CN114044672B - 控制棒吸收体材料及其制备方法 - Google Patents

控制棒吸收体材料及其制备方法 Download PDF

Info

Publication number
CN114044672B
CN114044672B CN202111290689.2A CN202111290689A CN114044672B CN 114044672 B CN114044672 B CN 114044672B CN 202111290689 A CN202111290689 A CN 202111290689A CN 114044672 B CN114044672 B CN 114044672B
Authority
CN
China
Prior art keywords
control rod
absorber material
set forth
hfo
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111290689.2A
Other languages
English (en)
Other versions
CN114044672A (zh
Inventor
王洁
汪洋
韦俊
宋子凡
刘欣
邓勇军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China General Nuclear Power Corp
China Nuclear Power Technology Research Institute Co Ltd
CGN Power Co Ltd
Original Assignee
China General Nuclear Power Corp
China Nuclear Power Technology Research Institute Co Ltd
CGN Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China General Nuclear Power Corp, China Nuclear Power Technology Research Institute Co Ltd, CGN Power Co Ltd filed Critical China General Nuclear Power Corp
Priority to CN202111290689.2A priority Critical patent/CN114044672B/zh
Publication of CN114044672A publication Critical patent/CN114044672A/zh
Application granted granted Critical
Publication of CN114044672B publication Critical patent/CN114044672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/24Selection of substances for use as neutron-absorbing material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种控制棒吸收体材料及其制备方法,控制棒吸收体材料包括摩尔质量百分比为90%~98%的Dy2O3‑(TiO2·HfO2);其中,Dy2O3与(TiO2·HfO2)的摩尔质量比为1∶1~2;在TiO2·HfO2中,TiO2与HfO2的摩尔质量比为1∶1~1∶9。本发明的控制棒吸收体材料,通过镝的存在使得该吸收体材料具有化学稳定性好、熔点高、中子辐照条件下不产生气体、辐照肿胀率低等优点;通过氧化铪的加入,配合氧化钛提升该吸收体材料的反应性价值。

Description

控制棒吸收体材料及其制备方法
技术领域
本发明涉及核燃料技术领域,尤其涉及一种控制棒吸收体材料及其制备方法。
背景技术
控制棒组件是一种快速控制反应性的工具,在正常运行时用于调节反应堆功率,在事故工况下快速引入负反应性,使反应堆紧急停堆,保证核安全。控制棒吸收体材料的选择不仅要考虑物理、机械性能,更重要的还要考虑其核特性。对材料热特性,要考虑热膨胀、热传导和熔点,要求控制棒在堆芯里受强中子及γ辐照后,能有很高的稳定性,还要耐高温,在高温水中有很好的耐腐蚀性能。同时,机械强度及加工性能也要能满足要求。中子吸收体材料大多包含硼、钐、钆、铕、镝、铪等中子吸收截面较高的元素。
目前常见的控制棒吸收体材料包括碳化硼(B4C)芯块、铪(Hf)棒、银-铟-镉(Ag-In-Cd)合金棒和钛酸镝(Dy2TiO5)芯块。
Hf棒具有良好的耐腐蚀性能、加工性能和机械性能以及稳定的堆内辐照性能,且Hf元素的6种同位素的吸收截面都比较高,嬗变产物Ta和W也具有较高的中子吸收截面,这使得Hf成为早期核反应堆控制棒吸收体材料之一。但是Hf价格不菲、辐照后会脆化、反应性价值不理想,这使得其应用收到了限制。Ag-In-Cd合金棒是目前最常用的商业控制棒吸收体材料,与Hf棒具有相似的初始反应性价值和消耗速率,其面临的主要问题在于辐照肿胀和使用寿命(连续运行5年会下降到初始反应性价值的80%)具有较低的设计灵活度。
Dy2TiO5芯块由Dy2O3-TiO2材料制成,具有萤石相结构,但是萤石相结构的Dy2TiO5芯块在反应堆运行期间存在相变的风险,而相变会影响吸收体材料的辐照肿胀性能,影响反应堆内吸收体芯块的完整性。
综上,研发初始反应性价值较高且辐照肿胀随燃料组件燃耗变化相对稳定的不含B的控制棒吸收体材料具有重要意义。
发明内容
本发明要解决的技术问题在于,提供一种反应性价值较高且肿胀率低的控制棒吸收体材料及其制备方法。
本发明解决其技术问题所采用的技术方案是:提供一种控制棒吸收体材料,所述吸收体材料包括摩尔质量百分比为90%~98%的Dy2O3-(TiO2·HfO2);
其中,Dy2O3与(TiO2·HfO2)的摩尔质量比为1:1~2;在TiO2·HfO2中,TiO2与HfO2的摩尔质量比为1:1~1:9。
优选地,所述吸收体材料还包括稳定剂;所述稳定剂包括钼、钼的氧化物、铌、铌的氧化物、钽、钽的氧化物、钕、钕的氧化物、锰、锰的氧化物中的一种或多种。
本发明还提供一种控制棒吸收体材料的制备方法,包括以下步骤:
S1、将氧化镝粉、二氧化钛粉以及氧化铪粉混合,形成混合粉料;
S2、将所述混合粉料进行煅烧,冷却后得到煅烧料;
S3、将所述煅烧料压制成型,得到坯体;
S4、将所述坯体进行高温烧结,得到控制棒吸收体材料。
优选地,步骤S1中,还加入稳定剂进行混合。
优选地,步骤S1中,混合时,将氧化镝粉、二氧化钛粉以及氧化铪粉放入球磨机中进行球磨,以纯净水为介质,球磨24h~48h后,烘干研碎。
优选地,步骤S2中,煅烧的温度为1350℃~1550℃,保温1.5~2.5h。
优选地,步骤S2还包括:将所述煅烧料进行球磨、烘干。
优选地,步骤S4中,烧结的温度为1550℃~1680℃,保温1.5~2.5h。
优选地,步骤S4中,烧结时,以0.25℃/s~0.30℃/s的升温速率加热到1550℃~1680℃,保温1.5~2.5小时,随后以0.15℃/s~0.20℃/s的降温速率进行降温冷却。
优选地,步骤S4包括:
S4.1、将所述坯体放入石墨模具中,将石墨冲头配合在所述石墨模具上;
S4.2、将所述石墨模具及石墨冲头放入真空室内;
S4.3、通过所述石墨冲头对所述坯体施压;
S4.5、以电流穿过石墨产生热量驱使温度升高,对所述坯体进行烧结。
优选地,步骤S4.3中,所述石墨冲头对所述坯体施加的压力为40MPa~50MPa,保压时间为1.2×103s~1.8×103s。
优选地,所述控制棒吸收体材料的制备方法还包括以下步骤:
S5、将步骤S4得到的控制棒吸收体材料进行磨削加工,使其形成圆柱结构。
本发明的控制棒吸收体材料,通过镝的存在使得该吸收体材料具有化学稳定性好、熔点高、中子辐照条件下不产生气体、辐照肿胀率低等优点;通过氧化铪的加入,配合氧化钛提升该吸收体材料的反应性价值。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明的控制棒吸收体材料具有的萤石晶体结构示意图;
图2是本发明中实施例1与现有吸收体的肿胀率对比图;
图3是本发明中实施例1与现有吸收体的反应性价值对比图。
具体实施方式
本发明的控制棒吸收体材料,包括Dy2O3-(TiO2·HfO2),Dy2O3-(TiO2·HfO2)作为该控制棒吸收体材料的主体成分,其在控制棒吸收体材料中的摩尔质量百分比为90%~98%。
由该Dy2O3-(TiO2·HfO2)可知,控制棒吸收体材料的主体成分主要由Dy2O3、TiO2和HfO2形成。其中,Dy2O3与(TiO2·HfO2)的摩尔质量比为1:1~2;在TiO2·HfO2中,TiO2与HfO2的摩尔质量比为1:1~1:9。
本发明的控制棒吸收体材料还包括稳定剂,用于进一步提高吸收体材料的相结构稳定性,还可以在保证材料性能满足要求的同时,降低烧结温度,优化工艺条件。稳定剂在控制棒吸收体材料中的摩尔质量百分比为5%~10%。稳定剂包括钼、钼的氧化物(如氧化钼)、铌、铌的氧化物(如氧化铌)、钽、钽的氧化物(如氧化钽)、钕、钕的氧化物(如氧化钕)、锰、锰的氧化物(如氧化锰)中的一种或多种;稳定剂还可包括镝以外的其他稀土元素金属及其氧化物中的一种或多种。
本发明的控制棒吸收体材料具有萤石晶体结构,如图1所示。在图1所示萤石晶体结构中,较大球体代表氧,较小球体代表镝、钛及铪。
本发明的控制棒吸收体材料,解决了现有的吸收体材料Ag-In-Cd熔点低,反应性价值不高(连续运行5年降低至80%)的缺点;解决了现有的吸收体材料B4C辐照肿胀率高,释放裂变气体的缺点;在相同试验条件下,本发明的吸收体肿胀率远低于B4C,并且在反应堆运行期间无裂变气体释放。
本发明的控制棒吸收体材料的制备方法,可包括以下步骤:
S1、将主体原料氧化镝(Dy2O3)粉、二氧化钛(TiO2)粉以及氧化铪(HfO2)粉混合,形成混合粉料。
氧化镝粉、二氧化钛粉以及氧化铪粉的纯度均大于99.9%。
混合的具体方式可如下:将氧化镝粉、二氧化钛粉以及氧化铪粉放入球磨机中进行球磨,以纯净水为介质,球磨24h~48h后,烘干研碎,获得混合均匀且分散的混合粉料。
该步骤S1中,还加入稳定剂进行混合,与主体原料(氧化镝粉、二氧化钛粉以及氧化铪粉)一起混合形成混合粉料。
根据主体原料选择对应的稳定剂。例如,选择MoO3作为TiO2的稳定剂,选择Nb2O5作为HfO2的稳定剂。
S2、将混合粉料进行煅烧,冷却后得到煅烧料。
煅烧的温度为1350℃~1550℃,保温1.5~2.5h。
具体地,将混合粉料装入氧化铝坩埚中,再将该氧化铝坩埚放置烧结炉中进行煅烧。煅烧完成后,随炉冷却,再取出煅烧料。
得到的煅烧料在进行压制成型之前,先将其放入球磨机中球磨24h~48h后,烘干。球磨方式可参考上述步骤S1。
S3、将煅烧料压制成型,得到坯体。
压制成型可在各种压机上进行,压制成所需形状的坯体。例如可以压制成直径30mm、高度14mm的圆柱坯体。
S4、将坯体进行高温烧结,得到控制棒吸收体材料。
烧结的温度为1550℃~1680℃,保温1.5~2.5h。
烧结时,以0.25℃/s~0.30℃/s的升温速率加热到1550℃~1680℃,保温1.5~2.5小时,随后以0.15℃/s~0.20℃/s的降温速率进行降温冷却。
步骤S4进一步可包括:
S4.1、将坯体放入石墨模具中,将石墨冲头配合在石墨模具上。
S4.2、将石墨模具及石墨冲头放入真空室内。
另外,石墨模具还通过复合套管加固,并且在石墨模具外周和复合套管内周之间填充球形石墨粉末。
S4.3、以液压传动方式,通过石墨冲头对坯体施压;施加的压力为40MPa~50MPa,保压时间为1.2×103s~1.8×103s。
S4.5、以电流穿过石墨产生热量驱使温度升高,达到所需的烧结温度,对坯体进行烧结。
S5、将上述得到的控制棒吸收体材料进行磨削加工,包括对其外圆、端面等进行加工,使其形成圆柱结构。
下面通过具体实施例对本发明作进一步说明。
表1.各实施例原料的摩尔百分比
Figure BDA0003334605270000061
Figure BDA0003334605270000071
按照上述表1各原料的摩尔百分比取纯度大于99.9%的氧化镝粉、氧化钛粉、氧化铪粉和氧化钼粉(或氧化铌),按照本发明的制备方法分别制成圆柱结构的控制棒吸收体。
以实施例1制得的控制棒吸收体为代表,与现有技术的B4C和Dy2TiO5吸收体在相同条件下测试肿胀率(由体积变化百分数获得),对比结果如图2所示。由图2可知,本发明实施例1获得的吸收体肿胀率小于B4C吸收体和Dy2TiO5吸收体的肿胀率(实施例2-8的吸收体同理)。
以实施例1制得的控制棒吸收体为代表,与现有技术的B4C、Dy2TiO5、Hf、Ag-In-Cd吸收体的反应性价值进行比较,对比结果如图3所示。图3中,线1代表B4C吸收体,线2代表Dy2TiO5吸收体和Hf吸收体,线3代表Ag-In-Cd吸收体,线4代表实施例1的吸收体;由图3可知,本发明实施例1获得的吸收体初始反应性价值较高,随着燃料组件燃耗变化相对稳定,整体较于现有的上述吸收体的反应性价值高(实施例2-8的吸收体同理)。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

1.一种控制棒吸收体材料,其特征在于,所述吸收体材料包括摩尔百分数为90%~98%的Dy2O3-TiO2-HfO2
其中,Dy2O3与TiO2-HfO2的摩尔比为1:1~2;在TiO2-HfO2中,TiO2与HfO2的摩尔比为1:1~1:9;
所述吸收体材料还包括稳定剂,所述稳定剂在所述吸收体材料中的摩尔百分数为5%~10%;所述稳定剂包括MoO3和Nb2O5,其中Nb2O5作为HfO2的稳定剂。
2.根据权利要求1所述的控制棒吸收体材料,其特征在于,所述稳定剂包括钼、钼的氧化物、铌、铌的氧化物、钽、钽的氧化物、钕、钕的氧化物、锰、锰的氧化物中的一种或多种。
3.一种权利要求1或2所述的控制棒吸收体材料的制备方法,其特征在于,包括以下步骤:
S1、将氧化镝粉、二氧化钛粉以及氧化铪粉混合,形成混合粉料;
S2、将所述混合粉料进行煅烧,冷却后得到煅烧料;
S3、将所述煅烧料压制成型,得到坯体;
S4、将所述坯体进行高温烧结,得到控制棒吸收体材料;
步骤S4包括:
S4.1、将所述坯体放入石墨模具中,将石墨冲头配合在所述石墨模具上;
S4.2、将所述石墨模具及石墨冲头放入真空室内;
S4.3、通过所述石墨冲头对所述坯体施压;
S4.5、以电流穿过石墨产生热量驱使温度升高,对所述坯体进行烧结。
4.根据权利要求3所述的控制棒吸收体材料的制备方法,其特征在于,步骤S1中,还加入稳定剂进行混合。
5.根据权利要求3或4所述的控制棒吸收体材料的制备方法,其特征在于,步骤S1中,混合时,将氧化镝粉、二氧化钛粉以及氧化铪粉放入球磨机中进行球磨,以纯净水为介质,球磨24h~48h后,烘干研碎。
6.根据权利要求3或4所述的控制棒吸收体材料的制备方法,其特征在于,步骤S2中,煅烧的温度为1350℃~1550℃,保温1.5~2.5h。
7.根据权利要求3或4所述的控制棒吸收体材料的制备方法,其特征在于,步骤S2还包括:将所述煅烧料进行球磨、烘干。
8.根据权利要求3或4所述的控制棒吸收体材料的制备方法,其特征在于,步骤S4中,烧结的温度为1550℃~1680℃,保温1.5~2.5h。
9.根据权利要求8所述的控制棒吸收体材料的制备方法,其特征在于,步骤S4中,烧结时,以0.25℃/s~0.30℃/s的升温速率加热到1550℃~1680℃,保温1.5~2.5小时,随后以0.15℃/s~0.20℃/s的降温速率进行降温冷却。
10.根据权利要求3所述的控制棒吸收体材料的制备方法,其特征在于,步骤S4.3中,所述石墨冲头对所述坯体施加的压力为40MPa~50MPa,保压时间为1.2×103s ~1.8×103s。
11.根据权利要求3或4所述的控制棒吸收体材料的制备方法,其特征在于,所述制备方法还包括以下步骤:
S5、将步骤S4得到的控制棒吸收体材料进行磨削加工,使其形成圆柱结构。
CN202111290689.2A 2021-11-02 2021-11-02 控制棒吸收体材料及其制备方法 Active CN114044672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111290689.2A CN114044672B (zh) 2021-11-02 2021-11-02 控制棒吸收体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111290689.2A CN114044672B (zh) 2021-11-02 2021-11-02 控制棒吸收体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114044672A CN114044672A (zh) 2022-02-15
CN114044672B true CN114044672B (zh) 2023-04-11

Family

ID=80206829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111290689.2A Active CN114044672B (zh) 2021-11-02 2021-11-02 控制棒吸收体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114044672B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115221457B (zh) * 2022-09-20 2022-12-13 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种定量计算控制棒芯体的辐照肿胀量的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE717992A (zh) * 1967-07-12 1968-12-16
ES2092987T3 (es) * 1988-10-19 1996-12-16 Gen Electric Cuerpos absorbentes de neutrones policristalinos sinterizados que comprenden oxidos de tierras raras lantanidos y los mismos estabilizados frente al agua con un oxido de metal del grupo 4a.
CN1155968C (zh) * 1997-02-18 2004-06-30 国营莫斯科多金属工厂 水冷却容器式反应堆中的控制棒
WO2013162395A1 (ru) * 2012-04-24 2013-10-31 Открытое Акционерное Общество "Московский Завод Полиметаллов" Поглощающий элемент корпусного водоохлаждаемого ядерного реактора
JP6120492B2 (ja) * 2012-05-28 2017-04-26 一般財団法人電力中央研究所 熱中性子炉用制御棒
RU2679822C2 (ru) * 2016-12-19 2019-02-13 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения порошка гафната диспрозия для поглощающих элементов ядерного реактора
CN110828002B (zh) * 2019-12-03 2022-07-22 上海核工程研究设计院有限公司 一种高价值控制棒中子吸收体材料
CN111933313B (zh) * 2020-07-21 2023-06-02 上海核工程研究设计院有限公司 一种长寿命中子吸收材料
CN113213916B (zh) * 2021-05-19 2022-02-11 山东大学 一种萤石结构钛酸镝反应堆控制棒及其制备方法

Also Published As

Publication number Publication date
CN114044672A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
CN105039857B (zh) 一种氧化物弥散强化铁素体/马氏体钢及制备方法
CN108335760B (zh) 一种高铀装载量弥散燃料芯块的制备方法
CA2661603C (en) Spherical fuel element and production thereof for gas-cooled high temperature pebble bed nuclear reactors (htr)
KR101622569B1 (ko) 핵연료 복합재료 소결체 및 이의 제조방법
KR101638351B1 (ko) 열전도성 금속을 포함하는 핵연료 소결체의 제조방법 및 이에 따라 제조되는 핵연료 소결체
CN103214231B (zh) 用于热中子反应堆的改进性能氧化物陶瓷芯体及制备方法
JP2021501335A (ja) 熱中性子炉向けの高温原子燃料システム
CN114044672B (zh) 控制棒吸收体材料及其制备方法
EP4375260A1 (en) High-entropy ceramic inert matrix dispersion fuel pellet and preparation method therefor
ZA200502296B (en) Fuel pellet for a nuclear reactor and method for the production thereof
CN109903868A (zh) 一种uc燃料芯块的制备方法
CN110818414A (zh) 一种铪酸铕中子吸收材料及其应用
JP5621102B2 (ja) 核燃料ペレットの製造方法及び核燃料ペレット
CN105185424B (zh) 一种核反应堆堆芯中子吸收材料钛酸铽芯块及其的制备方法
CN113213916B (zh) 一种萤石结构钛酸镝反应堆控制棒及其制备方法
KR102084466B1 (ko) 열전도도가 향상된 핵연료 소결체 및 이의 제조방법
CN114292108B (zh) 一种控制棒用碳化硼-氧化钆中子吸收体材料及其制备方法
CN108417278A (zh) 一种高辐照稳定性的金属型燃料芯块的制备方法
CN115448718A (zh) 一种铪酸铕材料、制备方法及用途
CN112694331B (zh) 采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法
CN108447576B (zh) 一种max相改进型二氧化铀芯块的制备方法
CN114300163B (zh) 一种球床式高温气冷堆控制棒用吸收体材料及其制备方法
CN111710443B (zh) 一种金刚石复合核燃料芯块及其制备方法
KR100450711B1 (ko) 외·내부 결정립 크기가 다른 핵연료 소결체의제조방법
US9847145B2 (en) Method for fabrication of oxide fuel pellets and the oxide fuel pellets thereby

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant