CN114045405A - 一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法 - Google Patents

一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法 Download PDF

Info

Publication number
CN114045405A
CN114045405A CN202111241113.7A CN202111241113A CN114045405A CN 114045405 A CN114045405 A CN 114045405A CN 202111241113 A CN202111241113 A CN 202111241113A CN 114045405 A CN114045405 A CN 114045405A
Authority
CN
China
Prior art keywords
fluorine
alkali
washing
slag
calcium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111241113.7A
Other languages
English (en)
Other versions
CN114045405B (zh
Inventor
郭慧
余星
谢勇
王宗林
罗祖龙
宋道国
申洪涛
叶林
王超凡
邓玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Jcc Rare Earth Metals Co ltd
Original Assignee
Sichuan Jcc Rare Earth Metals Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Jcc Rare Earth Metals Co ltd filed Critical Sichuan Jcc Rare Earth Metals Co ltd
Priority to CN202111241113.7A priority Critical patent/CN114045405B/zh
Publication of CN114045405A publication Critical patent/CN114045405A/zh
Application granted granted Critical
Publication of CN114045405B publication Critical patent/CN114045405B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

本发明公开了一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,包括如下步骤:S1、对碱转得到的碱转渣进行多次水洗;S2、待水洗至洗液的pH值在9-11时,以一定的流量向洗液中投加浓度为80-120g/L的氯化钙溶液,并继续洗涤;S3、投加氯化钙溶液后,向洗液中加入絮凝剂进行絮凝沉降处理,过滤后,得到的滤渣另做处理即可。本发明通过在洗涤碱转渣至一定程度时,加入氯化钙和絮凝剂来去除洗液中游离的F,将游离的F转换成氟化钙沉淀而存在于碱转渣中,在后续酸溶处理时,作为不溶物被清除,进而间接提高了洗液的清洗效果,在减少水洗成本的同时,加快了水洗工序的生产进度,提高了水洗工段的处理量。

Description

一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法
技术领域
本发明涉及稀土湿法冶炼技术领域,特别涉及一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法。
背景技术
氟碳铈矿是全球稀土产业的主要矿种,具有代表性的矿山主要有美国芒廷帕斯稀土矿山、四川牦牛坪矿山、以及包头白云鄂博混合稀土矿和山东微山湖稀土矿。四川氟碳铈矿氟含量在6%左右,采用“氧化焙烧-盐酸浸出-高温碱转化-水洗压滤-盐酸第二次浸出-浸出液净化除杂-萃取分离-沉淀-煅烧”工艺,其中,碱转渣水洗工序会产生高氟废碱水(即碱转洗液),氟含量在6g/l左右。
为了得到符合要求的碱转渣,传统工艺采用热水反复洗涤碱转渣,以去除碱转渣中的F、OH、Na+等杂质,避免这些杂质影响后续处理工序,特别是F,F的去除效果直接影响后续高价值镨钕的收率,因此需要反复用热水洗涤碱转渣。该水洗工艺需要消耗大量热水,每洗合格一批碱渣需要加水13-15次,耗水量约为75m3/批,且F只能洗到100mg/l左右,大量的时间用来洗涤碱渣限制了水洗岗位的处理能力,且直接影响污水处理成本。
发明内容
本发明的发明目的在于:针对上述存在的问题,提供一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,本发明通过在洗涤碱转渣至一定程度时,加入氯化钙和絮凝剂来去除洗液中游离的F,将游离的F转换成氟化钙沉淀而存在于碱转渣中,在后续酸溶处理时,作为不溶物被清除,洗液则不断洗涤碱转渣,进而间接提高了洗液的清洗效果,减少了洗涤次数和洗涤用水,在减少水洗成本的同时,加快了水洗工序的生产进度,提高了水洗工段的处理量,提升了稀土湿法冶炼的生产效率。
本发明采用的技术方案如下:一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,包括如下步骤:
S1、对碱转得到的碱转渣进行多次水洗;
S2、待水洗至洗液的pH值在9-11时(此时有利于氟化钙的形成,且不易形成氢氧化钙,提高了钙的利用率),以一定的流量向洗液中投加浓度为30-150g/L的氯化钙溶液,并继续洗涤;
S3、投加氯化钙溶液后,向洗液中加入絮凝剂进行絮凝沉降处理,过滤后,得到的滤渣另做处理即可。
在本发明中,氯化钙溶液的浓度比较关键,发明人在试验中发现,投加的氯化钙溶液浓度如果过高,氯化钙溶液中的Ca2+会优先与OH结合生成Ca(OH)2沉淀,不仅难以有效结合洗液中游离的F,而且形成的Ca(OH)2沉淀到下一个酸溶工序时,会被盐酸反溶导致溶液中Ca2+超标,反而起到负面的效果;相应地,如果投加的氯化钙溶液浓度如果过低,其结合的F较少,不仅不能有效去除洗液中的游离F而导致效果不明显,而且此时产生的CaF2沉淀颗粒细小,易形成胶体体系而增加体系粘度,不易絮凝沉淀下来,分离效果差。通过多次试验尝试得到,当氟化钙溶液的浓度在80-120g/L时,恰好能够规避这些问题,使用效果良好。进一步,确定氯化钙溶液最适宜的浓度后,氯化钙溶液的加入时机也很重要,碱转渣水洗时,随着水洗次数的增加,其含氟量逐渐减少,每次洗后的洗液中含氟量也逐渐减少(每洗涤一次需要更换洗液),如果氯化钙溶液加入过早,由于此时洗液中的含氟量较高,过早投加会产生大量的CaF2沉淀,CaF2沉淀在盐酸体系下属微溶,大量的CaF2沉淀的存在会导致溶于盐酸体系中的F含量较多,进而导致镨钕等高价值稀土损失较高;相应地,如果氯化钙溶液加入过晚,则节省水洗次数以及水洗量的效果不明显,氯化钙的作用效果不能充分体现,达不到明显的节约处理成本的目的。通过多次试验尝试,在洗涤碱转渣时,洗液的pH值在9-11时(随着洗涤次数的增加洗液的pH值逐渐减小),氯化钙除氟效果最佳,该条件下形成的氟化钙颗粒较大,可直接絮凝沉淀,易将其从洗液中分离出,洗液中F的含量可降至100mg/L以下,而且此时产生的CaF2沉淀相对碱转渣来说属微量,溶于盐酸体系中的F含量极少,几乎不会对镨钕等高价值稀土造成损失。
在本发明中,本发明通过在洗涤碱转渣至一定程度时,加入氯化钙和絮凝剂来去除洗液中游离的F,将游离的F转换成氟化钙沉淀而存在于碱转渣中,在后续酸溶处理时,作为不溶物被清除,洗液则不断洗涤碱转渣,进而间接提高了洗液的清洗效果,减少了洗涤次数和洗涤用水,在减少水洗成本的同时,加快了水洗工序的生产进度,提高了水洗工段的处理量,提升了稀土湿法冶炼的生产效率。
在本发明中,作为优选,氯化钙的配制浓度优选为80-120g/L。
在本发明中,洗涤碱转渣时,洗涤终点为洗液的pH值为9-11,在该条件下,固氟效果最好,碱转渣无需再进行下一步的洗涤操作,而是直接洗涤后进入下一步酸溶工序中进行处理。
进一步,在本发明中,通过试验总结得到,当氯化钙的投加量为Ca2+与F的质量比为3.28-4.5:1时,洗液中的游离Ca2+与F反应最充分,F去除效果最好,F可降低至50mg/L,洗液中剩余的Ca2+含量低于1000mg/L,不会导致后续酸溶时Ca2+含量超标的问题,镨钕等高价值稀土的损失量被降低至极低水平。
进一步,为了更精确的确定氯化钙溶液的加入量,以保证达到上述效果,在步骤S2中,对洗液中的氟含量进行检查,得到氟含量的检测浓度为c1,氯化钙的加入体积V2为:V2=(V1×c1×N×(1.1-1.3))/c2,该公式为生产总结得到,其中,V1为碱转洗液体积,c2为氯化钙中钙离子浓度,N为试验比例系数,(1.1-1.3)为过量系数。通过该总结得到的公式能够提前精确确定所加氯化钙溶液的量,进而保证氯化钙溶液的加入量不会过多或过少,保证固氟固氟效果。
进一步,在步骤S2中,氯化钙溶液的加入速度为5-15m3/h。
在本发明中,所述絮凝剂优选为聚丙烯酰胺。当然,其还可以选择其他絮凝剂,例如非离子絮凝剂等。
进一步,所述絮凝剂为阴离子聚丙烯酰胺溶液(根据pH环境要求选择),在该溶液中,阴离子聚丙烯酰胺的质量分数为2-3‰,在该pH值及浓度体系条件下,固液分离效果较好。
进一步,在S3中,洗液与阴离子聚丙烯酰胺溶液的体积比为45-55:1。
在本发明中,待反应体系中形成肉眼可见的矾花时,立即停止搅拌,然后等待沉淀完全再过滤。矾花实质为氟化钙沉淀,在絮凝过程中,通常絮凝成雪花状态,在本技术领域中被称为矾花,矾花形成后应立即停止搅拌,以避免打碎矾花而影响沉淀效果。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明通过在洗涤碱转渣至一定程度时,加入氯化钙和絮凝剂来去除洗液中游离的F,将游离的F转换成氟化钙沉淀而存在于碱转渣中,在后续酸溶处理时,作为不溶物被清除,洗液则不断洗涤碱转渣,进而间接提高了洗液的清洗效果,减少了洗涤次数和洗涤用水,在减少水洗成本的同时,加快了水洗工序的生产进度,提高了水洗工段的处理量,提升了稀土湿法冶炼的生产效率;
2、经计算,每5200吨(折REO)稀土精矿处理量将节约6.6万吨水,污水处理成本降低显著,后续酸溶固氟效果好,值得推广应用。
附图说明
图1是本发明的一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法工艺流程示意图。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,包括如下步骤:
S1、配制浓度为30-150g/L的氯化钙溶液,并用风机曝气均匀,待用;
S2、对碱转得到的碱转渣用热水进行多次水洗;
S3、待水洗至洗液的pH值在9-11时,以一定的流量向洗液中投加氯化钙溶液,并继续洗涤;
S4、配制絮凝剂,待用;
S5、投加氯化钙溶液后,向洗液中加入絮凝剂进行絮凝沉降处理,过滤后,得到的滤渣进入下道工序进行处理,滤液(上清液)进入废水池中进行处理。
为了更好地说明本发明的创新点,以下列举部分实施例:
实施例1
一种氟碳铈稀土矿冶炼分离中碱转渣除氟的方法,该方法为:碱转渣在洗涤到一定次数后,往洗涤罐内投加一定浓度的氯化钙溶液,具体步骤如下:
步骤一:配制氯化钙溶液,将其体积记为V1,经风机曝气均匀;
步骤二:热水洗涤碱转渣,将洗液pH值控制至9;
步骤三:检测最后一次洗液中氟的浓度,记为c1,然后加入氯化钙溶液以沉淀氟,加入氯化钙体积V2=(V1×c1×N×1.1)/c2,其中,V1为洗液体积,c2为氯化钙中钙离子浓度,N为试验比例系数,1.1为过量系数,氯化钙溶液的加入速度控制在5m3/h;
步骤四:向渣浆中加入阴离子型聚丙烯酰胺溶液,将形成的氟化钙细颗粒絮凝成大颗粒,阴离子型聚丙烯酰胺溶液中阴离子型聚丙烯酰胺的质量浓度为2‰,洗液与阴离子型聚丙烯酰胺溶液的体积之比为45:1;
步骤五:氟化钙细颗粒絮凝成肉眼可见的矾花时,立即停止搅拌,完全沉淀后过滤,碱转渣进入下道工序。
实施例2
一种氟碳铈稀土矿冶炼分离中碱转渣除氟的方法,该方法为:碱转渣在洗涤到一定次数后,往洗涤罐内投加一定浓度的氯化钙溶液,具体步骤如下:
步骤一:配制氯化钙溶液,将其体积记为V1,经风机曝气均匀;
步骤二:热水洗涤碱转渣,将洗液pH值控制至10;
步骤三:检测最后一次洗液中氟的浓度,记为c1,然后加入氯化钙溶液以沉淀氟,加入氯化钙体积V2=(V1×c1×N×1.2)/c2,其中,V1为洗液体积,c2为氯化钙中钙离子浓度,N为试验比例系数,1.2为过量系数,氯化钙溶液的加入速度控制在12m3/h;
步骤四:向渣浆中加入阴离子型聚丙烯酰胺溶液,将形成的氟化钙细颗粒絮凝成大颗粒,阴离子型聚丙烯酰胺溶液中阴离子型聚丙烯酰胺的质量浓度为2.5‰,洗液与阴离子型聚丙烯酰胺溶液的体积之比为50:1;
步骤五:氟化钙细颗粒絮凝成肉眼可见的矾花时,立即停止搅拌,完全沉淀后过滤,碱转渣进入下道工序。
实施例3
一种氟碳铈稀土矿冶炼分离中碱转渣除氟的方法,该方法为:碱转渣在洗涤到一定次数后,往洗涤罐内投加一定浓度的氯化钙溶液,具体步骤如下:
步骤一:配制氯化钙溶液,将其体积记为V1,经风机曝气均匀;
步骤二:热水洗涤碱转渣,将洗液pH值控制至11;
步骤三:检测最后一次洗液中氟的浓度,记为c1,然后加入氯化钙溶液以沉淀氟,加入氯化钙体积V2=(V1×c1×N×1.3)/c2,其中,V1为洗液体积,c2为氯化钙中钙离子浓度,N为试验比例系数,1.3为过量系数,氯化钙溶液的加入速度控制在15m3/h;
步骤四:向渣浆中加入阴离子型聚丙烯酰胺溶液,将形成的氟化钙细颗粒絮凝成大颗粒,阴离子型聚丙烯酰胺溶液中阴离子型聚丙烯酰胺的质量浓度为2‰,洗液与阴离子型聚丙烯酰胺溶液的体积之比为55:1;
步骤五:氟化钙细颗粒絮凝成肉眼可见的矾花时,立即停止搅拌,完全沉淀后过滤,碱转渣进入下道工序。
利用实施例2提供的方法进行了两次生产试验,分别标记为试验①和试验②,试验①和试验②的试验结果分别如表1和表2所示:
表1试验①的试验结果
Figure BDA0003319253350000071
Figure BDA0003319253350000081
表2试验②的试验结果
名称 体积(L) 温度(℃) pH F<sup>-</sup>(mg/L) Ca<sup>2+</sup>(g/L)
反应前洗液 5000 41.5 10 1205 /
氯化钙溶液 204 21.2 5.5 / 97.5
反应后洗液 5250 40.1 7 11.2 0.54
由表1和表2的数据可以得出:试验①为氯化钙不足量的除氟反应,其除氟效果一般,试验②的氯化钙的量恰好,达到了可观的除氟效果。因此,通过试验②计算出,Ca2+与F的质量消耗比为3.28:1,即每处理1g F需消耗3.28gCa2+,即小试试验系数N为3.28。
实施试验②的方法对碱转渣进行处理,增加氯化钙成本58吨*830元=48140元,节约絮凝剂成本13000元/吨*7吨=91000元,节约用水成本1.1元/吨*66000吨=72600元,节约污水处理成本1.16元/吨*66000吨=76560元年,节约环保排污费1.28元/吨*66000吨=84480元,预计年节约成本27.65万元左右,增加精矿处理量1300吨(折REO),具有可观的使用前景。
另外,为了说明本发明配制的氯化钙溶液浓度的重要性,按照试验②的方法,分别设置试验③的氯化钙浓度为150g/L,试验④的氯化钙浓度为10g/L,试验结果如表3和表4所示:
表3试验③的试验结果(氯化钙浓度150g/L)
Figure BDA0003319253350000082
Figure BDA0003319253350000091
表4试验④的试验结果
名称 体积(L) 温度(℃) pH F<sup>-</sup>(mg/L) Ca<sup>2+</sup>(g/L)
反应前洗液 5000 41.5 10 1205 /
氯化钙溶液 204 21.2 5.5 / 10
反应后洗液 5250 40.1 7 823.4 0.01
由表3和表4可以得到,当氯化钙浓度过高或过低时,其除氟效果均较差,无法达到本发明所声称的技术效果,由此说明,本发明氯化钙的浓度需要在一个适宜的范围内才能达到可观的除氟效果,进而才能解决现有水洗工序处理成本过高的问题。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,其特征在于,包括如下步骤:
S1、对碱转得到的碱转渣进行多次水洗;
S2、待水洗至洗液的pH值在9-11时,以一定的流量向洗液中投加浓度为30-150g/L的氯化钙溶液,并继续洗涤;
S3、投加氯化钙溶液后,向洗液中加入絮凝剂进行絮凝沉降处理,过滤后,得到的滤渣另做处理即可。
2.如权利要求1所述的氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,其特征在于,氯化钙的配制浓度为80-120g/L。
3.如权利要求1所述的氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,其特征在于,洗涤碱转渣时,洗涤终点为洗液的pH值为9-11。
4.如权利要求1所述的氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,其特征在于,氯化钙的投加量为Ca2+与F的质量比为3.28-4.5:1。
5.如权利要求4所述的氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,其特征在于,在步骤S2中,对洗液中的氟含量进行检查,得到氟含量的检测浓度为c1,氯化钙的加入体积V2为:V2=(V1×c1×N×(1.1-1.3))/c2,其中,V1为碱转洗液体积,c2为氯化钙中钙离子浓度,N为试验比例系数,(1.1-1.3)为过量系数。
6.如权利要求5所述的氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,其特征在于,在步骤S2中,氯化钙溶液的加入速度为5-15m3/h。
7.如权利要求1-6任一所述的氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,其特征在于,所述絮凝剂为聚丙烯酰胺。
8.如权利要求7所述的氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,其特征在于,所述絮凝剂为阴离子聚丙烯酰胺溶液,在该溶液中,阴离子聚丙烯酰胺的质量分数为2-3‰。
9.如权利要求8所述的氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,其特征在于,在S3中,洗液与阴离子聚丙烯酰胺溶液的体积比为45-55:1。
10.如权利要求9所述的氟碳铈稀土矿冶炼分离中碱转渣固氟的方法,其特征在于,待反应体系中形成肉眼可见的矾花时,立即停止搅拌,然后等待沉淀完全再过滤。
CN202111241113.7A 2021-10-25 2021-10-25 一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法 Active CN114045405B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111241113.7A CN114045405B (zh) 2021-10-25 2021-10-25 一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111241113.7A CN114045405B (zh) 2021-10-25 2021-10-25 一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法

Publications (2)

Publication Number Publication Date
CN114045405A true CN114045405A (zh) 2022-02-15
CN114045405B CN114045405B (zh) 2023-05-26

Family

ID=80205927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111241113.7A Active CN114045405B (zh) 2021-10-25 2021-10-25 一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法

Country Status (1)

Country Link
CN (1) CN114045405B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314526A (en) * 1990-12-06 1994-05-24 General Motors Corporation Metallothermic reduction of rare earth fluorides
WO2012040652A2 (en) * 2010-09-23 2012-03-29 Molycorp Minerals Llc Particulate cerium dioxide and an in situ method for making and using the same
CN104591247A (zh) * 2015-01-09 2015-05-06 东北大学 一种氟碳铈矿碱浆逆流水洗回收氟的方法
CN108265186A (zh) * 2017-12-29 2018-07-10 四川江铜稀土有限责任公司 氟碳铈矿冶炼分离过程中物料循环利用工艺
CN108298714A (zh) * 2017-12-27 2018-07-20 四川江铜稀土有限责任公司 氟碳铈稀土矿冶炼分离中废水除氟的方法
CN109517974A (zh) * 2019-01-11 2019-03-26 四川江铜稀土有限责任公司 从氟碳铈矿中综合回收稀土和氟的冶炼方法
CN111636002A (zh) * 2020-05-28 2020-09-08 四川省冕宁县方兴稀土有限公司 酸碱联合法处理得到的氯化稀土混合溶液除氟方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314526A (en) * 1990-12-06 1994-05-24 General Motors Corporation Metallothermic reduction of rare earth fluorides
WO2012040652A2 (en) * 2010-09-23 2012-03-29 Molycorp Minerals Llc Particulate cerium dioxide and an in situ method for making and using the same
CN104591247A (zh) * 2015-01-09 2015-05-06 东北大学 一种氟碳铈矿碱浆逆流水洗回收氟的方法
CN108298714A (zh) * 2017-12-27 2018-07-20 四川江铜稀土有限责任公司 氟碳铈稀土矿冶炼分离中废水除氟的方法
CN108265186A (zh) * 2017-12-29 2018-07-10 四川江铜稀土有限责任公司 氟碳铈矿冶炼分离过程中物料循环利用工艺
CN109517974A (zh) * 2019-01-11 2019-03-26 四川江铜稀土有限责任公司 从氟碳铈矿中综合回收稀土和氟的冶炼方法
CN111636002A (zh) * 2020-05-28 2020-09-08 四川省冕宁县方兴稀土有限公司 酸碱联合法处理得到的氯化稀土混合溶液除氟方法

Also Published As

Publication number Publication date
CN114045405B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
CN107720801A (zh) 一种利用钛白废酸制备沉淀硫酸钡的方法
CN109399596A (zh) 一种利用化成箔废水制备电池级磷酸铁的方法及其制备的磷酸铁
CN108298714B (zh) 氟碳铈稀土矿冶炼分离中废水除氟的方法
CN101863512A (zh) 一种含铬铝泥酸法回收利用工艺
CN114045405A (zh) 一种氟碳铈稀土矿冶炼分离中碱转渣固氟的方法
CN105293774A (zh) 一种提高废液中贵金属回收率的方法
CN115043475B (zh) 含铁氰络合物和草酸盐废水的处理方法
CN110548317A (zh) 一种适用于湿法磷酸生产的絮凝剂及杂质沉降系统
CN114229882B (zh) 氧化石墨烯制备过程中废硫酸和洗涤废水的综合利用方法
CN214694375U (zh) 化学抛光用磷/硫混合酸的在线再生系统
CN115893466A (zh) 一种低氟稀土氧化物的制备方法
US20040195183A1 (en) Method for the removal of metals from an aqueous solution using lime precipitation
CN105152195A (zh) 拜耳法氧化铝生产过程中控制过滤滤饼的处理方法及设备
CN115520884A (zh) 一种锂辉石通过硫酸法生产碳酸锂的工艺
CN2921035Y (zh) 一种超声除钙槽
CN114231732A (zh) 含钒泥浆深度提钒的方法
CN108996752B (zh) 一种从镍的萃余废水中回收低浓度镍的方法
CN112176346A (zh) 化学抛光用磷/硫混合酸的再生剂、在线再生方法及采用的系统
CN101805018B (zh) 酸性废水预处理钛矿制备钛白粉的方法
CN112520902B (zh) 不锈钢酸洗刷洗水资源化利用的方法
CN111302384A (zh) 一种碱性蚀铜废液处理零排放工艺
CN105753215B (zh) 从钨冶炼废水中回收磷和钨的方法
CN217051663U (zh) 一种粗盐水除镁装置
CN112499690A (zh) 处理刷洗水的晶种制备方法
JP3684477B2 (ja) 石油系燃焼灰の処理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 615600 Rare Earth Industrial Park, Fuxing Town, Mianning County, Liangshan Yi Autonomous Prefecture, Sichuan Province

Applicant after: Zhongxi (Liangshan) Rare Earth Co.,Ltd.

Address before: 615600 Rare Earth Industrial Park, Fuxing Town, Mianning County, Liangshan Yi Autonomous Prefecture, Sichuan Province

Applicant before: SICHUAN JCC RARE EARTH METALS CO.,LTD.

GR01 Patent grant
GR01 Patent grant