172.XA
Other languages
English (en)
Other versions
CN114057408A (zh
Inventor
金祖权
张小影
蒋继宏
王晓晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN202210053172.XA priority Critical patent/CN114057408B/zh
Publication of CN114057408A publication Critical patent/CN114057408A/zh
Application granted granted Critical
Publication of CN114057408B publication Critical patent/CN114057408B/zh
Priority to US17/837,131 priority patent/US11761110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/38Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal at least one coating being a coating of an organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4476Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications comprising polymerisation in situ
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/20Conducting electric current to electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/217FeOx, CoOx, NiOx
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • C03C2217/231In2O3/SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2201/00Type of materials to be protected by cathodic protection
    • C23F2201/02Concrete, e.g. reinforced
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/31Immersed structures, e.g. submarine structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

本发明属于海洋工程混凝土结构金属材料的缓蚀技术领域,具体涉及一种用于钢筋光电阴极保护的Z型异质结光阳极膜及其制备方法和应用。所述制备方法包括以下步骤:以铁盐和尿素为原料,通过水热法在洁净的导电基底的导电面上制备得到Fe2O3;通过电化学合成法在Fe2O3的表面沉积聚苯胺,制备得到Fe2O3‑PANI复合光阳极膜;通过原位化学还原法在Fe2O3‑PANI复合光阳极膜的表面制备得到Ru‑Fe2O3‑PANI复合光阳极膜。本发明的技术方案能够实现海洋工程混凝土钢筋的高效光电阴极保护,提升海洋工程混凝土结构的耐久性。

Description

用于钢筋光电阴极保护的Z型异质结光阳极膜及其制备方法 和应用
技术领域
本发明属于海洋工程混凝土结构金属材料的缓蚀技术领域,具体涉及一种用于钢筋光电阴极保护的Z型异质结光阳极膜及其制备方法和应用。
背景技术
随着经济的发展,海洋资源日益得到人们的开发,海洋环境下的混凝土建筑物也已越来越多。海洋工程及近岸结构的高温、高盐特殊环境,混凝土结构更易腐蚀破坏,而且混凝土建筑物一旦破坏,维修起来将非常麻烦甚至无法维修。鉴于经济、资源和安全性因素,防腐蚀破坏、提高混凝土结构的耐久性已成为土木工程界研究的重点,海洋工程(简称海工)混凝土结构的防腐工作显得尤为重要。
阴极保护技术是海工混凝土结构中一种经济而有效的防护措施,它可分为牺牲阳极阴极保护和外加电流阴极保护。前者使用比钢筋电势更负的镁或锌作为阳极,以通过其自身的腐蚀来保护钢筋;后者将直流电源的负极与受保护的钢筋连接,正极连接不溶的辅助阳极以提供保护电流,以保护钢筋免受阴极极化。阴极保护技术在海工混凝土结构腐蚀防护领域得到了普遍的工程应用,但也存在着一些问题,比如:牺牲阳极的损耗、能源的消耗、环境污染等弊端。光电阴极保护是一种较新的防护技术,目前已在金属防护领域取得了很好的效果。然而,目前光电阴极保护光阳极采用的半导体材料大多是紫外光响应,它不能与太阳光谱较好地匹配,因而不能有效地利用太阳能。更重要的是,光阳极半导体材料导带电位不够负,使得光生电子不能快速地转移或根本就无法转移到被保护的钢筋上,从而导致光电化学阴极保护效果不理想。
近年来,聚苯胺(polyaniline,简称PANI)作为一种导电高分子材料,由于具有良好的导电性和化学稳定性、电化学可逆性、优良的光电性能和合成方法简便等特性,成为现在研究进展最快的导电高分子材料之一。更重要的是,PANI的最低未占分子轨道(其英文缩写为LUMO)位置比较负,从热力学角度,可以为钢筋提供阴极保护电流,但是其光生电子-空穴分离效率较低,阴极保护效果较差。
因此,需要提供一种针对上述现有技术不足的改进技术方案。
发明内容
本发明的目的在于提供一种用于钢筋光电阴极保护的Z型异质结光阳极膜及其制备方法和应用,以解决现有技术中存在的问题。
为了实现上述目的,本发明提供如下技术方案:
一种用于钢筋光电阴极保护的Z型异质结光阳极膜的制备方法,所述制备方法包括以下步骤:
步骤一,以铁盐和尿素为原料,通过水热法在洁净的导电基底的导电面上制备得到Fe2O3
步骤二,通过电化学合成法在Fe2O3的表面沉积聚苯胺,制备得到Fe2O3-PANI复合光阳极膜;
步骤三,通过原位化学还原法在Fe2O3-PANI复合光阳极膜的表面制备得到Ru-Fe2O3-PANI复合光阳极膜。
如上所述的制备方法,可选地,步骤一中,铁盐为含铁的无机盐或有机盐;步骤一中,所述导电基底为FTO导电玻璃,洁净的FTO导电玻璃是采用以下步骤进行清洗的:将FTO导电玻璃依次放入含洗涤剂的水溶液、NaOH的饱和乙醇溶液、乙醇和去离子水中进行超声清洗,清洗后烘干,得到洁净的FTO导电玻璃。
如上所述的制备方法,可选地,步骤一具体为,将铁盐和尿素的混合溶液加入至反应釜中,加入强碱调整混合溶液的pH,将洁净的导电基底的导电面朝下放入混合溶液中,加热使其发生水热反应,待反应釜冷却后取出导电基底,清洗干燥后,在导电基底的导电面制备得到Fe2O3
如上所述的制备方法,可选地,步骤一中,铁盐的浓度为0.05 mmolL-1~0.8mmolL-1,尿素的浓度为0.1mmolL-1~0.8mmolL-1;铁盐的浓度与尿素的浓度比例为1:1~1:2;混合溶液调整后的pH为9~11;水热反应的温度为90~200℃,水热反应的时间为8~24h。
步骤二具体为,在电解池中加入苯胺水溶液,加入强酸调节溶液的pH,得到电化学合成溶液,并采用三电极体系,以步骤一得到的Fe2O3导电基底为工作电极,以Ag/AgCl和Pt分别作为参比电极和对电极,进行恒电位法聚合,制备得到Fe2O3-PANI复合光阳极膜。
步骤二中,苯胺水溶液的浓度为1mmolL-1~10mmolL-1,且苯胺水溶液的浓度与铁盐的浓度比例为1:20或1:10;溶液调节后的pH为1~5;恒电位法聚合的电位为0.8~3.0V,恒电位法聚合的时间为10~50min。
步骤三具体为,将RuCl3水溶液滴加或者旋涂到Fe2O3-PANI复合光阳极膜表面,之后浸泡在KBH4水溶液中,取出后循环重复上述操作,最后清洗烘干,得到Ru-Fe2O3-PANI复合光阳极膜。
步骤三中,RuCl3水溶液的浓度为0.01 mmolL-1 ~0.5molL-1,且RuCl3水溶液的浓度与铁盐的浓度比例为8:5~10:1;KBH4水溶液的浓度为0. 1 molL-1 ~ 0.8molL-1,且KBH4水溶液的浓度与铁盐的浓度比例为1:2~5:3;每次浸泡在KBH4水溶液中的时间为3 ~ 5s,循环重复次数为2~20。
本发明还提出了一种用于钢筋光电阴极保护的光阳极膜,所述光阳极膜是由如上所述的用于钢筋光电阴极保护的光阳极膜的制备方法制备得到。
本发明还提出了一种如上所述的光阳极膜作为海工混凝土结构钢筋光电保护光阳极覆膜的应用。
有益效果:
本发明采用Ru-Fe2O3-PANI复合薄膜作为海工混凝土结构的阴极保护光阳极,显著扩大光吸收利用效率,提高光生电荷的分离效率。本发明中采用聚苯胺,一方面是因为它的能带结构与Fe2O3的能带结构相匹配,能够构筑Z型电子转移异质结结构,这种异质结结构不仅提高了光生电荷的分离效率,而且保留了较负的导带电位,便于光生电子从光阳极转移到钢筋表面;另一方面是因为,聚苯胺良好的导电性可以为光生电子提供传输网络,增加了光生电荷的分离和传输。量子点Ru的加入,促进了复合膜中PANI价带上的空穴与Fe2O3导带电子发生电荷复合,从而有利于促进形成Z型电子转移路径。本发明有机-无机Ru-Fe2O3-PANI复合薄膜,通过Z型异质结的构筑和量子点Ru的引入,实现了海洋工程混凝土钢筋的高效光电阴极保护,提升了海洋工程混凝土结构的耐久性。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。其中:
图1为本发明实施例一在间歇光照射下,Fe2O3、Fe2O3-PANI复合光阳极膜和Ru-Fe2O3-PANI复合光阳极膜的光致电流-时间曲线;
图2为本发明实施例二中Fe2O3、Fe2O3-PANI复合光阳极膜和Ru-Fe2O3-PANI复合光阳极膜的光响应性能图,图中,α为吸收系数;ν为光子频率,h为普朗克常数;
图3为本发明实施例的本发明实施例三中Fe2O3、Fe2O3-PANI复合光阳极膜和Ru-Fe2O3-PANI复合光阳极膜的功函数图;
图4为本发明实施例的本发明实施例三中Fe2O3、Fe2O3-PANI复合光阳极膜和Ru-Fe2O3-PANI复合光阳极膜的ESR曲线图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
下面将结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
针对现有技术中存在的问题,本发明提出了一种用于钢筋光电阴极保护的Ru-Fe2O3-PANI复合光阳极膜及其制备方法和应用。
本发明的用于钢筋光电阴极保护的Ru-Fe2O3-PANI复合光阳极膜的制备方法,所述制备方法包括以下步骤:
步骤一,以铁盐和尿素为原料,通过水热法在洁净的导电基底的导电面上制备得到Fe2O3
步骤二,通过电化学合成法在Fe2O3的表面沉积聚苯胺,制备得到Fe2O3-PANI复合光阳极膜;
步骤三,通过原位化学还原法在Fe2O3-PANI复合光阳极膜的表面制备得到Ru-Fe2O3-PANI复合光阳极膜。
本发明采用Ru-Fe2O3-PANI复合薄膜作为海工混凝土结构的阴极保护光阳极,显著扩大光吸收利用效率,提高光生电荷的分离效率。本发明中采用聚苯胺,一方面是因为它的能带结构与Fe2O3的能带结构相匹配,能够构筑Z型电子转移异质结结构,这种异质结结构不仅提高了光生电荷的分离效率,而且保留了较负的导带电位,便于光生电子从光阳极转移到钢筋表面;另一方面是因为,聚苯胺良好的导电性可以为光生电子提供传输网络,增加了光生电荷的分离和传输。量子点Ru的加入,促进了复合膜中PANI价带上的空穴与Fe2O3导带电子发生电荷复合,从而有利于促进形成Z型电子转移路径。本发明有机-无机Ru-Fe2O3-PANI复合薄膜,通过Z型异质结的构筑和量子点Ru的引入,实现了海洋工程混凝土钢筋的高效光电阴极保护,提升了海洋工程混凝土结构的耐久性。
本发明的可选实施例中,步骤一中,铁盐为含铁的无机盐或有机盐;优选地,铁盐为硝酸铁、氯化铁、乙酸铁和乙酰丙酮铁中的一种或几种混合物。本发明的可选实施例中,步骤一中,导电基底为FTO导电玻璃。
本发明在水热反应实验之前,需要将FTO导电玻璃彻底清洗,得到洁净的FTO导电玻璃,如此操作的目的是为了提高薄膜与FTO导电玻璃之间的附着力。
具体地,洁净的FTO导电玻璃是采用以下步骤进行清洗的:将FTO导电玻璃依次放入含洗涤剂的水溶液、NaOH的饱和乙醇溶液、乙醇和去离子水中进行超声清洗,清洗后烘干,得到洁净的FTO导电玻璃。
可选地,每个溶液的超声清洗时间均为10-30min(比如10min、15min、20min、25min、30min及之中任意两个数值之间的区间点),烘干的温度为40-100℃(比如40℃、60℃、80℃、100℃及之中任意两个数值之间的区间点)。
需要说明的是,洗涤剂可以为洗衣粉、肥皂、餐洗净、洗衣液中的一种。
本发明的可选实施例中,步骤一具体为,将铁盐和尿素的混合溶液加入至反应釜中,加入强碱调整混合溶液的pH,将洁净的导电基底面朝下放入混合溶液中,加热使其发生水热反应,冷却后取出导电基底,清洗干燥后,在导电基底的导电面制备得到Fe2O3
本实施例中,清洗采用去离子水清洗;强碱可选为氢氧化钠和氢氧化钾中的至少一种。
本发明的可选实施例中,步骤一中,铁盐的浓度为0.05mmolL-1~0.8mmolL-1(比如0.05 mmolL-1、0.1 mmolL-1、0.5mmolL-1、0.8mmolL-1及之中任意两个数值之间的区间点),尿素的浓度为0.1mmolL-1~0.8mmolL-1(比如0.1 mmolL-1、0.5 mmolL-1、0.8 mmolL-1及之中任意两个数值之间的区间点);铁盐的浓度与尿素的浓度比例为1:1~1:2(比如1:1、1:1.5、1:2及之中任意两个数值之间的区间点);混合溶液调整后的pH为9~11(比如9、10、11及之中任意两个数值之间的区间点);水热反应的温度为90~200℃(比如90℃、100℃、120℃、150℃、180℃、200℃及之中任意两个数值之间的区间点),水热反应的时间为8~24h(比如8h、12h、15h、18h、20h、24h及之中任意两个数值之间的区间点)。
本发明可选实施例中,步骤二具体为,在电解池中加入苯胺水溶液,加入强酸调节溶液的pH,得到电化学合成溶液,并采用三电极体系,以步骤一得到的Fe2O3导电基底为工作电极,以Ag/AgCl和Pt分别作为参比电极和对电极,恒电位法聚合,得到Fe2O3-PANI复合光阳极膜。需要说明的是,本实施例中,强酸可选为H2SO4
本发明可选实施例中,步骤二中,苯胺水溶液的浓度为1mmolL-1~10mmolL-1(比如1mmolL-1、5 mmolL-1、10 mmolL-1及之中任意两个数值之间的区间点),且苯胺水溶液的浓度与铁盐的浓度比例为1:20或1:10;溶液调节后的pH为1~5(比如1、2、3、4、5及之中任意两个数值之间的区间点);恒电位法聚合的电位为0.8~3.0V(比如0.8V、1.0V、1.5V、2V、2.5V、3.0V及之中任意两个数值之间的区间点),恒电位法聚合的时间为10~50min(比如10min、20min、30min、40min、50min及之中任意两个数值之间的区间点)。
本发明可选实施例中,步骤三具体为,将RuCl3水溶液滴加或者旋涂到Fe2O3-PANI复合光阳极膜表面,之后浸泡在KBH4水溶液中,取出后循环重复上述操作,最后清洗烘干,得到Ru-Fe2O3-PANI复合光阳极膜。
需要说明的是,本实施例中,清洗采用去离子水清洗。
本发明可选实施例中,步骤三中,RuCl3水溶液的浓度为0.01 mmolL-1 ~ 0.5mmolL-1(比如0.01 mmolL-1、0.1 mmolL-1、0.2 mmolL-1、0.5mmolL-1及之中任意两个数值之间的区间点),且RuCl3水溶液的浓度与铁盐的浓度比例为8:5~10:1(比如8:5、2:1、5:1、8:1、10:1及之中任意两个数值之间的区间点);KBH4水溶液的浓度为0. 1 molL-1 ~0.8molL-1(比如0.1 molL-1、0.2 molL-1、0.4molL-1、0.6molL-1、0.8molL-1及之中任意两个数值之间的区间点),且KBH4水溶液的浓度与铁盐的浓度比例为1:2~5:3(比如1:2、1:1、5:3及之中任意两个数值之间的区间点);每次浸泡在KBH4水溶液中的时间为3 ~ 5s(比如3s、4s、5s及之中任意两个数值之间的区间点),循环重复次数为2~20(比如2、5、10、15、20及之中任意两个数值之间的区间点)。
本发明还提出了一种用于钢筋光电阴极保护的Ru-Fe2O3-PANI复合光阳极膜,所述Ru-Fe2O3-PANI复合光阳极膜是由如上所述的用于钢筋光电阴极保护的Ru-Fe2O3-PANI复合光阳极膜的制备方法制备得到。
本发明还提出了一种如上所述的Ru-Fe2O3-PANI复合光阳极膜作为海工混凝土结构钢筋光电保护光阳极覆膜的应用。
下面通过具体实施例对本发明用于钢筋光电阴极保护的Ru-Fe2O3-PANI复合光阳极膜及其制备方法进行详细说明。
实施例一
本实施例的Ru-Fe2O3-PANI复合光阳极膜的制备方法包括以下步骤:
首先,在水热反应实验之前,需要将FTO导电玻璃彻底清洗,其目的就是为了提高薄膜与FTO导电玻璃之间的附着力,将FTO导电玻璃按顺序依次放入洗衣粉水、NaOH的饱和乙醇溶液、乙醇和去离子水中的烧杯,并依次在上述溶液中超声清洗15min,60℃下烘干待用。然后将0.05 mmolL-1的氯化铁和0.1 mmolL-1尿素的混合溶液加入至反应釜中,通过加入氢氧化钠调整混合溶液的pH=9,将FTO导电玻璃的导电面朝下放入混合溶液中,控制水热温度为100℃,水热反应时间为16h,待反应釜冷却后将所得溶液经清洗干燥,在FTO导电玻璃的导电表面上制备得到Fe2O3。随后,在电解池中加入1 mmolL-1的苯胺水溶液,用H2SO4调节溶液的pH=1,得到电化学合成溶液。采用三电极体系,以Fe2O3作为工作电极,以Ag/AgCl和Pt分别作为参比电极和对电极,在1.2V的电位下进行恒电位法聚合,聚合时间为10 min,得到Fe2O3-PANI复合光阳极膜。在Fe2O3-PANI复合光阳极膜表面滴加3滴 0.01 mmolL-1的RuCl3水溶液,然后浸泡在0.1 molL-1的KBH4水溶液中,浸泡3s取出,循环重复上述操作10次,清洗烘干即得Ru-Fe2O3-PANI复合光阳极膜。
在间歇可见光下,对本实施例制备的Fe2O3、Fe2O3-PANI复合光阳极膜和Ru-Fe2O3-PANI复合光阳极膜材料进行光致电流-时间曲线(Photoinducedcurrent-time curve,简写为J-t曲线)测试,通过J-t曲线来研究Ru-Fe2O3-PANI复合光阳极膜复合材料的光电化学性能增强机理,测试曲线如图1所示,从图1中可以看出,Ru-Fe2O3-PANI复合光阳极膜的光生电流密度提升至分别为Fe2O3和Fe2O3-PANI复合光阳极膜的3倍和2倍,有效抑制了光生载流子的复合。
实施例二
本实施例的Ru-Fe2O3-PANI复合光阳极膜的制备方法包括以下步骤:
首先,在水热反应实验之前,需要将FTO导电玻璃彻底清洗,其目的就是为了提高薄膜与FTO导电玻璃之间的附着力,将FTO导电玻璃按顺序放入肥皂水、NaOH的乙醇溶液、乙醇和去离子水中的烧杯,并依次在上述溶液中超声清洗15min,60℃烘干待用。然后将0.5mmolL-1的乙酰丙酮铁和0.5 mmolL-1尿素的混合溶液加入至反应釜中,通过加入氢氧化钾调整溶液的pH=10,将FTO导电玻璃的导电面朝下放入混合溶液中,控制水热温度为130℃,水热反应时间为10 h,待反应釜冷却后将所得溶液经清洗干燥,在FTO导电玻璃的导电表面上制备得到Fe2O3。随后,在电解池中加入10 mmolL-1的苯胺水溶液,用H2SO4调节溶液的pH=1.5,得到电化学合成溶液。采用三电极体系,以Fe2O3作为工作电极,以Ag/AgCl和Pt分别作为参比电极和对电极,在1.8V的电位下进行恒电位法聚合,聚合时间为50 min,得到Fe2O3-PANI复合光阳极膜。在Fe2O3-PANI复合光阳极膜表面旋涂2滴0.05 mmolL-1的RuCl3水溶液,然后浸泡在0.3 molL-1的KBH4水溶液中,浸泡3s取出,循环重复上述操作20次,清洗烘干即得Ru-Fe2O3-PANI复合光阳极膜。
对本实施例所得的Fe2O3、Fe2O3-PANI复合光阳极膜和Ru-Fe2O3-PANI复合光阳极膜材料进行测试其光响应性能,其禁带宽度采用Kubleka-Munk公式计算,数据处理后得到带隙图,结果如图2所示。拟合得Ru-Fe2O3-PANI复合光阳极模的禁带宽度约为2.1eV,而作为对照的Fe2O3和Fe2O3-PANI的禁带宽度分别为2.9eV和2.6eV,禁带宽度变窄说明吸收带边明显红移,提高了光阳极的光利用效率。
实施例三
本实施例的Ru-Fe2O3-PANI复合光阳极膜的制备方法包括以下步骤:
首先,在水热反应实验之前,需要将FTO导电玻璃彻底清洗,其目的就是为了提高薄膜与FTO导电玻璃之间的附着力,将FTO导电玻璃按顺序放入含餐洗净水溶液、NaOH的乙醇溶液、乙醇和去离子水中的烧杯,并依次在上述溶液中超声清洗15min,60℃烘干待用。然后将0.8 mmolL-1的硝酸铁和0.8 mmolL-1尿素的混合溶液加入至反应釜中,通过加入氢氧化钠调整溶液的pH=11,将FTO导电玻璃的导电面朝下放入混合溶液中,控制水热温度为200℃,水热反应时间为4 h,待反应釜冷却后将所得溶液经清洗干燥,在FTO导电玻璃的导电表面上制备得到Fe2O3。随后,在电解池中加入8 mmolL-1的苯胺水溶液,用H2SO4调节溶液的pH=4,得到电化学合成溶液。采用三电极体系,以Fe2O3作为工作电极,以Ag/AgCl和Pt分别作为参比电极和对电极,在2.0 V的电位下进行恒电位法聚合,聚合时间为40 min,得到Fe2O3-PANI复合光阳极膜。在Fe2O3-PANI复合光阳极膜表面滴加10滴 0.5 mmolL-1的RuCl3水溶液,然后浸泡在0.8 molL-1的KBH4水溶液中,浸泡5s取出,循环重复上述操作2次,清洗烘干即得Ru-Fe2O3-PANI复合光阳极膜。
对本实施例所得的Fe2O3、Fe2O3-PANI复合光阳极膜和Ru-Fe2O3-PANI复合光阳极膜材料进行测试其功函数,测试结果如图3所示。从图3中可以看出,Fe2O3和Fe2O3-PANI的SKP电位分别为740 mV和930 mV,而Ru-Fe2O3-PANI复合光阳极膜的SKP电位为990 mV,根据功函数的数值为SKP电位数值与450差值的负数,Fe2O3、Fe2O3-PANI和Ru-Fe2O3-PANI复合光阳极膜的功函数分别为-290 eV、-480eV和-540 eV。更低的功函数说明电子更容易从材料表面逸出,转移到被保护的钢筋表面。此外,ESR曲线得知(如图4所示),相比于单独的Fe2O3和Fe2O3-PANI,Ru-Fe2O3-PANI复合光阳极膜测试得到的信号强度更高,说明复合膜可以更有效得催化氧负自由基的还原,这一结果也说明Ru-Fe2O3-PANI的导带电位更负,能够将光生电子转移到钢筋表面。
综上所述,本发明所得的Ru-Fe2O3-PANI复合光阳极膜可以实现可见光吸收,显著提高了光利用率。Ru-Fe2O3-PANI的光生电流密度提升至分别为Fe2O3和Fe2O3-PANI的3倍和2倍,有效抑制了光生载流子的复合。相比于单独的Fe2O3和Fe2O3-PANI,本发明构筑的无机-有机异质结Ru-Fe2O3-PANI复合光阳极膜的功函数大幅度负移,可以为自腐蚀电位较负的海工混凝土结构钢筋提供光电阴极保护电流,延长海洋工程构筑物的服役寿命。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种用于钢筋光电阴极保护的Z型异质结光阳极膜的制备方法,其特征在于,所述制备方法包括以下步骤:
步骤一,将铁盐和尿素的混合溶液加入至反应釜中,加入强碱调整混合溶液的pH,将洁净的导电基底的导电面朝下放入混合溶液中,加热使其发生水热反应,待反应釜冷却后取出导电基底,清洗干燥后,在导电基底的导电面制备得到Fe2O3
步骤二,在电解池中加入苯胺水溶液,加入强酸调节溶液的pH,得到电化学合成溶液,并采用三电极体系,以步骤一得到的Fe2O3导电基底为工作电极,以Ag/AgCl和Pt分别作为参比电极和对电极,进行恒电位法聚合,制备得到Fe2O3-PANI复合光阳极膜,所述Fe2O3-PANI复合光阳极膜为Z型异质结光阳极膜;
步骤三,将RuCl3水溶液滴加或者旋涂到Fe2O3-PANI复合光阳极膜表面,之后浸泡在KBH4水溶液中,取出后循环重复上述操作,最后清洗烘干,得到Ru-Fe2O3-PANI复合光阳极膜;所述Ru-Fe2O3-PANI复合光阳极膜为Z型异质结光阳极膜。
2.如权利要求1所述的用于钢筋光电阴极保护的Z型异质结光阳极膜的制备方法,其特征在于,步骤一中,铁盐为含铁的无机盐或有机盐;
步骤一中,所述导电基底为FTO导电玻璃,洁净的FTO导电玻璃是采用以下步骤进行清洗的:
将FTO导电玻璃依次放入含洗涤剂的水溶液、NaOH的饱和乙醇溶液、乙醇和去离子水中进行超声清洗,清洗后烘干,得到洁净的FTO导电玻璃。
3.如权利要求1所述的用于钢筋光电阴极保护的Z型异质结光阳极膜的制备方法,其特征在于,步骤一中,铁盐的浓度为0.05 mmolL-1~0.8mmolL-1,尿素的浓度为0.1 mmolL-1~0.8mmolL-1;铁盐的浓度与尿素的浓度比例为1:1~1:2;混合溶液调整后的pH为9~11;
水热反应的温度为90~200℃,水热反应的时间为8~24h。
4.如权利要求1所述的用于钢筋光电阴极保护的Z型异质结光阳极膜的制备方法,其特征在于,步骤二中,苯胺水溶液的浓度为1mmolL-1~10mmolL-1,且苯胺水溶液的浓度与铁盐的浓度比例为1:20或1:10;溶液调节后的pH为1~5;
恒电位法聚合的电位为0.8~3.0V,恒电位法聚合的时间为10~50 min。
5.如权利要求1所述的用于钢筋光电阴极保护的Z型异质结光阳极膜的制备方法,其特征在于,步骤三中,RuCl3水溶液的浓度为0.01 mmolL-1 ~ 0.5mmolL-1,且RuCl3水溶液的浓度与铁盐的浓度比例为8:5~10:1;KBH4水溶液的浓度为0. 1molL-1 ~ 0.8molL-1,且KBH4水溶液的浓度与铁盐的浓度比例为1:2~5:3;
每次浸泡在KBH4水溶液中的时间为3~5s,循环重复次数为2~20。
6.一种用于钢筋光电阴极保护的Z型异质结光阳极膜,其特征在于,所述Z型异质结光阳极膜是由如权利要求1~5中任一项所述的用于钢筋光电阴极保护的Z型异质结光阳极膜的制备方法制备得到。
7.一种如权利要求6所述的Z型异质结光阳极膜作为海工混凝土结构钢筋光电保护光阳极覆膜的应用。
CN202210053172.XA 2022-01-18 2022-01-18 用于钢筋光电阴极保护的z型异质结光阳极膜及其制备方法和应用 Active CN114057408B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210053172.XA CN114057408B (zh) 2022-01-18 2022-01-18 用于钢筋光电阴极保护的z型异质结光阳极膜及其制备方法和应用
US17/837,131 US11761110B2 (en) 2022-01-18 2022-06-10 Photoanode film for the photocathode protection and the durability improvement of a reinforcing bar in concretes, the preparation method thereof and a method of using the photoanode film for the photocathode protection and the durability improvement of a reinforcing bar in concretes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210053172.XA CN114057408B (zh) 2022-01-18 2022-01-18 用于钢筋光电阴极保护的z型异质结光阳极膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114057408A CN114057408A (zh) 2022-02-18
CN114057408B true CN114057408B (zh) 2022-04-08

Family

ID=80231269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210053172.XA Active CN114057408B (zh) 2022-01-18 2022-01-18 用于钢筋光电阴极保护的z型异质结光阳极膜及其制备方法和应用

Country Status (2)

Country Link
US (1) US11761110B2 (zh)
CN (1) CN114057408B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214703B (zh) * 2022-02-22 2022-05-17 青岛理工大学 一种z型异质结复合光阳极膜及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755861A (zh) * 2021-08-31 2021-12-07 江苏大学 一种z型异质结光电极的制备方法和用途

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440332B1 (en) * 1998-06-09 2002-08-27 Geotech Chemical Company Method for applying a coating that acts as an electrolytic barrier and a cathodic corrosion prevention system
CN1243389C (zh) * 2004-04-02 2006-02-22 北京科技大学 燃料电池中聚合物负载催化剂电极及其制备方法
CN100494503C (zh) * 2004-10-29 2009-06-03 武汉大学 导电态聚苯胺在阳极保护技术中的应用
US8936946B2 (en) * 2007-06-20 2015-01-20 Board Of Trustees Of Michigan State University Biologically enhanced electrically-active magnetic nanoparticles for concentration, separation, and detection applications
CN103613755B (zh) * 2013-10-17 2016-01-13 河南科技大学 一种石墨烯/聚苯胺纳米复合材料、制备方法及应用
CN105140597A (zh) * 2015-07-30 2015-12-09 苏州大学 通过半导体纳米材料复合制备光电化学电池异质结光电极的方法
CN108411309B (zh) * 2018-03-28 2022-12-20 中国石油大学(北京) 一种用于光生阴极保护的氧化铁复合二氧化钛薄膜光阳极的制备方法
CN112823885B (zh) * 2019-11-21 2022-06-28 湖南大学 金纳米颗粒/二氧化铈量子点共同修饰的石墨相氮化碳纳米片复合材料及其制备方法和应用
CN113293381B (zh) * 2020-11-03 2023-03-21 台州学院 一种SrFeO3/Fe2O3光电极材料及其制备方法和在光生阴极防腐中的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755861A (zh) * 2021-08-31 2021-12-07 江苏大学 一种z型异质结光电极的制备方法和用途

Also Published As

Publication number Publication date
CN114057408A (zh) 2022-02-18
US20230227993A1 (en) 2023-07-20
US11761110B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
Bu et al. A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion
CN107723712B (zh) 用于光生阴极保护的ZnIn2S4/TiO2纳米管复合膜光阳极的制备方法
CN103205760B (zh) 用于光生阴极保护的Ag2S/TiO2复合膜光阳极的制备方法
CN108823573B (zh) 一种水热法制备Ni3S2/TiO2纳米管复合膜光阳极的方法
CN104993054A (zh) 一种新型叠合式钙钛矿太阳能电池的制备方法
CN104357852B (zh) 一种用于光生阴极保护的MnSe/TiO2复合膜及其制备和应用
CN102352494A (zh) CdSe/CdS量子点敏化TiO2纳米管复合膜的制备方法
CN114086185B (zh) 光阳极膜及其制备方法和应用
CN114057408B (zh) 用于钢筋光电阴极保护的z型异质结光阳极膜及其制备方法和应用
CN109609960A (zh) 具有光电化学阴极保护作用的光阳极材料Bi2S3/ZnO的制备方法
CN114059071A (zh) 用于钢筋光电阴极保护的光阳极膜及其制备方法和应用
CN108842168A (zh) 一种两步电化学法制备g-C3N4/MMO复合薄膜光电极
Tang et al. Facile synthesis of polypyrrole functionalized nickel foam with catalytic activity comparable to Pt for the poly-generation of hydrogen and electricity
CN109735847A (zh) 用于光生阴极保护的AgInS2/石墨烯/TiO2纳米复合膜光阳极及制备和应用
Zhang et al. Indium oxide thin film as potential photoanodes for corrosion protection of stainless steel under visible light
CN104928713A (zh) 导电聚合物包覆的镍基产氢电极的制备方法及其用途
CN106521494B (zh) Ni、S共掺杂TiO2薄膜及其应用和制备方法
CN103762086A (zh) 一种用于从污水中回收能量的染料敏化太阳能电池
CN114622206B (zh) 一种NH2-MIL-101(Cr)/TiO2复合光阳极及其制备方法和应用
CN114214703B (zh) 一种z型异质结复合光阳极膜及其制备方法和应用
CN109712814A (zh) 一种高效稳定的FeCo2S4导电薄膜的制备方法及应用
CN105304338B (zh) 一种用于量子点敏化太阳能电池的对电极及其制备方法
CN113755042A (zh) 一种二氧化钛涂层及其制备方法和应用
CN113402280A (zh) 一种自捕获氮化碳薄膜的制备方法及其在海洋光电阴极保护中的应用
CN114250474B (zh) Z型硫化铈基阴极保护光阳极膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant