CN114032536A - 高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法 - Google Patents

高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法 Download PDF

Info

Publication number
CN114032536A
CN114032536A CN202111300754.5A CN202111300754A CN114032536A CN 114032536 A CN114032536 A CN 114032536A CN 202111300754 A CN202111300754 A CN 202111300754A CN 114032536 A CN114032536 A CN 114032536A
Authority
CN
China
Prior art keywords
entropy
borosilicate
ceramic
polishing
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111300754.5A
Other languages
English (en)
Inventor
邰召山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaoshan Technology Beijing Co ltd
Original Assignee
Zhaoshan Technology Beijing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaoshan Technology Beijing Co ltd filed Critical Zhaoshan Technology Beijing Co ltd
Priority to CN202111300754.5A priority Critical patent/CN114032536A/zh
Publication of CN114032536A publication Critical patent/CN114032536A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明公开了高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法,高熵硼硅陶瓷表面材料包括高熵硼硅陶瓷混合粉和致密剂,方法包括以下步骤:步骤一、分别研磨、干燥和过筛;步骤二、过筛混合后的高熵硼硅陶瓷混合粉末材料加入冷喷涂设备;步骤三、基材清理;步骤四、操控冷喷枪体对基材需覆膜区域进行喷涂,制得高熵硼硅梯度陶瓷复合涂层;步骤五、对制得高熵硼硅陶瓷复合涂层表面进行打磨剖光,本发明通过控制高熵硼硅陶瓷混合粉的粒径40‑50um和致密剂1‑10um混合,降低了颗粒间的缝隙,制得的高熵硼硅陶瓷涂层具有更高的密度、抗振动和高稳定性等优点,同时通过控制冷喷枪出口速度与供粉流量实现提高高熵硼硅梯度陶瓷混合粉末的利用率,大大节省了资源。

Description

高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法
技术领域
本发明涉及陶瓷技术领域,尤其涉及高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法。
背景技术
高熵碳化物陶瓷的研究目前主要集中在过渡金属IVB、VB族碳化物固溶体。这些碳化物具有岩盐结构,且与硼化物一样,具有很强的共价键特征及很高的熔点,可应用于各种极端条件下。多种金属离子固溶到一个晶体中,也同样极大地拓展了碳化物陶瓷的种类。
现有的冷喷涂涂层具有特殊的层状结构和若干微小气孔,涂层与底材的结合一般是机械方式,其结合强度较低,导致出现孔洞、涂层不稳定附着力低下,稳定性不高,会降低涂层的力学性能。
现有的冷喷涂技术普遍将喷射粒子速度控制在300-1000m/s,供粉速度80-250g/min,在整个过程中粒子没有熔化,保持固体状态,粒子发生纯塑性变形聚合形成涂层,同时有部分粒子粉末未形成涂层,造成了混合材料利用率低,资源浪费。
本发明基于冷喷涂技术提出高熵硼硅陶瓷表面材料及其冷喷涂制备梯度陶瓷涂层的方法,用来进一步提升高熵硼硅梯度陶瓷表面材料制备陶瓷涂层附着力高和高稳定性的特点,同时提高高熵硼硅梯度陶瓷混合粉末的利用率,大大节省了资源。
发明内容
本发明的目的是提供高熵硼硅陶瓷表面材料及其冷喷涂制备梯度陶瓷涂层的方法,通过控制高熵硼硅梯度陶瓷混合粉的粒径40-50um和致密剂1-10um混合,大大降低了颗粒间的缝隙,同时高速撞击基材表面制得涂层密度高,且具有附着力高和高稳定性的特点,同时通过控制冷喷枪出口速度与供粉流量实现提高高熵硼硅梯度陶瓷混合粉末的利用率,大大节省了资源。
本发明的技术方案是这样实现的:
高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法,包括以下步骤:
步骤一、原料混合,将准备好高熵硼硅梯度陶瓷混合粉末和致密剂分别研磨、干燥和过筛,过筛后的高熵硼硅梯度陶瓷混合粉经研磨后粒径控制在40-50um,致密剂经研磨后粒径控制在1-10um;
步骤二、将过高熵硼硅梯度陶瓷混合粉末和致密剂搅拌混合加入冷喷涂设备;
步骤三、基材清理,基材打磨剖光,打磨剖光时间1-2h,热风风干0.5-1.0h;
步骤四、操控冷喷枪体出口速度1000-1100m/s,供粉速度60-80g/min对基材需覆膜区域进行喷涂,制得高熵硼硅梯度陶瓷复合涂层;
步骤五、对制得高熵硼硅梯度陶瓷复合涂层表面进行打磨剖光。
进一步的,在步骤一中,所述高熵硼硅梯度陶瓷混合粉末和致密剂分别经硬质合金搅拌球磨机进行磨制16-24h和32-48h,干燥温度300-400℃,干燥时间2-3h,干燥后高熵硼硅梯度陶瓷混合粉筛网中过筛制得40-50um粒子,致密剂筛网过筛制得1-10um粒子。
进一步的,在步骤三中,基材打磨剖光主要为清理基材表面的油脂、碎屑和氧化层,打磨剖光后进行热风风干0.5-1.0h,热风温度50-60℃。
进一步的,在步骤四中,通过冷喷涂设备往返对基材表面喷涂制得高熵硼硅梯度陶瓷复合涂层厚度为1-2mm。
进一步的,在步骤五中,对制得高熵硼硅梯度陶瓷复合涂层表面进行打磨剖光时间为45-60min。
进一步的,所述冷喷涂制备陶瓷涂层所使用的材料为一种高熵硼硅梯度陶瓷表面材料。
一种高熵硼硅梯度陶瓷表面材料,包含:高熵硼硅梯度陶瓷混合粉90-95份,致密剂5-10份。
进一步的,所述高熵硼硅梯度陶瓷混合粉组成分数为:碳化硼:70-85份,碳化硅:5-15份,氮化硅:10-15份,均为重量份,所述致密剂包含组成分数为:氮化铝20-30份,氧化铝70-80份。
本发明的有益效果是:
(1)本发明设计了一种基于冷喷涂技术方法制备的高熵硼硅梯度陶瓷涂层,通过在高熵硼硅梯度陶瓷表面材料里面加入致密剂,致密剂中的氮化铝、氧化铝,氮化铝具有导热性好、热膨胀系数小,同时是良好的耐热冲击材料,氧化铝具有硬度高和熔点高的特点,通过控制高熵硼硅梯度陶瓷混合粉的粒径为40-50um和致密剂的粒径1-10um混合后大大降低了颗粒间的缝隙,经过冷喷涂制得的高熵硼硅梯度陶瓷涂层相比现有的热喷涂技术制得的高熵硼硅梯度陶瓷涂层具有更高的密度、抗振动和高稳定性等优点。
(2)本发明通过控制冷喷枪出口速度(1000-1100m/s)与供粉流量60-80g/min,实现进一步提高高熵硼硅梯度陶瓷混合粉末的利用率,大大节省了资源。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
根据本发明的实施例,提供了高熵硼硅陶瓷表面材料及其冷喷涂制备梯度陶瓷涂层的方法。
实施例一
取一组高熵硼硅梯度陶瓷混合粉材料,包含:高熵硼硅梯度陶瓷混合粉90份,致密剂10份。
高熵硼硅梯度陶瓷混合粉组成分数为:碳化硼:70份,碳化硅:15份,氮化硅:15份,均为重量份;致密剂包含组成分数为:氮化铝20份,氧化铝80份。
根据本发明所提供的高熵硼陶瓷材料冷喷涂制备陶瓷涂层的方法,包括以下步骤:
步骤一、原料混合,将准备好高熵硼硅梯度陶瓷混合粉末和致密剂分别研磨、干燥和过筛,高熵硼硅梯度陶瓷混合粉末经硬质合金搅拌球磨机进行磨制16h,干燥温度300℃,干燥时间2h,干燥后经筛网中过筛制得40-50um粒子;致密剂经硬质合金搅拌球磨机进行磨制32h,干燥温度300℃,干燥时间2h,干燥后经筛网中过筛制得1-10um粒子。
步骤二、将过高熵硼硅梯度陶瓷混合粉末和致密剂搅拌混合加入冷喷涂设备,冷喷涂设备选型为德维DWCS-2000,冷喷涂设备将高熵硼硅梯度陶瓷混合粉末加速至1000m/s经冷喷枪射出,供粉速度60g/min;
步骤三、基材清理,基材打磨剖光,打磨剖光时间1h,基材打磨剖光主要为清理基材表面的油脂、碎屑和氧化层,打磨剖光后进行热风风干0.5h,热风温度50℃;
步骤四、操控冷喷枪体对基材需覆膜区域进行喷涂,制得高熵硼硅梯度陶瓷复合涂层;
步骤五、对制得高熵硼硅梯度陶瓷材料涂层表面进行打磨剖光,对制得高熵硼硅梯度陶瓷复合涂层表面进行打磨剖光时间为45min。
经过以上步骤和工艺要求制得高熵硼硅梯度陶瓷材料涂层。
实施例二
取一组高熵硼硅梯度陶瓷混合粉材料,包含:高熵硼硅梯度陶瓷混合粉92.5份,致密剂7.5份。
高熵硼硅梯度陶瓷混合粉组成分数为:碳化硼:75份,碳化硅:12.5份,氮化硅:12.5份,均为重量份;致密剂包含组成分数为:氮化铝25份,氧化铝75份。
根据本发明所提供的高熵硼陶瓷材料冷喷涂制备陶瓷涂层的方法,包括以下步骤:
步骤一、原料混合,将准备好高熵硼硅梯度陶瓷混合粉末和致密剂分别研磨、干燥和过筛,高熵硼硅梯度陶瓷混合粉末经硬质合金搅拌球磨机进行磨制16h,干燥温度300℃,干燥时间2h,干燥后经筛网中过筛制得40-50um粒子;致密剂经硬质合金搅拌球磨机进行磨制32h,干燥温度300℃,干燥时间2h,干燥后经筛网中过筛制得1-10um粒子。
步骤二、将过高熵硼硅梯度陶瓷混合粉末和致密剂搅拌混合加入冷喷涂设备,冷喷涂设备选型为德维DWCS-2000,冷喷涂设备将高熵硼硅梯度陶瓷混合粉末加速至1050m/s经冷喷枪射出,供粉速度70g/min;
步骤三、基材清理,基材打磨剖光,打磨剖光时间1h,基材打磨剖光主要为清理基材表面的油脂、碎屑和氧化层,打磨剖光后进行热风风干0.75h,热风温度50℃;
步骤四、操控冷喷枪体对基材需覆膜区域进行喷涂,制得高熵硼硅梯度陶瓷复合涂层;
步骤五、对制得高熵硼硅梯度陶瓷材料涂层表面进行打磨剖光,对制得高熵硼硅梯度陶瓷复合涂层表面进行打磨剖光时间为45min。
经过以上步骤和工艺要求制得高熵硼硅梯度陶瓷材料涂层。
实施例三
取一组高熵硼硅梯度陶瓷混合粉材料,包含:高熵硼硅梯度陶瓷混合粉92.5份,致密剂7.5份。
高熵硼硅梯度陶瓷混合粉组成分数为:碳化硼:75份,碳化硅:12.5份,氮化硅:12.5份,均为重量份;致密剂包含组成分数为:氮化铝25份,氧化铝75份。
根据本发明所提供的高熵硼陶瓷材料冷喷涂制备陶瓷涂层的方法,包括以下步骤:
步骤一、原料混合,将准备好高熵硼硅梯度陶瓷混合粉末和致密剂分别研磨、干燥和过筛,高熵硼硅梯度陶瓷混合粉末经硬质合金搅拌球磨机进行磨制16h,干燥温度300℃,干燥时间2h,干燥后经筛网中过筛制得40-50um粒子;致密剂经硬质合金搅拌球磨机进行磨制32h,干燥温度300℃,干燥时间2h,干燥后经筛网中过筛制得1-10um粒子。
步骤二、将过高熵硼硅梯度陶瓷混合粉末和致密剂搅拌混合加入冷喷涂设备,冷喷涂设备选型为德维DWCS-2000,冷喷涂设备将高熵硼硅梯度陶瓷混合粉末加速至1100m/s经冷喷枪射出,供粉速度80g/min;
步骤三、基材清理,基材打磨剖光,打磨剖光时间1h,基材打磨剖光主要为清理基材表面的油脂、碎屑和氧化层,打磨剖光后进行热风风干1h,热风温度50℃;
步骤四、操控冷喷枪体对基材需覆膜区域进行喷涂,制得高熵硼硅梯度陶瓷复合涂层;
步骤五、对制得高熵硼硅梯度陶瓷材料涂层表面进行打磨剖光,对制得高熵硼硅梯度陶瓷复合涂层表面进行打磨剖光时间为45min。
经过以上步骤和工艺要求制得高熵硼硅梯度陶瓷材料涂层。
实验测试一
取3组高熵硼硅梯度陶瓷混合粉末为实验对象,经本发明实施例一进行试验,实验变量为高熵硼硅梯度陶瓷混合粉末的粒径和是否加入致密剂,其他试验条件不变,本实验选定致密剂变量进行可靠性试验,测得涂层与钢管间的粘合强度,实验结果如下:
强度Mpa 1 2 3 4
粒径 40 50 20 80
致密剂
附着力KN 5.7 5.1 4.6 4.8
以上测试中使用ZW-6000C智能粘结强度检测仪,测试陶瓷涂层的附着力。
经过实验对比数据分析,本发明添加1-10um粒径的致密剂的高熵硼硅梯度陶瓷材料相较于未添加的陶瓷涂层附着力有显著提高,40-50um的高熵硼硅梯度陶瓷材料添加1-10um粒径的致密剂,附着力提升近12%,40-50um范围之外的添加1-10um粒径的致密剂制备的陶瓷涂层附着力提升不是很明显。
实验测试二
去6组1000g混合土层粉末,分别经过实施例1-3,通过改变实施例1-3中冷喷涂粒子速度和供粉速度制得陶瓷涂层,实验组1-6组,最后清理制得的涂层并称重,本实验选定喷头出口速度和供料速度为变量进行粉末利用率试验,实验结果如下:
Figure BDA0003338303690000081
经过实验对比数据分析,本发明所提供的冷喷涂喷头出口速度1000-1100m/s时,供料速度在60-80g/min相较于其他供料速度原料利用率提升近10%,当供料速度在60-80g/min时,喷头出口速度在1000-1100m/s相较于其它速度利用率提升近12%。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (8)

1.高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法,其特征在于,包括以下步骤:
步骤一、原料混合,将准备好高熵硼硅陶瓷混合粉末和致密剂分别研磨、干燥和过筛,过筛后的高熵硼硅陶瓷混合粉经研磨后粒径控制在40-50um,致密剂经研磨后粒径控制在1-10um;
步骤二、将过高熵硼硅陶瓷混合粉末和致密剂搅拌混合加入冷喷涂设备;
步骤三、基材清理,基材打磨剖光,打磨剖光时间1-2h,热风风干0.5-1.0h;
步骤四、操控冷喷枪体出口速度1000-1100m/s,供粉速度60-80g/min对基材需覆膜区域进行喷涂,制得高熵硼硅陶瓷复合涂层;
步骤五、对制得高熵硼硅陶瓷复合涂层表面进行打磨剖光。
2.根据权利要求1所述的高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法,其特征在于,在步骤一中,所述高熵硼硅陶瓷混合粉末和致密剂分别经硬质合金搅拌球磨机进行磨制16-24h和32-48h,干燥温度300-400℃,干燥时间2-3h,干燥后高熵硼硅陶瓷混合粉筛网中过筛制得40-50um粒子,致密剂筛网过筛制得1-10um粒子。
3.根据权利要求1所述的高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法,其特征在于,在步骤三中,基材打磨剖光主要为清理基材表面的油脂、碎屑和氧化层,打磨剖光后进行热风风干0.5-1.0h,热风温度50-60℃。
4.根据权利要求1所述的高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法,其特征在于,在步骤四中,通过冷喷涂设备往返对基材表面喷涂制得高熵硼硅陶瓷复合涂层厚度为1-2mm。
5.根据权利要求1所述的高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法,其特征在于,在步骤五中,对制得高熵硼硅陶瓷复合涂层表面进行打磨剖光时间为45-60min。
6.根据权利要求1-5所述的高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法,其特征在于,所述冷喷涂制备陶瓷涂层所使用的材料为一种高熵硼硅陶瓷表面材料。
7.一种高熵硼硅陶瓷表面材料,其特征在于,包含:高熵硼硅陶瓷混合粉90-95份,致密剂5-10份。
8.根据权利要求8所述的一种高熵硼硅陶瓷表面材料,其特征在于,所述高熵硼硅陶瓷混合粉组成分数为:碳化硼:70-85份,碳化硅:5-15份,氮化硅:10-15份,均为重量份,所述致密剂包含组成分数为:氮化铝20-30份,氧化铝70-80份。
CN202111300754.5A 2021-11-04 2021-11-04 高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法 Pending CN114032536A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111300754.5A CN114032536A (zh) 2021-11-04 2021-11-04 高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111300754.5A CN114032536A (zh) 2021-11-04 2021-11-04 高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法

Publications (1)

Publication Number Publication Date
CN114032536A true CN114032536A (zh) 2022-02-11

Family

ID=80142774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111300754.5A Pending CN114032536A (zh) 2021-11-04 2021-11-04 高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法

Country Status (1)

Country Link
CN (1) CN114032536A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836746A (zh) * 2022-03-28 2022-08-02 江苏珀然股份有限公司 一种汽车轮毂表面梯度涂层的制备工艺
CN115521149A (zh) * 2022-10-25 2022-12-27 山东大学 一种高熵陶瓷基梯度纳米复合刀具材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10300966A1 (de) * 2003-01-14 2004-07-29 Daimlerchrysler Ag Gleitschichten und Verfahren zu deren Herstellung
CN102189370A (zh) * 2010-03-04 2011-09-21 宝山钢铁股份有限公司 结晶器铜板的冷喷涂修复方法
US20130129976A1 (en) * 2009-11-12 2013-05-23 Mtu Aero Engines Gmbh Coating plastic components by means of kinetic cold gas spraying
CN109371275A (zh) * 2018-12-20 2019-02-22 哈尔滨工业大学 一种柔性颗粒增强金属基复合材料的制备方法
CN113213945A (zh) * 2020-12-31 2021-08-06 兆山科技(北京)有限公司 一种利用气氛烧结制备高熵硼陶瓷的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10300966A1 (de) * 2003-01-14 2004-07-29 Daimlerchrysler Ag Gleitschichten und Verfahren zu deren Herstellung
US20130129976A1 (en) * 2009-11-12 2013-05-23 Mtu Aero Engines Gmbh Coating plastic components by means of kinetic cold gas spraying
CN102189370A (zh) * 2010-03-04 2011-09-21 宝山钢铁股份有限公司 结晶器铜板的冷喷涂修复方法
CN109371275A (zh) * 2018-12-20 2019-02-22 哈尔滨工业大学 一种柔性颗粒增强金属基复合材料的制备方法
CN113213945A (zh) * 2020-12-31 2021-08-06 兆山科技(北京)有限公司 一种利用气氛烧结制备高熵硼陶瓷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙家枢等: "《热喷涂科学与技术》", 31 October 2013, 冶金工业出版社, pages: 389 *
查柏林等: "《超音速火焰喷涂技术及应用》", 31 July 2013, 国防工业出版社, pages: 4 - 6 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836746A (zh) * 2022-03-28 2022-08-02 江苏珀然股份有限公司 一种汽车轮毂表面梯度涂层的制备工艺
CN114836746B (zh) * 2022-03-28 2023-11-21 江苏珀然股份有限公司 一种汽车轮毂表面梯度涂层的制备工艺
CN115521149A (zh) * 2022-10-25 2022-12-27 山东大学 一种高熵陶瓷基梯度纳米复合刀具材料及其制备方法

Similar Documents

Publication Publication Date Title
CN114032536A (zh) 高熵硼硅陶瓷表面材料冷喷涂制备梯度陶瓷涂层的方法
CN110395993B (zh) 一种用于等离子体喷涂的纳米SiC改性纳米结构莫来石粉体喂料的制备方法
CN115233137B (zh) 低摩擦的超音速火焰喷涂耐磨涂层材料、制备方法及应用
CN110668812B (zh) 一种纳米氧化锆喷涂粉末及其制备方法
CN102154640B (zh) 铝涂层结合强度的提高方法
CN104005021B (zh) 一种超音速激光沉积低应力涂层的方法
CN102581292A (zh) 一种用于热喷涂活塞环涂层的含TiB2金属陶瓷复合粉末的制备方法
WO2022152264A1 (zh) 一种高温防护用NiCrBSi-ZrB2金属陶瓷粉末、复合涂层及其制备方法
CN110976893B (zh) 陶瓷基材表面复合金属层的制备方法
CN107338433A (zh) 一种镁合金表面非晶合金涂层的制备方法
CN112480789A (zh) 一种高强度抗冲刷耐烧蚀防热涂层材料及其制备方法
CN108728842A (zh) 一种烹饪器具及其制备方法
CN112974813A (zh) 一种钛基复合粉末及其制备方法、原位增强钛基复合涂层及其制备方法
CN112391624A (zh) 一种高致密度冷喷涂金属/金属基沉积体的制备方法和应用
CN109440053B (zh) 一种雷达吸波涂层材料及其制备方法
CN104726816A (zh) 一种反应火焰热喷涂氧化铝-氧化钛复相涂层的制备方法
CN116041051B (zh) 一种应用于3dp打印的造粒粉体及其打印成型方法
CN105316617B (zh) 一种微纳米结构碳化钨涂层的制备方法
CN105039793B (zh) 一种纳米特征增强铝基复合材料及其制备方法
CN104878343B (zh) 一种金刚石/铜复合材料表面纯铜涂层制备方法
CN101050123A (zh) 一种复合陶瓷硬质相的硬质合金覆层材料的制备方法
CN105369178A (zh) 一种耐熔锌腐蚀喷涂材料的制备方法
CN113927495A (zh) 一种自锐性金属结合剂金刚石磨料层制备工艺
CN112501605A (zh) 一种功能型复合冷喷涂层的制备方法
CN104404426A (zh) 大尺寸工件表面Ti3SiC2基复合材料涂层及等离子堆焊制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination