CN106521494B - Ni、S共掺杂TiO2薄膜及其应用和制备方法 - Google Patents

Ni、S共掺杂TiO2薄膜及其应用和制备方法 Download PDF

Info

Publication number
CN106521494B
CN106521494B CN201610983425.8A CN201610983425A CN106521494B CN 106521494 B CN106521494 B CN 106521494B CN 201610983425 A CN201610983425 A CN 201610983425A CN 106521494 B CN106521494 B CN 106521494B
Authority
CN
China
Prior art keywords
tio
film
sno
solution
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610983425.8A
Other languages
English (en)
Other versions
CN106521494A (zh
Inventor
刘峥
李海莹
李庆伟
黄秋梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201610983425.8A priority Critical patent/CN106521494B/zh
Publication of CN106521494A publication Critical patent/CN106521494A/zh
Application granted granted Critical
Publication of CN106521494B publication Critical patent/CN106521494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明公开了一种Ni、S共掺杂TiO2薄膜及其应用和制备方法。Ni、S共掺TiO2薄膜的制备过程是:首先在碳钢基底上进行脉冲复合电沉积,制备Ni‑P‑SnO2纳米复合中间镀层,再利用溶胶凝胶法在镀层上制备Ni、S共掺杂TiO2薄膜。Ni‑P镀层本身具有优异的抗腐蚀效果,加之表面纳米微粒SnO2的引入使得镀层微观表面粗糙,在提高结合力的同时,还可发挥SnO2粒子的储电子能力,使外层TiO2涂层在暗态下继续维持光致阴极保护效果。同时采用过渡金属离子和非金属离子共掺杂的协同效应,实现提高TiO2薄膜光电活性和光谱响应范围。

Description

Ni、S共掺杂TiO2薄膜及其应用和制备方法
技术领域
本发明涉及光致阴极保护领域,具体涉及是一种光致阴极保护半导体材料—Ni、S共掺杂TiO2薄膜的制备方法。
背景技术
金属材料的腐蚀给全世界带来巨大的经济损失,每年因腐蚀造成的损失约是地震、水灾、台风等自然灾害损失总和的6倍。因此金属腐蚀与防护技术一直是国内外学者研究的热点。环境友好、高性能和长效防腐技术也是当今科学家的主要目标。
金属的腐蚀与防护主要技术有表面处理与涂层技术、缓蚀剂技术、阴极保护技术。其中阴极保护技术就是将被保护的金属作为腐蚀电池的阴极或作为电解池的阴极而不受腐蚀,前一种是牺牲阳极保护法,后一种是外加电流法。牺牲阳极保护技术常用于保护海轮外壳、锅炉和海底设备。光致阴极保护是一种新型的阴极保护技术,20世纪90年代由日本Tsujikawa研究小组首次提出,随后,日本学者Fujishima等人对光致阴极保护作用机制进行了研究,至此,光致阴极保护技术成为金属腐蚀与防护领域的研究热点。
光致阴极保护技术是将半导体涂覆在被保护金属表面或作为阳极通过导线与被保护金属相连,半导体薄膜(如TiO2薄膜)在光照下,半导体薄膜价带(VB) 中的电子吸收光子能量被激发跃迁到导带(CB),产生一对光生电子(e-)和光生空穴(h+),在半导体薄膜与溶液界面处的空间电荷电场的作用下,空穴(h+) 被迁移到半导体粒子表面与溶液中的电子供体(如H2O、OH-等)发生氧化反应,而电子(e-)向被保护金属迁移,导致被保护金属表面电子密度增加,光生电位负移,自腐蚀电流密度下降,使金属进入热力学热稳定区域,达到阴极保护的目的。与牺牲阳极保护技术相比,半导体薄膜在保护过程中,并不牺牲,可以成为永久性保护涂层,具有节省资源的优势。
半导体是指电导率介于导体和绝缘体之间的物质。半导体材料具有带隙,所以具有独特的光学、电学性能。在众多半导体材料中,TiO2是一种稳定、无毒、价廉的半导体材料,属于N型半导体材料,在很多高科技领域有重要应用,如光催化、染料敏化太阳能电池、超亲水性研究、传感器、有机污染物降解、废水处理及光致阴极保护技术。在光致阴极保护过程中,将TiO2涂覆在被保护金属表面具有更明显的优势,这种阴极保护涂层,一方面,在光照下,可产生阴极保护作用,另一方面,涂层的存在可以大大减小保护电流的需求量,同时也避免外加电流阴极保护法需要外加电源的缺点。因此TiO2在光致阴极保护领域有着广泛的应用前景。
通过向TiO2涂层中掺杂金属或非金属元素可达到提高TiO2对可见光利用率的目的。掺杂的金属元素一般为过渡金属离子,通过其d电子与TiO2薄膜的导带或价带之间的电荷迁移或跃迁,即过渡金属离子成为光生电子和光生空穴的捕获势阱,减小电子与空穴的复合几率,提高了对可见光利用率;掺杂的非金属元素主要有N、C、S、卤素等,一般认为是TiO2薄膜中O原子的2P轨道和非金属中能级与其能量接近的p轨道杂化后,价带宽化上移,禁带宽度相应减小,从而可吸收可见光。由此可见,采用过渡金属离子和非金属离子共掺杂的协同效应,可实现提高TiO2薄膜光电活性和光谱响应范围。
本发明提供了一种Ni、S共掺杂TiO2薄膜的制备方法及其在碳钢等金属光致阴极保护领域中的应用。
发明内容
本发明的目的是提供一种Ni、S共掺杂TiO2薄膜的制备方法及其在碳钢等金属光致阴极保护领域中的应用。
尽管近年来国内外学者对二氧化钛光致阴极保护技术进行了不断的探索与研究,但目前光致阴极保护技术仍然存在以下几个问题,困扰着这一保护技术的进一步推广应用。首先,目前研究工作采用的基体多是导电玻璃,而在工业生产中大量用到的材料如碳钢基体上制备TiO2薄膜较少报道,同时,如何在碳钢等基底表面获得与基体结合较好TiO2涂覆层的技术与方法仍然没有很好解决;其次,在暗态下,光生电子(e-)和光生空穴(h+)的快速复合,使得TiO2薄膜难以维持阴极保护作用;第三,TiO2带隙较宽(约3.2eV),只能吸收波长小于387nm的紫外光,对可见光的利用率较低(太阳能利用率约4%)。因此,研究在碳钢等通用基底上制备结合力好的、能利用可见光、暗态条件下保护效率高的TiO2薄膜是光致阴极保护技术走向实用化的关键,这对于在自然环境条件下实现碳钢等金属材料的防护具有重要的理论和实际意义。针对以上存在的技术问题,本专利首先先从基底与TiO2涂层结合力入手,在碳钢基底上进行了脉冲复合电沉积,制备Ni-P-SnO2纳米复合中间镀层,再利用溶胶凝胶法在镀层上制备TiO2薄膜及掺杂过渡金属或非金属的TiO2薄膜。Ni-P镀层本身具有优异的抗腐蚀效果,加之表面纳米微粒SnO2的引入使得镀层微观表面粗糙,在提高结合力的同时,还可发挥SnO2粒子的储电子能力,使外层TiO2涂层在暗态下继续维持光致阴极保护效果。与此同时,高温热处理过程镀层内Ni、P元素可作为掺杂元素扩散到TiO2涂层中,影响TiO2能带结构,提高其对可见光的利用率,为光致阴极保护顺利实施提供支撑。
一种Ni、S共掺杂TiO2薄膜的制备方法具体步骤如下:
1、Ni-P-SnO2复合镀层制备方法
a.Q235A碳钢片的前处理
选用规格50mm×10mm×2mm的Q235A碳钢片为基体,分别用 240-2000#水磨砂纸、金相砂纸逐级打磨碳钢片至表面光亮,在60℃下,在40g/L 碳酸钠,5g/L氢氧化钠溶液中,化学除油15分钟、5%盐酸酸洗活化3分钟,预处理后待镀。
b.电镀液的配制
按下列配方进行电镀液配置:称取120g/L的NiSO4·6H2O、40g/L的 NiCl2·6H2O、36g/L的H2BO3、20g/L的NaH2PO4·H2O、2g/L的糖精以及0.1g/L的十二烷基硫酸钠,经1升容量瓶定容后陈化10小时待用。
c.脉冲电沉积
施镀采用脉冲电沉积技术,用量筒量取250mL上述步骤b中陈化后的电镀液于烧杯中,加入0.5克SnO2和0.5克表面活性剂十二烷基硫酸钠,放入超声仪中超声震荡1小时使粒子均匀分散,磁力搅拌下将电镀液加热至镀液温度,将上述步骤a中预处理后的碳钢片、镍板接上脉冲电源进行施镀,最终在碳钢基体上获得Ni-P-SnO2复合镀层,其工艺条件为:镀液温度为60℃,脉冲时间为30分钟,平均电流密度为2A/dm2,溶液浓度为2g/L,占空比为30%,脉冲频率为150Hz。
2、Ni、S共掺杂TiO2薄膜的制备方法
a. Ni、S掺杂TiO2溶胶的制备方法
按照Ni、S与Ti摩尔比分别为0.001、0.005进行计算乙酸镍、硫脲加入量,分别用20mL的乙醇溶解0.0106克乙酸镍和0.0162克硫脲,待溶解完全后,转入100mL烧杯中,再加入40mL乙醇,以每2秒1滴的速度依次滴加1mL冰醋酸,3mL二乙醇胺,15mL钛酸丁酯,制成溶液A,将2mL无水乙醇和2mL 二次蒸馏水制成溶液B,将溶液A搅拌1小时后,将溶液B以每秒1滴速度加入至溶液A中,混合溶液A与溶液B,搅拌1小时后,加入0.5克聚乙二醇-2000,待聚乙二醇-2000充分溶解后,停止搅拌,最终制得浅黄色的透明溶胶。
b.浸渍提拉
镀膜采用浸渍提拉技术,将步骤(1)中c步获得镀有Ni-P-SnO2复合镀层的碳钢基体烘干,并固定在镀膜提拉机上,将步骤(2)中a步中配置好的TiO2掺杂溶胶置于基体下方,镀膜第一层TiO2掺杂溶胶,采用提拉速度为15mm/min,浸渍时间30秒,操作结束后,取下基体放于烘箱中烘10分钟,再拿出来进行第二次提拉,以获得第二层TiO2掺杂溶胶,采用的提拉速度是12mm/min,浸渍时间与第一次提拉相同,按第二次提拉方法进行操作,完成所需要的第三层 TiO2掺杂溶胶,将提拉三层Ni、S共掺杂TiO2薄膜的基体放于烘箱中30分钟;再将其放入马弗炉中,以10min/℃的速度升温到400℃,保温2小时,自然冷却到室温,即在镀有Ni-P-SnO2复合镀层的碳钢基体上面获得Ni、S共掺杂TiO2薄膜。
TiO2半导体薄膜的制备方法有多种,常见的有溶胶-凝胶法、阳极氧化法、水热法等,在近几年的研究中,将多种制备方法联用制备复合薄膜的方法也逐渐引起国内外学者的关注。溶胶-凝胶法是以钛的有机或无机溶液出发,加入适量的醇、醚类溶剂混合均匀,经一系列水解、缩聚反应,形成稳定TiO2溶胶。进一步凝胶化,并通过高温烧结过程将凝胶中的溶剂、水以及添加剂等物质分解,最终得到TiO2薄膜。溶胶-凝胶法制备的纳米TiO2涂层纯度高、均匀性强、反应条件不苛刻,并且制备工艺过程相对简单,是目前制膜方面应用最为广泛的方法之一,它不仅可在不同基体表面成膜,且较容易进行掺杂改性。
附图说明
图1为本发明实施例中Ni-P-SnO2/TiO2薄膜及掺杂薄膜的时间电位曲线。
具体实施方式
实施例:
1、Ni-P-SnO2复合镀层制备方法
a. Q235A碳钢片的前处理
选用规格50mm×10mm×2mm的Q235A碳钢片为基体,分别用 240-2000#水磨砂纸、金相砂纸逐级打磨碳钢片至表面光亮,在60℃下,在40g/L 碳酸钠,5g/L氢氧化钠溶液中,化学除油15分钟、5%盐酸酸洗活化3分钟,预处理后待镀。
b.电镀液的配制
按下列配方进行电镀液配置:称取120g/L的NiSO4·6H2O、40g/L的 NiCl2·6H2O、36g/L的H2BO3、20g/L的NaH2PO4·H2O、2g/L的糖精以及0.1g/L的十二烷基硫酸钠,经1升容量瓶定容后陈化10小时待用。
c.脉冲电沉积
施镀采用脉冲电沉积技术,用量筒量取250mL上述步骤b中陈化后的电镀液于烧杯中,加入0.5克SnO2和0.5克表面活性剂十二烷基硫酸钠,放入超声仪中超声震荡1小时使粒子均匀分散,磁力搅拌下将电镀液加热至镀液温度,将上述步骤a中预处理后的碳钢片、镍板接上脉冲电源进行施镀,最终在碳钢基体上获得Ni-P-SnO2复合镀层,其工艺条件为:镀液温度为60℃,脉冲时间为30分钟,平均电流密度为2A/dm2,溶液浓度为2g/L,占空比为30%,脉冲频率为150Hz。
2、Ni、S共掺杂TiO2薄膜的制备方法
a. Ni、S掺杂TiO2溶胶的制备方法
按照Ni、S与Ti摩尔比分别为0.001、0.005进行计算乙酸镍、硫脲加入量,分别用20mL的乙醇溶解0.0106克乙酸镍和0.0162克硫脲,待溶解完全后,转入100mL烧杯中,再加入40mL乙醇,以每2秒1滴的速度依次滴加1mL冰醋酸,3mL二乙醇胺,15mL钛酸丁酯,制成溶液A,将2mL无水乙醇和2mL 二次蒸馏水制成溶液B,将溶液A搅拌1小时后,将溶液B以每秒1滴速度加入至溶液A中,混合溶液A与溶液B,搅拌1小时后,加入0.5克聚乙二醇-2000,待聚乙二醇-2000充分溶解后,停止搅拌,最终制得浅黄色的透明溶胶。
b.浸渍提拉
镀膜采用浸渍提拉技术,将步骤(1)中c步获得镀有Ni-P-SnO2复合镀层的碳钢基体烘干,并固定在镀膜提拉机上,将步骤(2)中a步中配置好的TiO2掺杂溶胶置于基体下方,镀膜第一层TiO2掺杂溶胶,采用提拉速度为15mm/min,浸渍时间30秒,操作结束后,取下基体放于烘箱中烘10分钟,再拿出来进行第二次提拉,以获得第二层TiO2掺杂溶胶,采用的提拉速度是12mm/min,浸渍时间与第一次提拉相同,按第二次提拉方法进行操作,完成所需要的第三层 TiO2掺杂溶胶,将提拉三层Ni、S共掺杂TiO2薄膜的基体放于烘箱中30分钟;再将其放入马弗炉中,以10min/℃的速度升温到400℃,保温2小时,自然冷却到室温,即在镀有Ni-P-SnO2复合镀层的碳钢基体上面获得Ni、S共掺杂TiO2薄膜。
对本实施例中获得的Ni、S共掺杂TiO2薄膜进行了时间电位曲线测试,结果如图1所示。
从图1中可以看出光照下,与纯薄膜相比,掺杂薄膜的光生电位下降到 -6.89V左右,起到光生阴极保护作用;关闭光源后,碳钢电位无法回到初始电位,这与文献的结果一致,表明TiO2薄膜及其掺杂薄膜在可见光照射下产生的电子与空穴分离良好。整个光生电位之所以呈现阶梯式下降,一方面是因为SnO2的储存电子能力使得电位一直下降,没有恢复到初始电位;另一方面是因为由于入射电子激发半导体价带电子跃迁,产生光生电子-空穴对,Ni、S掺杂能够抑制TiO2晶型的长大。掺杂薄膜的碳钢基体比表面积大,反应面积就大,光生载流子容易迁移到粒子表面,电子与空穴复合几率小,因此,掺杂薄膜光生电位相对TiO2薄膜来说负移程度增加。以上结果表明,本发明制备的 Ni-P-SnO2/TiO2掺杂薄膜在可见光下比纯Ni-P-SnO2/TiO2薄膜对碳钢等金属具有更好的光生阴极保护效果。

Claims (1)

1.Ni、S共掺杂TiO2薄膜的制备方法,其特征在于具体步骤为:
(1)Ni-P-SnO2复合镀层制备方法
a.Q235A碳钢片的前处理
选用规格50mm×10mm×2mm的Q235A碳钢片为基体,分别用240-2000#水磨砂纸、金相砂纸逐级打磨碳钢片至表面光亮,在60℃下,在40g/L碳酸钠,5g/L氢氧化钠溶液中,化学除油15min、5%盐酸酸洗活化3min预处理后,待镀;
b.电镀液的配制
按下列配方进行镀液配置:NiSO4·6H2O 120g/L、NiCl2·6H2O 40g/L、H2BO3 36g/L、NaH2PO4·H2O 20g/L、糖精2g/L,十二烷基硫酸钠0.1g/L,经1升容量瓶定容后陈化8-10h待用;
c.脉冲电沉积
施镀采用脉冲电沉积技术,用量筒量取250mL上述步骤b中陈化后的镀液于烧杯中,加入一定量的纳米SnO2和表面活性剂十二烷基硫酸钠,放入超声仪中超声震荡1h使粒子均匀分散,磁力搅拌下将镀液加热至规定温度,将上述步骤a中预处理后的碳钢片、镍板接上脉冲电源进行施镀,最终在碳钢基体上获得Ni-P-SnO2复合镀层,其工艺条件为:镀液温度(T)为40~80℃,脉冲时间(t)为10~50min,平均电流密度(j)为1~3A/dm2,溶液浓度(c)为1~3g/L,占空比(γ)为10%~50%,脉冲频率(f)为50~250Hz;
(2)Ni、S共掺杂TiO2薄膜的制备方法
a.Ni、S掺杂TiO2溶胶的制备方法
按照Ni、S与Ti摩尔比分别为0.001、0.005进行计算乙酸镍、硫脲加入量,分别用20mL的乙醇溶解0.0106g乙酸镍和0.0162g硫脲,待溶解完全后,加入100mL烧杯中,再加入40mL乙醇,以每2s 1滴的速度依次滴加1mL冰醋酸,3mL二乙醇胺,15mL钛酸丁酯制成溶液A,将2mL无水乙醇和2mL二次蒸馏水制成溶液B,将溶液A搅拌1小时后,以每秒1滴缓慢加入溶液B至溶液A中,混合溶液A与溶液B,搅拌1小时后,加入0.5g/100mL聚乙二醇-2000,待聚乙二醇-2000充分溶解后,停止搅拌,最终可制得浅黄色的透明溶胶;
b.浸渍提拉
镀膜采用浸渍提拉技术,将步骤(1)中c步获得镀有Ni-P-SnO2复合镀层的碳钢基体烘干,并固定在镀膜提拉机上,将步骤(2)中a步中配置好的TiO2掺杂溶胶置于基体下方,镀膜第一层采用提拉速度为15mm/min,浸渍时间30s,操作结束后,取下基体放于烘箱中烘10分钟左右,再拿出来继续操作,第二层、采用的提拉速度是12mm/min,浸渍时间与第一层相同,继续进行操作,直到完成所需要的三层镀膜,将提拉三层Ni、S共掺杂TiO2薄膜的基体放于烘箱中30min;再将其放入马弗炉中,以10min/℃的速度分别升温到400℃,保温2h,自然冷却到室温,即可在镀有Ni-P-SnO2复合镀层的碳钢基体上面获得Ni、S共掺杂TiO2薄膜。
CN201610983425.8A 2016-11-06 2016-11-06 Ni、S共掺杂TiO2薄膜及其应用和制备方法 Active CN106521494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610983425.8A CN106521494B (zh) 2016-11-06 2016-11-06 Ni、S共掺杂TiO2薄膜及其应用和制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610983425.8A CN106521494B (zh) 2016-11-06 2016-11-06 Ni、S共掺杂TiO2薄膜及其应用和制备方法

Publications (2)

Publication Number Publication Date
CN106521494A CN106521494A (zh) 2017-03-22
CN106521494B true CN106521494B (zh) 2018-09-11

Family

ID=58350231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610983425.8A Active CN106521494B (zh) 2016-11-06 2016-11-06 Ni、S共掺杂TiO2薄膜及其应用和制备方法

Country Status (1)

Country Link
CN (1) CN106521494B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107008325A (zh) * 2017-05-05 2017-08-04 孝感双华应用科技开发有限公司 一种高性能复合光催化剂的制备方法
CN107597123A (zh) * 2017-08-30 2018-01-19 苏州罗格特光电科技有限公司 一种钛镍光电薄膜的制备方法及应用
CN110156364B (zh) * 2019-05-10 2021-04-30 济南大学 采用Si-Ti-Ca三元复合薄膜对压电陶瓷表面进行改性的方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101301619A (zh) * 2008-07-03 2008-11-12 南开大学 高效率金属、非金属离子共掺杂纳米TiO2可见光催化剂的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101301619A (zh) * 2008-07-03 2008-11-12 南开大学 高效率金属、非金属离子共掺杂纳米TiO2可见光催化剂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"(Ni-P)/(TiO2/ZnO)复合涂层的制备及其在天然海水中的耐蚀性";于东云等;《腐蚀与防护》;20130430;第34卷(第4期);全文 *
"Development of metal cation compound-loaded S-doped TiO2 photocatalysts having a rutile phase under visible light";Teruhisa Ohno et al.;《Applied Catalysis A: General》;20080723;第349卷;全文 *
"Ni-P-SnO2复合镀层的制备及其性能";张菁等;《腐蚀与防护》;20160930;第37卷(第9期);全文 *
"光致阴极保护研究进展";张菁等;《腐蚀与防护》;20150331;第36卷(第3期);第253页左栏第1-13行及倒数第3行至右栏第6行 *

Also Published As

Publication number Publication date
CN106521494A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN106521494B (zh) Ni、S共掺杂TiO2薄膜及其应用和制备方法
CN105483751A (zh) 一种高效Ni-S-Mo析氢电极及其制备方法
CN107723712A (zh) 用于光生阴极保护的ZnIn2S4/TiO2纳米管复合膜光阳极的制备方法
CN103880091B (zh) 一种纳米六边形氧化铁的制备方法
CN107557789B (zh) 一种光阳极材料及其制备与应用
CN102352494A (zh) CdSe/CdS量子点敏化TiO2纳米管复合膜的制备方法
CN103243371B (zh) 一种锌阳极氧化膜层的制备方法
CN102839403A (zh) 一种离子液体中电镀铝的方法
CN107093668B (zh) 原位制备基底、致密层、多孔层一体化式钙钛矿太阳能电池及其方法
CN106350849A (zh) 铝表面高吸收与低发射太阳光谱的氧化膜电沉积制备方法
CN106475118A (zh) 一种用于光电催化的核壳结构纳米复合材料的制备方法
CN104357852A (zh) 一种用于光生阴极保护的MnSe/TiO2复合膜及其制备和应用
CN108842168B (zh) 一种两步电化学法制备g-C3N4/MMO复合薄膜光电极
CN108539024A (zh) 一种碳基钙钛矿太阳能电池及其制备方法
CN101950678A (zh) 一种染料敏化太阳能电池Ag改性ZnO薄膜电极及其制备方法
Zhang et al. Indium oxide thin film as potential photoanodes for corrosion protection of stainless steel under visible light
CN100541822C (zh) 一种纳米晶薄膜的染料敏化太阳能电池及其制备方法
CN102828208B (zh) 一种钕铁硼磁体离子液体中电镀锌的方法
CN107195785A (zh) 一种少Pb钙钛矿材料及其制备方法、和钙钛矿太阳能电池
CN102013341B (zh) 一种双螺旋结构的染料敏化太阳能电池的制备方法
CN103320838B (zh) 一种tc4钛合金表面原位生长黄色陶瓷膜层的方法
CN106119858A (zh) 一种用于光生阴极保护的NiSe2/TiO2复合纳米管阵列膜及其制备和应用
WO2022188503A1 (zh) 一种光生防腐电极材料及其制备方法和应用
CN105154942A (zh) 脉冲电沉积制备Ni-P-WO3纳米复合镀层的方法
CN115254150A (zh) 一种用于光电催化的Bi2WO6/BiOBr-Ag2O复合薄膜材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170322

Assignee: Nanning Richong Technology Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980045033

Denomination of invention: Ni, S co doped TiO2 thin films and their applications and preparation methods

Granted publication date: 20180911

License type: Common License

Record date: 20231101

Application publication date: 20170322

Assignee: GUANGXI SHENGWEI ENERGY TECHNOLOGY Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980045025

Denomination of invention: Ni, S co doped TiO2 thin films and their applications and preparation methods

Granted publication date: 20180911

License type: Common License

Record date: 20231101

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170322

Assignee: Guilin Juge Technology Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2023980044685

Denomination of invention: Ni, S co doped TiO2 thin films and their applications and preparation methods

Granted publication date: 20180911

License type: Common License

Record date: 20231030

EE01 Entry into force of recordation of patent licensing contract