WO2022188503A1 - 一种光生防腐电极材料及其制备方法和应用 - Google Patents

一种光生防腐电极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022188503A1
WO2022188503A1 PCT/CN2021/139650 CN2021139650W WO2022188503A1 WO 2022188503 A1 WO2022188503 A1 WO 2022188503A1 CN 2021139650 W CN2021139650 W CN 2021139650W WO 2022188503 A1 WO2022188503 A1 WO 2022188503A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
preparation
corrosion
present
electrode material
Prior art date
Application number
PCT/CN2021/139650
Other languages
English (en)
French (fr)
Inventor
熊贤强
张晓�
武承林
王星利
褚雨潇
Original Assignee
台州学院
台州市生物医化产业研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台州学院, 台州市生物医化产业研究院有限公司 filed Critical 台州学院
Publication of WO2022188503A1 publication Critical patent/WO2022188503A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention relates to the technical field of electrode materials, in particular to a photogenerated anticorrosion electrode material and a preparation method and application thereof.
  • metal anti-corrosion technologies include: 1. Structural modification methods, such as making various corrosion-resistant alloys; 2. Protective coating methods, such as spraying paint on steel surfaces; 3. Electrochemical protection methods, using the principle of galvanic cells to protect metal For protection, try to eliminate the galvanic reaction that causes galvanic corrosion. The electrochemical protection method is divided into anodic protection and cathodic protection; 4. Sacrificial anode protection; 5. Impressed current protection, etc.
  • Photoelectrochemical cathodic protection is a new type of cathodic protection technology that uses green and clean solar energy to slow down or even inhibit the corrosion of metal materials and protect metal materials.
  • the principle is to use the effect of the semiconductor coating to generate photo-generated electron-hole pairs under the condition of light irradiation, and to transfer the photo-generated electrons generated by the semiconductor coating to the base metal material, so as to achieve similar external cathodic current protection to the base metal.
  • Technology Since photoelectrochemical cathodic protection technology is a new technology that uses solar energy to protect metal materials, and the protection process does not need to consume the anti-corrosion material itself, it is expected to become a permanent protective coating. Therefore, it is a green and environmentally friendly anti-corrosion technology in the true sense, and has a wide range of application prospects.
  • the purpose of the present invention is to provide a photo-generated anti-corrosion electrode material and a preparation method and application thereof.
  • the photo-generated anti-corrosion electrode material prepared by the present invention has excellent photocatalytic activity and can be used for photo-generated anti-corrosion for photoelectrochemical cathodic protection.
  • the invention provides a preparation method of a photogenerated anticorrosion electrode material, comprising the following steps:
  • the substrate containing the ⁇ -Fe 2 O 3 film obtained in the step (1) is alternately dipped in a potassium ferricyanide solution and a cobalt chloride solution to obtain a photogenerated anticorrosion electrode material.
  • the substrate in the step (1) includes FTO glass, titanium plate or copper plate.
  • the thickness of the ⁇ -Fe 2 O 3 thin film in the step (1) is 10 nm ⁇ 10 ⁇ m.
  • the concentration of the potassium ferricyanide solution in the step (2) is 0.01-1 mol/L.
  • the concentration of the potassium ferricyanide solution is 0.1-0.5 mol/L.
  • the concentration of the cobalt chloride solution in the step (2) is 0.02-2 mol/L.
  • the concentration of the cobalt chloride solution is 0.1-1 mol/L.
  • the soaking time of the ⁇ -Fe 2 O 3 film in the potassium ferricyanide solution is 5-20 min/time.
  • the soaking time of the ⁇ -Fe 2 O 3 film in the potassium ferricyanide solution is 10-15 min/time.
  • the dipping time of the ⁇ -Fe 2 O 3 film in the cobalt chloride solution is 5-20 min/time.
  • the dipping time of the ⁇ -Fe 2 O 3 film in the cobalt chloride solution is 10-15 min/time.
  • the repetition times of the alternate dipping in the step (2) is 2 to 19 times.
  • the present invention also provides the photogenerated anti-corrosion electrode material prepared by the preparation method described in the above technical solution, including a substrate, an ⁇ -Fe 2 O 3 film supported on the substrate, and a CoFe Prussian blue supported on the ⁇ -Fe 2 O 3 film film.
  • the present invention also provides the application of the photo-generated anti-corrosion electrode material in the photo-generated cathode anti-corrosion described in the above technical solution, comprising the following steps:
  • the photo-generated anti-corrosion electrode material is placed in the photo-anode cell, and the cathode metal material is placed in the corrosion cell; the photo-anode cell and the corrosion cell are connected by a salt bridge;
  • the cathode metal material includes stainless steel, carbon steel or titanium plate.
  • the invention provides a method for preparing a photo-generated anti-corrosion electrode material, which comprises the following steps: growing an ⁇ -Fe 2 O 3 film on the surface of a substrate to obtain a substrate containing the ⁇ -Fe 2 O 3 film ; The substrate of the O3 film was alternately dipped in potassium ferricyanide solution and cobalt chloride solution to obtain the photogenerated anticorrosion electrode material.
  • the ⁇ -Fe 2 O 3 film is first grown on the substrate, and the ⁇ -Fe 2 O 3 has high solar energy-chemical energy conversion efficiency, suitable band gap structure, can drive water oxidation reaction under the driving of visible light, and has Good photostability and other advantages; then by alternating immersion in potassium ferricyanide solution and cobalt chloride solution, CoFe Prussian blue (referred to as CoFe-PB) film is introduced on the surface of ⁇ -Fe 2 O 3 film, which can improve the electrode performance. Furthermore, the CoFe-PB cocatalyst layer can effectively drive the water oxidation rate at the electrode interface, which greatly improves the transfer efficiency of photogenerated holes, thereby inhibiting the photo-generated electron-hole transfer efficiency.
  • CoFe-PB cocatalyst layer can effectively drive the water oxidation rate at the electrode interface, which greatly improves the transfer efficiency of photogenerated holes, thereby inhibiting the photo-generated electron-hole transfer efficiency.
  • the recombination rate which will directly lead to the accumulation of photogenerated electrons on the photoelectrode substrate, and then the effective transfer to the protected metal surface, realizes the effective photocathode corrosion protection at open circuit potential.
  • the experimental results show that the photogenerated anti-corrosion electrode material prepared by the present invention can significantly improve the water oxidation reaction rate, and has a more excellent anti-corrosion effect on 304 stainless steel.
  • Example 1 is the XRD pattern of the ⁇ -Fe 2 O 3 thin film and the ⁇ -Fe 2 O 3 /CoFe-PB thin film electrode prepared in Example 1 of the present invention
  • Fig. 2 is the Raman spectrum of ⁇ -Fe 2 O 3 thin film and ⁇ -Fe 2 O 3 /CoFe-PB thin film electrode prepared in Example 1 of the present invention
  • Fig. 3 is the SEM image of the ⁇ -Fe 2 O 3 film prepared in Example 2 of the present invention.
  • Example 4 is a SEM image of the ⁇ -Fe 2 O 3 /CoFe-PB thin film electrode prepared in Example 2 of the present invention.
  • Fig. 5 is the UV-Vis absorption spectra of ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 /CoFe-PB thin film electrodes prepared in Example 2 of the present invention
  • FIG. 6 is a photocurrent-time curve diagram of ⁇ -Fe 2 O 3 and ⁇ -Fe 2 O 3 /CoFe-PB thin film electrodes prepared in Example 3 of the present invention under visible light irradiation;
  • Example 7 is a graph of open circuit potential-time curves of the ⁇ -Fe 2 O 3 -304 stainless steel coupling electrode and the ⁇ -Fe 2 O 3 /CoFe-PB-304 stainless steel coupling electrode in dark state and light in Example 4 of the present invention.
  • the invention provides a preparation method of a photogenerated anticorrosion electrode material, comprising the following steps:
  • the substrate containing the ⁇ -Fe 2 O 3 film obtained in the step (1) is alternately dipped in a potassium ferricyanide solution and a cobalt chloride solution to obtain a photogenerated anticorrosion electrode material.
  • the present invention grows the ⁇ -Fe 2 O 3 thin film on the surface of the substrate to obtain the substrate containing the ⁇ -Fe 2 O 3 thin film.
  • the substrate preferably includes FTO glass, titanium plate or copper plate.
  • the source of the substrate is not particularly limited in the present invention, and commercially available products well known to those skilled in the art can be used.
  • the substrate can support the ⁇ -Fe 2 O 3 thin film.
  • the present invention does not specifically limit the method for growing the ⁇ -Fe 2 O 3 film on the surface of the substrate, and the method for growing the ⁇ -Fe 2 O 3 film on the substrate well known to those skilled in the art can be used.
  • the method for growing an ⁇ -Fe 2 O 3 film on a substrate is preferably as follows: mixing FeCl 3 ⁇ 6H 2 O, urea and water to obtain a mixed solution, placing the substrate in the mixed solution, and performing A hydrothermal reaction is performed to obtain a precursor; the precursor is calcined to obtain a substrate containing an ⁇ -Fe 2 O 3 thin film.
  • FeCl 3 ⁇ 6H 2 O, urea and water are preferably mixed to obtain a mixed solution, the substrate is placed in the mixed solution, and a hydrothermal reaction is performed to obtain a precursor.
  • the ratio of the mass of FeCl 3 ⁇ 6H 2 O, the mass of urea and the volume of water is preferably (0.14-0.41) g: (0.09-0.27) g: (10-30) mL, more preferably 0.27g: 0.18g: 20mL.
  • the FeCl 3 ⁇ 6H 2 O provides an iron source, and the urea acts as a precipitant.
  • the water is preferably deionized water. In the present invention, the water is used as a solvent.
  • FeOOH precipitation is formed by the mass of FeCl 3 ⁇ 6H 2 O, urea and water under hydrothermal conditions, and the ratio of the mass of FeCl 3 ⁇ 6H 2 O, the mass of urea and the volume of water is within the above range, a precipitate can be sufficiently formed on the surface of the substrate.
  • the present invention does not limit the operation mode of mixing FeCl 3 ⁇ 6H 2 O, urea and water, and can dissolve FeCl 3 ⁇ 6H 2 O and urea in water by adopting a mixing mode well known to those skilled in the art.
  • the temperature of the hydrothermal reaction is preferably 90-120°C, more preferably 100°C; the time of the hydrothermal reaction is preferably 2-8h, more preferably 4h. In the present invention, when the temperature and time of the hydrothermal reaction are within the above-mentioned ranges, the hydrothermal reaction can be sufficiently advanced.
  • the device for the hydrothermal reaction is not particularly limited in the present invention, and a device for hydrothermal reaction well known to those skilled in the art may be used.
  • the product obtained by the hydrothermal reaction is preferably washed and dried in sequence to obtain a precursor.
  • the precursor includes a substrate and FeOOH precipitates deposited on the surface of the substrate.
  • the present invention does not specifically limit the operation mode of the washing and drying, and the operation mode of washing and drying well known to those skilled in the art can be adopted.
  • the washing reagent is preferably ultrapure water.
  • the drying temperature is preferably 20 to 60°C, more preferably 30 to 40°C.
  • the drying time is not particularly limited, as long as the washed product can be dried.
  • the precursor is preferably calcined to obtain a substrate containing an ⁇ -Fe 2 O 3 thin film.
  • the calcination is preferably a low-temperature calcination and a high-temperature calcination performed in sequence.
  • the temperature of the low-temperature calcination is preferably 400-600°C, more preferably 500°C; the time of the low-temperature calcination is preferably 1-8h, more preferably 3h.
  • the temperature of the high-temperature calcination is preferably 700-850°C, more preferably 750°C; the high-temperature calcination time is preferably 5-120 min, more preferably 20 min.
  • the calcination is sequentially performed low temperature calcination and high temperature calcination, which can make the ⁇ -Fe 2 O 3 thin film evenly and densely distributed on the surface of the substrate.
  • the thickness of the ⁇ -Fe 2 O 3 thin film on the substrate containing the ⁇ -Fe 2 O 3 thin film is not particularly limited, and can be adjusted as required.
  • the thickness of the ⁇ -Fe 2 O 3 thin film is preferably 10 nm to 10 ⁇ m, more preferably 200 nm to 500 nm.
  • the thickness of the ⁇ -Fe 2 O 3 thin film is in the above range, it is more beneficial to improve the catalytic activity of the electrode.
  • the present invention alternately immerses the substrate containing the ⁇ -Fe 2 O 3 film in potassium ferricyanide solution and cobalt chloride solution to obtain a photogenerated anti-corrosion electrode material.
  • the solvent of the potassium ferricyanide solution is preferably deionized water.
  • the present invention does not specifically limit the preparation method of the potassium ferricyanide solution, and the method for preparing a solvent well known to those skilled in the art can be used.
  • the concentration of the potassium ferricyanide solution is preferably 0.01-1 mol/L, more preferably 0.05-0.5 mol/L, and most preferably 0.1-0.5 mol/L. In the present invention, when the concentration of the potassium ferricyanide solution is in the above range, it is more beneficial to control the reaction rate.
  • the soaking time of the substrate containing the ⁇ -Fe 2 O 3 film in the potassium ferricyanide solution is preferably 5-20 min/time, more preferably 10-15 min/time.
  • the soaking can make potassium ferricyanide adsorb on the surface of the ⁇ -Fe 2 O 3 thin film.
  • the solvent of the cobalt chloride solution is preferably deionized water.
  • the present invention does not specifically limit the preparation method of the cobalt chloride solution, and the method for preparing a solvent well known to those skilled in the art can be used.
  • the concentration of the cobalt chloride solution is preferably 0.02-2 mol/L, more preferably 0.1-1 mol/L. In the present invention, when the concentration of the cobalt chloride solution is in the above range, it is more beneficial to control the reaction rate.
  • the soaking time of the substrate containing the ⁇ -Fe 2 O 3 film in the cobalt chloride solution is preferably 5-20 min/time, more preferably 10-15 min/time.
  • the cobalt chloride reacts with potassium ferricyanide adsorbed on the surface of the ⁇ -Fe 2 O 3 thin film during the soaking process to form a CoFe-PB layer.
  • the substrate containing the ⁇ -Fe 2 O 3 film is preferably washed before the next dipping.
  • the washing can remove the potassium ferricyanide solution or the cobalt chloride solution that is not adsorbed on the surface of the ⁇ -Fe 2 O 3 film, which is beneficial to improve the compactness of the CoFe-PB layer.
  • alternately dipping the substrate containing the ⁇ -Fe 2 O 3 film in potassium ferricyanide solution and cobalt chloride solution can form CoFe-PB on the surface of the ⁇ -Fe 2 O 3 film.
  • the number of repetitions of the alternating dipping is preferably 2 to 19 times, and more preferably 5 to 15 times. In the present invention, the number of repetitions determines the thickness of CoFe-PB. In the present invention, when the number of repetitions is in the above range, the thickness of the obtained CoFe-PB is preferably 1 nm to 200 nm, and more preferably 5 nm to 50 nm. In the present invention, when the thickness of the CoFe-PB is in the above-mentioned range, the electrocatalytic performance and photo-corrosion resistance of the electrode material can be further improved.
  • the alternating immersion of the substrate containing the ⁇ -Fe 2 O 3 film in the potassium ferricyanide solution and the cobalt chloride solution is preferably performed under stirring.
  • the stirring can make the potassium ferricyanide solution or the cobalt chloride solution evenly distributed on the surface of the ⁇ -Fe 2 O 3 thin film.
  • the present invention does not have a special limitation on the stirring speed, as long as the potassium ferricyanide solution or the cobalt chloride solution can be uniformly distributed on the surface of the ⁇ -Fe 2 O 3 film.
  • an ⁇ -Fe 2 O 3 film is grown on the surface of a substrate, and then the substrate containing the ⁇ -Fe 2 O 3 film is alternately dipped in a potassium ferricyanide solution and a cobalt chloride solution to obtain a photogenerated anti-corrosion electrode Material.
  • This method can form CoFe-PB on the surface of ⁇ -Fe 2 O 3 thin film, and CoFe-PB acts as a promoter layer.
  • the present invention also provides the photogenerated anti-corrosion electrode material prepared by the preparation method described in the above technical solution, including a substrate, an ⁇ -Fe 2 O 3 film supported on the substrate and a CoFe-PB supported on the ⁇ -Fe 2 O 3 film .
  • ⁇ -Fe 2 O 3 in the photo-generated anti-corrosion electrode material is used as the active material
  • the CoFe-PB is used as the promoter layer, which can improve the interface hole transfer rate of the photo-generated anti-corrosion electrode material, thereby inhibiting the photo-generated charge. composite, thereby improving the electrocatalytic activity of the photo-generated anti-corrosion electrode material; and has the effect of improving the anti-corrosion of the photocathode.
  • the present invention also provides the application of the photo-generated anti-corrosion electrode material in the photo-generated cathode anti-corrosion according to the above technical solution, and the application method of the photo-generated anti-corrosion electrode material in the photo-generated cathode corrosion protection preferably includes:
  • the photo-generated anti-corrosion electrode material is placed in the photo-anode cell, and the cathode metal material is placed in the corrosion cell; the photo-anode cell and the corrosion cell are connected by a salt bridge;
  • the electrolyte in the corrosion tank is preferably a NaCl solution, and the mass concentration of the NaCl solution is preferably 2-4%, more preferably 3.5%.
  • the electrolyte in the corrosion tank is of the above type, it is favorable for the reduction reaction to proceed.
  • the present invention is not particularly limited to the operation mode of the salt bridge connection, and the operation mode of the salt bridge connection well known to those skilled in the art can be used.
  • the cathode metal material preferably includes stainless steel, carbon steel or titanium plate.
  • the source of the stainless steel, carbon steel or titanium plate is not particularly limited in the present invention, and commercially available products well known to those skilled in the art can be used.
  • the present invention does not specifically limit the manner in which the photo-generated anti-corrosion electrode material and the cathode metal material are connected by wires, and a connection manner well known to those skilled in the art may be adopted.
  • the electrolyte in the photoanode cell is preferably a NaOH solution, and the concentration of the NaOH solution is preferably 0.1-5 mol/L, more preferably 1 mol/L.
  • the electrolyte in the photoanode cell is of the above-mentioned type, it is favorable for the oxidation reaction to proceed.
  • visible light can drive the water oxidation reaction
  • placing the coupling electrode under the condition of visible light irradiation can provide a light source for the water oxidation reaction.
  • the photo-generated anti-corrosion electrode material provided by the present invention has excellent electrocatalytic activity, and has the effect of improving the anti-corrosion effect of the photo-cathode, so it can be used for the anti-corrosion of the photo-generated cathode.
  • the substrate containing the ⁇ -Fe 2 O 3 film was first immersed in the potassium ferricyanide solution for 10 minutes, then the electrode was rinsed with distilled water, and then the electrode was immersed in the cobalt chloride solution for 10 minutes, and this step was repeated 4 times to obtain Photo-generated anti-corrosion electrode material, referred to as ⁇ -Fe 2 O 3 /CoFe-PB thin film electrode.
  • the substrate containing ⁇ -Fe 2 O 3 thin film (referred to as ⁇ -Fe 2 O 3 in FIG. 1 ) and the ⁇ -Fe 2 O 3 /CoFe-PB thin film electrode prepared in this example were tested by X-ray diffractometer, and XRD results were obtained. The spectrum is shown in Figure 1.
  • the substrate containing ⁇ -Fe 2 O 3 film (referred to as ⁇ -Fe 2 O 3 in FIG. 2 ) and the ⁇ -Fe 2 O 3 /CoFe-PB film electrode prepared in this example were tested by Raman spectrometer, and the results were as shown in the figure. 2 shows the Raman spectrum.
  • the absorption peak of the substrate containing ⁇ -Fe 2 O 3 film at 1323 cm -1 is Fe-O stretching vibration
  • the Raman signal of the ⁇ -Fe 2 O 3 /CoFe-PB thin film electrode is related to the electrode containing ⁇ -Fe 2 O 3 /CoFe-PB film.
  • the substrates of ⁇ -Fe 2 O 3 films are quite different, and the peaks at 552 cm -1 and 1090 cm -1 may be caused by CoFe-PB.
  • the substrate containing ⁇ -Fe 2 O 3 film (abbreviated as ⁇ -Fe 2 O 3 film) was prepared according to the method of Example 1;
  • the substrate containing the ⁇ -Fe 2 O 3 film was first immersed in the potassium ferricyanide solution for 10 minutes, then the electrode was rinsed with distilled water, and then the electrode was immersed in the cobalt chloride solution for 10 minutes, and this step was repeated twice to obtain Photo-generated anti-corrosion electrode material, referred to as ⁇ -Fe 2 O 3 /CoFe-PB thin film electrode.
  • the ⁇ -Fe 2 O 3 film prepared in this example was tested by scanning electron microscope, and the SEM image was obtained as shown in FIG. 3 ;
  • the ⁇ -Fe 2 O 3 /CoFe-PB prepared in this example was tested by scanning electron microscope, and the SEM image was obtained as shown in FIG. 4 .
  • the substrate containing ⁇ -Fe 2 O 3 film (abbreviated as ⁇ -Fe 2 O 3 film) was prepared according to the method of Example 1;
  • the ⁇ -Fe 2 O 3 film was first immersed in the potassium ferricyanide solution for 15 minutes, then the electrode was rinsed with distilled water, and then the electrode was immersed in the cobalt chloride solution for 15 minutes, and this step was repeated 4 times to obtain photogenerated Anti-corrosion electrode material, referred to as ⁇ -Fe 2 O 3 /CoFe-PB thin film electrode.
  • the UV-Vis diffuse reflectance spectrometer was used to test the electrodes containing ⁇ -Fe 2 O 3 film and ⁇ -Fe 2 O 3 /CoFe-PB film prepared in this example, and the UV-Vis absorption spectrum was obtained as shown in FIG. 5 .
  • the substrate containing ⁇ -Fe 2 O 3 film (abbreviated as ⁇ -Fe 2 O 3 film) was prepared according to the method of Example 1;
  • the obtained ⁇ -Fe 2 O 3 /CoFe-PB thin film electrode was connected to 304 stainless steel through copper wire to prepare ⁇ -Fe 2 O 3 /CoFe-PB-304 stainless steel coupling electrode, in which ⁇ -Fe 2 O 3 /CoFe-
  • the PB thin film electrode was placed in a photoanode cell, and the electrolyte in the photoanode cell was 1 mol/L NaOH solution; 304 stainless steel was placed in a corrosion cell, and the electrolyte in the corrosion cell was a 3.5wt% NaCl solution; the photoanode cell and the corrosion cell were connected by a salt bridge.
  • the ⁇ -Fe 2 O 3 -304 stainless steel coupling electrode was prepared by connecting the ⁇ -Fe 2 O 3 film with 304 stainless steel, which served as the control group.

Abstract

本发明涉及电极材料技术领域,提供了一种光生防腐电极材料的制备方法,本发明先在基底上生长α-三氧化二铁薄膜,α-三氧化二铁具有较高的太阳能-化学能转换效率、具有合适的带隙结构,可以在可见光驱动下驱动水氧化反应、具有良好的光稳定性等优点;然后通过在铁氰化钾溶液和氯化钴溶液的交替浸渍,在α-三氧化二铁薄膜表面引入CoFe-PB助催化剂层,能够提高电极的导电性,进而可以提高电极材料的催化性能;并且能够有效驱动电极界面的水氧化速率,大幅提升了光生空穴的转移效率,从而抑制了光生电子-空穴的复合,有助于光生电子在光电极基底上聚集,进而有效转移至被保护金属表面,实现了开路电位下有效光电阴极防腐。

Description

一种光生防腐电极材料及其制备方法和应用
本申请要求于2021年03月08日提交中国专利局、申请号为202110250586.7、发明名称为“一种光生防腐电极材料及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电极材料技术领域,尤其涉及一种光生防腐电极材料及其制备方法和应用。
背景技术
金属材料具有良好的工艺性能和使用性能,被广泛应用于人类生活的各个领域,比如作为电极的阴极。但是绝大多数金属材料在使用中易发生腐蚀,造成巨大的经济损失和严重的危险,因此研究金属材料防腐技术成为一大趋势。目前,金属防腐技术有:1.结构改变法,例如制造各种耐腐蚀性的合金;2.保护涂层法,例如在钢铁表面喷涂油漆;3.电化学保护法,利用原电池原理对金属进行保护,设法消除引起电化腐蚀的原电池反应,电化学保护法分为阳极保护和阴极保护;4.牺牲阳极保护;5.外加电流保护等。但是外加电流阴极保护技术需要高的电能输入,牺牲阳极保护会造成环境污染和材料消耗,而光电化学阴极保护仅以太阳能和水为输入源,因此在金属防腐领域备受关注。
光电化学阴极保护是利用绿色清洁的太阳能来减缓甚至抑制金属材料的腐蚀,保护金属材料的一种新型阴极保护技术。其原理是利用半导体涂层能在光照辐射条件下产生光生电子空穴对的效应,将半导体涂层受光激发产生的光生电子转移到基底金属材料上,从而达到对基底金属实现类似外加阴极电流保护的技术。由于光电化学阴极保护技术是利用太阳能来保护金属材料的新技术,而且保护过程中并不需要消耗防腐材料本身,从而有望成为永久性的保护涂层。因此它是真正意义上的绿色环保防腐蚀技术,具有广泛的应用前景。
到目前为止,已经开发了许多半导体涂层来作为光电化学阴极保护的材料,如TiO 2、WO 3、SnO 2、α-Fe 2O 3/Fe 3O 4等。由于α-Fe 2O 3具有较高的太阳能-化学能转换效率、具有合适的带隙结构(Eg≈2.1eV)、可以在可 见光驱动下驱动水氧化反应、具有良好的光稳定性等优点,在光(电)催化水分解或有机降解领域受到了广泛的关注。但是,由于α-Fe 2O 3的空穴扩散长度较短,导电性较差,光电催化分解水的活性仍然很低。因此,亟需提供一种既具有优异的光催化活性,同时还能够对阴极实现光电化学阴极保护的电极材料。
发明内容
本发明的目的在于提供一种光生防腐电极材料及其制备方法和应用,本发明制备的光生防腐电极材料具有优异的光催化活性,且能够用于光生防腐进行光电化学阴极保护。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种光生防腐电极材料的制备方法,包括以下步骤:
(1)在基底表面生长α-Fe 2O 3薄膜,得到含有α-Fe 2O 3薄膜的基底;
(2)将所述步骤(1)得到的含有α-Fe 2O 3薄膜的基底在铁氰化钾溶液和氯化钴溶液中进行交替浸渍,得到光生防腐电极材料。
优选地,所述步骤(1)中的基底包括FTO玻璃、钛板或铜板。
优选地,所述步骤(1)中α-Fe 2O 3薄膜的厚度为10nm~10μm。
优选地,所述步骤(2)中铁氰化钾溶液的浓度为0.01~1mol/L。
优选地,所述铁氰化钾溶液的浓度为0.1~0.5mol/L。
优选地,所述步骤(2)中氯化钴溶液的浓度为0.02~2mol/L。
优选地,所述氯化钴溶液的浓度为0.1~1mol/L。
优选地,所述步骤(2)中α-Fe 2O 3薄膜在铁氰化钾溶液中的浸泡时间为5~20min/次。
优选地,所述α-Fe 2O 3薄膜在铁氰化钾溶液中的浸泡时间为10~15min/次。
优选地,所述步骤(2)中α-Fe 2O 3薄膜在氯化钴溶液中的浸渍的时间为5~20min/次。
优选地,所述α-Fe 2O 3薄膜在氯化钴溶液中的浸渍的时间为10~15min/次。
优选地,所述步骤(2)中交替浸渍的重复次数为2~19次。
本发明还提供了上述技术方案所述制备方法制备得到的光生防腐电极材料,包括基底、负载于基底上的α-Fe 2O 3薄膜和负载在α-Fe 2O 3薄膜上的CoFe普鲁士蓝薄膜。
本发明还提供了上述技术方案所述的光生防腐电极材料在光生阴极防腐中的应用,包括以下步骤:
a.将光生防腐电极材料置于光阳极池内,将阴极金属材料置于腐蚀池内;所述光阳极池和腐蚀池通过盐桥相接;
b.将所述步骤a中的光生防腐电极材料与阴极金属材料通过导线连接,得到耦合电极,将所述耦合电极置于可见光照射条件下进行光照。
优选地,所述阴极金属材料包括不锈钢、碳钢或钛板。
本发明提供了一种光生防腐电极材料的制备方法,包括以下步骤:在基底表面生长α-Fe 2O 3薄膜,得到含有α-Fe 2O 3薄膜的基底;将得到的含有α-Fe 2O 3薄膜的基底在铁氰化钾溶液和氯化钴溶液中进行交替浸渍,得到光生防腐电极材料。本发明先在基底上生长α-Fe 2O 3薄膜,α-Fe 2O 3具有较高的太阳能-化学能转换效率、具有合适的带隙结构,可以在可见光驱动下驱动水氧化反应、具有良好的光稳定性等优点;然后通过在铁氰化钾溶液和氯化钴溶液的交替浸渍,在α-Fe 2O 3薄膜表面引入CoFe普鲁士蓝(简称CoFe-PB)薄膜,能够提高电极的导电性,进而可以提高电极材料的催化性能;并且,由于CoFe-PB助催化剂层能够有效驱动电极界面的水氧化速率,大幅提升了光生空穴的转移效率,从而抑制了光生电子-空穴的复合速率,这将直接导致光生电子在光电极基底上聚集,进而有效转移至被保护金属表面,实现了开路电位有效光电阴极防腐。实验结果表明,本发明制备的光生防腐电极材料能够显著提高水氧化反应速率,且对304不锈钢具有更优异的防腐蚀作用。
附图说明
图1为本发明实施例1中制备的α-Fe 2O 3薄膜和α-Fe 2O 3/CoFe-PB薄膜电极的XRD图;
图2为本发明实施例1中制备的α-Fe 2O 3薄膜和α-Fe 2O 3/CoFe-PB薄膜电极的拉曼光谱图;
图3为本发明实施例2中制备的α-Fe 2O 3薄膜的SEM图;
图4为本发明实施例2中制备的α-Fe 2O 3/CoFe-PB薄膜电极的SEM图;
图5为本发明实施例2中制备的α-Fe 2O 3和α-Fe 2O 3/CoFe-PB薄膜电极的紫外可见吸收光谱图;
图6为本发明实施例3中制备的α-Fe 2O 3和α-Fe 2O 3/CoFe-PB薄膜电极在可见光照射下的光电流-时间曲线图;
图7为本发明实施例4中α-Fe 2O 3-304不锈钢耦合电极和α-Fe 2O 3/CoFe-PB-304不锈钢耦合电极在暗态和光照下的开路电位-时间曲线图。
具体实施方式
本发明提供了一种光生防腐电极材料的制备方法,包括以下步骤:
(1)在基底表面生长α-Fe 2O 3薄膜,得到含有α-Fe 2O 3薄膜的基底;
(2)将所述步骤(1)得到的含有α-Fe 2O 3薄膜的基底在铁氰化钾溶液和氯化钴溶液中进行交替浸渍,得到光生防腐电极材料。
本发明在基底表面生长α-Fe 2O 3薄膜,得到含有α-Fe 2O 3薄膜的基底。
在本发明中,所述基底优选包括FTO玻璃、钛板或铜板。本发明对所述基底的来源没有特殊限定,采用本领域技术人员熟知的市售产品即可。在本发明中,所述基底能够支撑α-Fe 2O 3薄膜。
本发明对所述在基底表面生长α-Fe 2O 3薄膜的方法没有特殊限定,采用本领域技术人员熟知的在基底上生长α-Fe 2O 3薄膜的方法即可。在本发明中,所述在基底上生长α-Fe 2O 3薄膜的方法优选为:将FeCl 3·6H 2O、尿素和水混合得到混合液,将基底置于所述混合液中,进行水热反应,得到前驱体;将所述前驱体进行煅烧,得到含有α-Fe 2O 3薄膜的基底。
本发明优选将FeCl 3·6H 2O、尿素和水混合得到混合液,将基底置于所述混合液中,进行水热反应,得到前驱体。
在本发明中,所述FeCl 3·6H 2O的质量、尿素的质量和水的体积之比优选为(0.14~0.41)g:(0.09~0.27)g:(10~30)mL,更优选为0.27g:0.18g:20mL。在本发明中,所述FeCl 3·6H 2O提供铁源,所述尿素作为 沉淀剂。在本发明中,所述水优选为去离子水。在本发明中,所述水作为溶剂。在本发明中,所述FeCl 3·6H 2O、尿素的质量和水在水热条件下形成FeOOH沉淀,当所述FeCl 3·6H 2O的质量、尿素的质量和水的体积之比为上述范围时能够在基底表面充分形成沉淀。
本发明对所述FeCl 3·6H 2O、尿素和水混合的操作方式没有特殊限定,采用本领域技术人员熟知的混合方式,能够将FeCl 3·6H 2O和尿素溶解于水中即可。
在本发明中,所述水热反应的温度优选为90~120℃,更优选为100℃;所述水热反应的时间优选为2~8h,更优选为4h。在本发明中,所述水热反应的温度和时间为上述范围时能够使水热反应充分进行。本发明对所述水热反应的装置没有特殊限定,采用本领域技术人员熟知的水热反应的装置即可。
水热反应完成后,本发明优选将所述水热反应得到的产物依次进行洗涤和干燥,得到前躯体。在本发明中,所述前躯体包括基底和沉积在基底表面的FeOOH沉淀。本发明对所述洗涤和干燥的操作方式没有特殊限定,采用本领域技术人员熟知的洗涤和干燥的操作方式即可。在本发明中,所述洗涤的试剂优选为超纯水。在本发明中,所述干燥的温度优选为20~60℃,更优选为30~40℃。本发明对所述干燥的时间没有特殊限定,能够将洗涤后的产物干燥即可。
得到前躯体后,本发明优选将所述前躯体进行煅烧,得到含有α-Fe 2O 3薄膜的基底。
在本发明中,所述煅烧优选为依次进行的低温煅烧和高温煅烧。在本发明中,所述低温煅烧的温度优选为400~600℃,更优选为500℃;所述低温煅烧的时间优选为1~8h,更优选为3h。在本发明中,所述高温煅烧的温度优选为700~850℃,更优选为750℃;所述高温煅烧的时间优选为5~120min,更优选为20min。在本发明中,所述煅烧为依次进行的低温煅烧和高温煅烧能够使α-Fe 2O 3薄膜在基底表面分布均匀且致密。
本发明对所述含有α-Fe 2O 3薄膜的基底上的α-Fe 2O 3薄膜的厚度没有特殊限定,根据需要进行调整即可。在本发明中,所述α-Fe 2O 3薄膜的厚度优选为10nm~10μm,更优选为200nm~500nm。在本发明中,所述α-Fe 2O 3 薄膜的厚度为上述范围时,更有利于提高电极的催化活性。
得到含有α-Fe 2O 3薄膜的基底后,本发明将所述含有α-Fe 2O 3薄膜的基底在铁氰化钾溶液和氯化钴溶液中进行交替浸渍,得到光生防腐电极材料。
在本发明中,所述铁氰化钾溶液的溶剂优选为去离子水。本发明对所述铁氰化钾溶液的配制方法没有特殊限定,采用本领域技术人员熟知的配制溶剂的方法即可。
在本发明中,所述铁氰化钾溶液的浓度优选为0.01~1mol/L,更优选为0.05~0.5mol/L,最优选为0.1~0.5mol/L。在本发明中,所述铁氰化钾溶液的浓度为上述范围时,更有利于控制反应速率。
在本发明中,所述含有α-Fe 2O 3薄膜的基底在铁氰化钾溶液中的浸泡时间优选为5~20min/次,更优选为10~15min/次。在本发明中,所述浸泡能够使铁氰化钾吸附于α-Fe 2O 3薄膜表面。
在本发明中,所述氯化钴溶液的溶剂优选为去离子水。本发明对所述氯化钴溶液的配制方法没有特殊限定,采用本领域技术人员熟知的配制溶剂的方法即可。
在本发明中,所述氯化钴溶液的浓度优选为0.02~2mol/L,更优选为0.1~1mol/L。在本发明中,所述氯化钴溶液的浓度为上述范围时,更有利于控制反应速率。
在本发明中,所述含有α-Fe 2O 3薄膜的基底在氯化钴溶液中的浸泡时间优选为5~20min/次,更优选为10~15min/次。在本发明中,所述浸泡过程中氯化钴与吸附于α-Fe 2O 3薄膜表面的铁氰化钾发生反应,形成CoFe-PB层。
本发明优选在每次浸渍后,对含有α-Fe 2O 3薄膜的基底进行洗涤后再进行下一次浸渍。在本发明中,所述洗涤能够将未吸附在α-Fe 2O 3薄膜表面的铁氰化钾溶液或氯化钴溶液去除,有利于提高CoFe-PB层的致密性。
在本发明中,所述含有α-Fe 2O 3薄膜的基底在铁氰化钾溶液和氯化钴溶液中进行交替浸渍能够在α-Fe 2O 3薄膜表面形成CoFe-PB。
在本发明中,所述交替浸渍的重复次数优选为2~19次,更优选为5~15次。在本发明中,所述重复的次数决定CoFe-PB的厚度。在本发明中, 当所述重复的次数为上述范围时,得到的CoFe-PB的厚度优选为1nm~200nm,更优选为5nm~50nm。在本发明中,所述CoFe-PB的厚度为上述范围时,能够进一步提高电极材料的电催化性能和光生防腐性。
在本发明中,所述含有α-Fe 2O 3薄膜的基底在铁氰化钾溶液和氯化钴溶液中的交替浸渍优选在搅拌下进行。在本发明中,所述搅拌能够使铁氰化钾溶液或氯化钴溶液均匀分布于α-Fe 2O 3薄膜表面。本发明对所述搅拌的速率没有特殊限定,能够将铁氰化钾溶液或氯化钴溶液在α-Fe 2O 3薄膜表面分布均匀即可。
本发明提供的制备方法在基底表面生长α-Fe 2O 3薄膜,然后将含有α-Fe 2O 3薄膜的基底在铁氰化钾溶液和氯化钴溶液中进行交替浸渍,得到光生防腐电极材料。此方法能够在α-Fe 2O 3薄膜表面形成CoFe-PB,CoFe-PB作为助催化层。
本发明还提供了上述技术方案所述制备方法制备得到的光生防腐电极材料,包括基底、负载于基底上的α-Fe 2O 3薄膜和负载在α-Fe 2O 3薄膜上的CoFe-PB。
在本发明中,所述光生防腐电极材料中α-Fe 2O 3作为活性材料,所述CoFe-PB为助催化层,能够提高光生防腐电极材料的界面空穴转移速率,进而抑制光生电荷的复合,从而提高光生防腐电极材料的电催化活性;并且具有能够提高光电阴极防腐的效果。
本发明还提供了上述技术方案所述光生防腐电极材料在光生阴极防腐中的应用,所述光生防腐电极材料在光生阴极防腐中的应用方法优选包括:
a.将光生防腐电极材料置于光阳极池内,将阴极金属材料置于腐蚀池内;所述光阳极池和腐蚀池通过盐桥相接;
b.将所述步骤a中的光生防腐电极材料与阴极金属材料通过导线连接,得到耦合电极,将所述耦合电极置于可见光照射条件下进行光照。
在本发明中,所述腐蚀池中的电解质优选为NaCl溶液,所述NaCl溶液的质量浓度优选为2~4%,更优选为3.5%。在本发明中,所述腐蚀池中的电解质为上述类型时,有利于还原反应的进行。
本发明对所述盐桥相接的操作方式没有特殊限定,采用本领域技术人 员熟知的盐桥相接的操作方式即可。
在本发明中,所述阴极金属材料优选包括不锈钢、碳钢或钛板。本发明对所述不锈钢、碳钢或钛板的来源没有特殊限定,采用本领域技术人员熟知的市售产品即可。
本发明对所述光生防腐电极材料与阴极金属材料通过导线连接的方式没有特殊限定,采用本领域技术人员熟知的连接方式即可。
在本发明中,所述光阳极池中的电解质优选为NaOH溶液,所述NaOH溶液的浓度优选为0.1~5mol/L,更优选为1mol/L。在本发明中,所述光阳极池中的电解质为上述类型时有利于氧化反应的进行。
在本发明中,可见光能够驱动水氧化反应,将所述耦合电极置于可见光照射条件下进行光照能够为水氧化反应提供光源。
本发明提供的光生防腐电极材料具有优异的电催化活性,并且具有能够提高光电阴极防腐的效果,因此能够用于光生阴极防腐。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)称取0.27g FeCl 3·6H 2O和0.18g尿素溶于20mL蒸馏水中,室温下搅拌使其完全溶解,将溶液转移至插有FTO玻璃的染色罐中,密封后置于100℃烘箱,水热反应4h。反应结束后,取出膜,用超纯水清洗,干燥后置于500℃马弗炉中煅烧3h,然后再在750℃马弗炉中煅烧20min,即得含有α-Fe 2O 3薄膜的基底。
(2)分别配制铁氰化钾溶液和氯化钴溶液。铁氰化钾溶液的浓度为0.02mol/L,氯化钴溶液的浓度为0.04mol/L。
(3)在缓慢搅拌下将含有α-Fe 2O 3薄膜的基底先浸入铁氰化钾溶液10min,然后用蒸馏水冲洗电极,再将电极浸入氯化钴溶液10min,重复该步骤4次,得到光生防腐电极材料,简称α-Fe 2O 3/CoFe-PB薄膜电极。
采用X射线衍射仪对本实施例制备的含有α-Fe 2O 3薄膜的基底(图1中简称α-Fe 2O 3)和α-Fe 2O 3/CoFe-PB薄膜电极进行测试,得到XRD图谱 如图1所示。
采用拉曼光谱仪对本实施例制备的含有α-Fe 2O 3薄膜的基底(图2中简称α-Fe 2O 3)和α-Fe 2O 3/CoFe-PB薄膜电极进行测试,得到如图2所示的拉曼光谱图。
从图1可以看出,2θ=35.6°、54.1°和64.0°处衍射峰的信号与α-Fe 2O 3(JCPDS No.33-0664)有关,而其余衍射信号与FTO衬底(JCPDS No.46-1088)能够很好地匹配。通过XRD可以证实本发明提供制备方法合成的α-Fe 2O 3是纯相的,不含有其他杂质相。α-Fe 2O 3/CoFe-PB薄膜电极未能观察到CoFe-PB和α-Fe 2O 3的衍射峰,说明得到的CoFe-PB为非晶,且CoFe-PB含量太高将α-Fe 2O 3掩盖。
从图2可以看出,含有α-Fe 2O 3薄膜的基底在1323cm -1处的吸收峰为Fe-O伸缩振动,而α-Fe 2O 3/CoFe-PB薄膜电极拉曼信号与含有α-Fe 2O 3薄膜的基底有较大差异,552cm -1和1090cm -1处的峰可能是由CoFe-PB所引起的。
实施例2
(1)按照实施例1的方法制备得到含有α-Fe 2O 3薄膜的基底(简称α-Fe 2O 3薄膜);
(2)分别配制铁氰化钾溶液和氯化钴溶液。铁氰化钾溶液的浓度为0.02mol/L,氯化钴溶液的浓度为0.04mol/L。
(3)在缓慢搅拌下将含有α-Fe 2O 3薄膜的基底先浸入铁氰化钾溶液10min,然后用蒸馏水冲洗电极,再将电极浸入氯化钴溶液10min,重复该步骤2次,得到光生防腐电极材料,简称α-Fe 2O 3/CoFe-PB薄膜电极。
采用扫描电镜对本实施例制备的α-Fe 2O 3薄膜进行测试,得到SEM图如图3所示;
采用扫描电镜对本实施例制备的α-Fe 2O 3/CoFe-PB进行测试,得到SEM图如图4所示。
由图3可以看出,平均直径约为30nm的α-Fe 2O 3纳米棒阵列生长在FTO基板上。从图4可以看出,α-Fe 2O 3/CoFe-PB薄膜电极的扫描电镜结果与单独的α-Fe 2O 3相比表面粗糙,表明CoFe-PB已经成功吸附在α-Fe 2O 3纳米棒的外表面。
实施例3
(1)按照实施例1的方法制备得到含有α-Fe 2O 3薄膜的基底(简称α-Fe 2O 3薄膜);
(2)分别配制铁氰化钾溶液和氯化钴溶液。铁氰化钾溶液的浓度为0.02mol/L,氯化钴溶液的浓度为0.04mol/L。
(3)在缓慢搅拌下将所述α-Fe 2O 3薄膜先浸入铁氰化钾溶液15min,然后用蒸馏水冲洗电极,再将电极浸入氯化钴溶液15min,重复该步骤4次,得到光生防腐电极材料,简称α-Fe 2O 3/CoFe-PB薄膜电极。
采用紫外可见漫反射光谱仪对本实施例制备的含有α-Fe 2O 3薄膜和α-Fe 2O 3/CoFe-PB薄膜电极进行测试,得到紫外可见吸收光谱图如图5所示。
从图5可以看出两种光电极的光吸收差别较小,说明CoFe-PB负载量较低,对α-Fe 2O 3的光吸收影响较小。
在可见光照射下分别对α-Fe 2O 3/CoFe-PB薄膜电极α-Fe 2O 3薄膜的光电流进行测试,得到的光电流曲线如图6所示。
从图6可以看出,α-Fe 2O 3/CoFe-PB的光电流比单纯的α-Fe 2O 3薄膜要大,说明引入CoFe-PB确实可以改善α-Fe 2O 3的空穴转移效率,进而提高水氧化反应速率。此外,我们还可以注意到α-Fe 2O 3/CoFe-PB电极的起始电位比单纯的α-Fe 2O 3低,说明CoFe-PB发挥作用,显著降低水氧化的活化能,这对于提升α-Fe 2O 3光电极的载流子分离效率具有重要的作用,有利于抑制光生电子-空穴的复合,进而提升光生电子的寿命,为其在光电阴极防腐中的应用奠定良好的基础。
实施例4
(1)按照实施例1的方法制备得到含有α-Fe 2O 3薄膜的基底(简称α-Fe 2O 3薄膜);
(2)分别配制铁氰化钾溶液和氯化钴溶液。铁氰化钾溶液的浓度为0.06mol/L,氯化钴溶液的浓度为0.08mol/L。
(3)在缓慢搅拌下将所述α-Fe 2O 3薄膜先浸入铁氰化钾溶液10min,然后用蒸馏水冲洗电极,再将电极浸入氯化钴溶液10min,重复该步骤4次,得到α-Fe 2O 3/CoFe-PB薄膜电极。
将所得的α-Fe 2O 3/CoFe-PB薄膜电极通过铜线与304不锈钢连接,制备α-Fe 2O 3/CoFe-PB-304不锈钢耦合电极,其中α-Fe 2O 3/CoFe-PB薄膜电极置于光阳极池内,光阳极池中的电解质为1mol/LNaOH溶液;304不锈钢置于腐蚀池中,腐蚀池中的电解质为3.5wt%的NaCl溶液;所述光阳极池和腐蚀池通过盐桥相接。
使用α-Fe 2O 3薄膜与304不锈钢连接制备α-Fe 2O 3-304不锈钢耦合电极,作为对照组。
α-Fe 2O 3-304不锈钢耦合电极和α-Fe 2O 3/CoFe-PB不锈钢耦合电极在暗态和光照下的开路电位-时间曲线图如图7所示。
从图7可以看出,光照后,两种耦合电极的开路电位均分别负移至-0.11、-0.27V处,这说明光照后,半导体电极上产生的光生电子可以转移至304不锈钢上,从而导致开路电位负向移动。由于电子能够有效转移至304不锈钢,因而三个电极均能实现304不锈钢的防腐蚀。一般而言,光照下的开路电位越负,光生电子聚集越多,转移至被保护金属上的电子也越多,保护能力也越强。基于此,我们可以看到,经过处理后的α-Fe 2O 3电极拥有对304不锈钢更好的防腐蚀作用。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种光生防腐电极材料的制备方法,包括以下步骤:
    (1)在基底表面生长α-Fe 2O 3薄膜,得到含有α-Fe 2O 3薄膜的基底;
    (2)将所述步骤(1)得到的含有α-Fe 2O 3薄膜的基底在铁氰化钾溶液和氯化钴溶液中进行交替浸渍,得到光生防腐电极材料。
  2. 根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中的基底包括FTO玻璃、钛板或铜板。
  3. 根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中α-Fe 2O 3薄膜的厚度为10nm~10μm。
  4. 根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中铁氰化钾溶液的浓度为0.01~1mol/L。
  5. 根据权利要求4所述的制备方法,其特征在于,所述铁氰化钾溶液的浓度为0.1~0.5mol/L。
  6. 根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中氯化钴溶液的浓度为0.02~2mol/L。
  7. 根据权利要求6所述的制备方法,其特征在于,所述氯化钴溶液的浓度为0.1~1mol/L。
  8. 根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中α-Fe 2O 3薄膜在铁氰化钾溶液中的浸泡时间为5~20min/次。
  9. 根据权利要求8所述的制备方法,其特征在于,所述α-Fe 2O 3薄膜在铁氰化钾溶液中的浸泡时间为10~15min/次。
  10. 根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中α-Fe 2O 3薄膜在氯化钴溶液中的浸渍的时间为5~20min/次。
  11. 根据权利要求10所述的制备方法,其特征在于,所述α-Fe 2O 3薄膜在氯化钴溶液中的浸渍的时间为10~15min/次。
  12. 根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中交替浸渍的重复次数为2~19次。
  13. 权利要求1~12任意一项所述制备方法制备得到的光生防腐电极材料,包括基底、负载于基底上的α-Fe 2O 3薄膜和负载在α-Fe 2O 3薄膜上的 CoFe普鲁士蓝薄膜。
  14. 权利要求13所述的光生防腐电极材料在光生阴极防腐中的应用,包括以下步骤:
    a.将光生防腐电极材料置于光阳极池内,将阴极金属材料置于腐蚀池内;所述光阳极池和腐蚀池通过盐桥相接;
    b.将所述步骤a中的光生防腐电极材料与阴极金属材料通过导线连接,得到耦合电极,将所述耦合电极置于可见光照射条件下进行光照。
  15. 根据权利要求14所述的应用,其特征在于,所述阴极金属材料包括不锈钢、碳钢或钛板。
PCT/CN2021/139650 2021-03-08 2021-12-20 一种光生防腐电极材料及其制备方法和应用 WO2022188503A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110250586.7A CN114255999A (zh) 2021-03-08 2021-03-08 一种光生防腐电极材料及其制备方法和应用
CN202110250586.7 2021-03-08

Publications (1)

Publication Number Publication Date
WO2022188503A1 true WO2022188503A1 (zh) 2022-09-15

Family

ID=80790948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139650 WO2022188503A1 (zh) 2021-03-08 2021-12-20 一种光生防腐电极材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114255999A (zh)
WO (1) WO2022188503A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115125565B (zh) * 2022-06-29 2024-03-26 北京化工大学 一种抗电解海水阳极腐蚀的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030121543A1 (en) * 2000-07-29 2003-07-03 Michael Gratzel Photocatalytic film of iron oxide, electrode with such a photocatalytic film, method of producing such films, photoelectrochemical cell with the electrode and photoelectrochemical system with the cell, for the cleavage of water into hydrogen and oxygen
CN105601124A (zh) * 2016-01-08 2016-05-25 福州大学 一种制备多孔α-Fe2O3光阳极的方法
CN108411309A (zh) * 2018-03-28 2018-08-17 中国石油大学(北京) 一种用于光生阴极保护的氧化铁复合二氧化钛薄膜光阳极的制备方法
CN110387559A (zh) * 2018-04-16 2019-10-29 中国科学院福建物质结构研究所 一种电催化产氧薄膜电极材料的制备方法及其制品和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030121543A1 (en) * 2000-07-29 2003-07-03 Michael Gratzel Photocatalytic film of iron oxide, electrode with such a photocatalytic film, method of producing such films, photoelectrochemical cell with the electrode and photoelectrochemical system with the cell, for the cleavage of water into hydrogen and oxygen
CN105601124A (zh) * 2016-01-08 2016-05-25 福州大学 一种制备多孔α-Fe2O3光阳极的方法
CN108411309A (zh) * 2018-03-28 2018-08-17 中国石油大学(北京) 一种用于光生阴极保护的氧化铁复合二氧化钛薄膜光阳极的制备方法
CN110387559A (zh) * 2018-04-16 2019-10-29 中国科学院福建物质结构研究所 一种电催化产氧薄膜电极材料的制备方法及其制品和应用

Also Published As

Publication number Publication date
CN114255999A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN109402656B (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
CN108597886B (zh) 一种用于改性氧化铁光阳极的有机溶液及其应用
CN110368968B (zh) NiFe-LDH/Ti3C2/Bi2WO6纳米片阵列及制法和应用
CN102531096A (zh) 一种光电催化降解有机物的方法
WO2022188503A1 (zh) 一种光生防腐电极材料及其制备方法和应用
CN111424301B (zh) 一种脉冲电位模式提高CuO光电催化CO2转化效率的方法
CN110205638B (zh) 一种Z型CuBi2O4/SnO2光电阴极薄膜及其制备方法和应用
CN111547821A (zh) 一种高催化活性Ti/TiO2NT/NiO-C/PbO2电极及其电催化降解孔雀石绿的方法
CN113293404B (zh) 一种异质结光阳极材料及其制备方法和应用
WO2021103478A1 (zh) 一种铋酸铜薄膜的制备方法
CN113502513A (zh) 一种利用太阳能直接沉积铜金属的方法
CN112691664A (zh) 一种Fe2O3/TiO2纳米光催化剂薄膜复合材料及其制备方法
CN110344096B (zh) 一种AgSbS2敏化TiO2复合膜材料及其制备和应用
CN109972149B (zh) 一种Bi2Te3/Bi2O3/TiO2三元异质结薄膜的制备方法
WO2022213663A1 (zh) 一种BiVO4/CoP薄膜电极及其制备方法和应用
CN111003760A (zh) 一种以TNTs为基底的光电催化阳极材料的制备方法
WO2024051019A1 (zh) 一种量子点敏化复合光阳极的制备方法、量子点敏化复合光阳极及应用
CN111547822B (zh) 一种高催化活性电极及其光电催化降解活性红195的方法
CN106975501B (zh) 一种可见光响应型光催化薄膜及其制备方法和应用
CN110359058B (zh) 一种锆钛酸铅修饰的赤铁矿纳米棒阵列光阳极的制备方法
CN114277375A (zh) 一种MnIn2S4/TiO2纳米管束丛复合光阳极材料及其制备方法和应用
CN114784293A (zh) 一种球状氧化镍钴锰电极及其制备方法和应用
CN113293382B (zh) 一种BiVO4/MnOOH薄膜电极及其制备方法和在光生阴极防腐中的应用
CN113293292B (zh) 一种基于太阳能驱动的海水提锂系统及其制备方法
CN114016082B (zh) 一种利用太阳能在导电基底上直接沉积回收金属铋的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929965

Country of ref document: EP

Kind code of ref document: A1