CN114024442A - 两相交错四开关升降压集成llc的dcdc隔离变换器 - Google Patents

两相交错四开关升降压集成llc的dcdc隔离变换器 Download PDF

Info

Publication number
CN114024442A
CN114024442A CN202111309007.8A CN202111309007A CN114024442A CN 114024442 A CN114024442 A CN 114024442A CN 202111309007 A CN202111309007 A CN 202111309007A CN 114024442 A CN114024442 A CN 114024442A
Authority
CN
China
Prior art keywords
phase
voltage
circuit
current
isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111309007.8A
Other languages
English (en)
Other versions
CN114024442B (zh
Inventor
姚凯
任璐军
邵蕃光
甘彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202111309007.8A priority Critical patent/CN114024442B/zh
Publication of CN114024442A publication Critical patent/CN114024442A/zh
Application granted granted Critical
Publication of CN114024442B publication Critical patent/CN114024442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Abstract

本发明公开了两相交错四开关升降压集成LLC的DCDC隔离变换器,包括主功率电路和控制电路,其中控制电路包括输入电压采样电路、输出电压隔离采样电路、母线电压采样电路、输入电流采样电路、辅助电源电路、隔离驱动电路和单片机。因为变换器后面集成LLC谐振腔,所以后桥臂的占空比固定为位为0.5,通过控制前桥臂占空比来稳定输出电压,通过采样这些信号生成前桥臂和后桥臂的移相角信号,实现电感电流波形的调制,从而实现所有开关管的软开关,同时采样两相输入电流,通过电流内环实现两相电流的均流。本发明可以在宽输入电压、输出电压和功率范围内实现所有开关管的软开关,使峰值效率达到96%,同时有助于开关频率的提升。

Description

两相交错四开关升降压集成LLC的DCDC隔离变换器
技术领域
本发明涉及电能变换装置的直流-直流变换器技术,特别是一种两相交错四开关升降压集成LLC的DCDC隔离变换器。
背景技术
近年来,随着新能源汽车、光伏、储能、绿色数据中心、下一代站点、超算等产业的兴起,强力驱动着系统供电方案朝着宽输入、宽输出、超高密、超高效的方向不断突破创新。LLC谐振变换器全桥LLC谐振变换器能够在全负载范围内实现开关管的ZVS,且当开关频率小于谐振频率时,可以实现副边同步整流管的零电流开关。目前LLC谐振变换器普遍采用变频控制,通过控制变换器的开关频率实现电压增益的调节。但是当增益变化范围较宽时,开关频率变化范围较宽,给磁性元件的设计带来困难,甚至不能满足调压要求。论文《OptimalDesign of Planar Magnetic Components for a Two-Stage GaN-Based DC–DCConverter》和《Interleaved Boost-Integrated LLC Resonant Converter With Fixed-Frequency PWM Control for Renewable Energy Generation Applications》分别提出一种两级式结构,前者前级为两相交错的Buck,而后者前级为两相交错的Boost,后级LLC谐振变换器工作在开环定频模式,实现电气隔离和电压匹配;这两种方案均可适当提高输入电压范围,然而针对输出电压范围较宽时,由于后级LLC工作在开环定频模式,导致母线电压过高或过低,降低了变换器的效率。
发明内容
本发明的目的在于提供一种两相交错四开关升降压集成LLC的DCDC隔离变换器,使变换器既能满足宽输入宽输出(输入200-400V,输出10-14V)的要求,效率尽可能高,功率密度尽可能大。
实现本发明目的的技术解决方案为:一种两相交错四开关升降压集成LLC的DCDC隔离变换器,包括主功率电路、控制电路和辅助电源电路,其中控制电路包括单片机模块,输入电压、两相输入电流、两相负电流和母线电压采样电路,输出电压隔离采样电路,以及隔离驱动电路;主功率电路分别与辅助电源电路、输入电压、两相输入电流、两相负电流和母线电压采样电路、输出电压隔离采样电路以及隔离驱动电路连接,单片机模块分别与辅助电源电路、输入电压、两相输入电流、两相负电流和母线电压采样电路、输出电压隔离采样电路,以及隔离驱动电路连接,辅助电源电路分别与功率电路、单片机模块、输入电压、两相输入电流、两相负电流和母线电压采样电路、输出电压隔离采样电路、以及隔离驱动电路连接。
单片机模块采集输入电压、两相输入电流、两相电感负电流、母线电压和输出电压,并进行处理后输出前桥臂和后桥臂的移相角信号,固定后桥臂占空比为0.5,通过控制前桥臂占空比即可达到稳压的目的,结合移相角信号再通过ePWM模块输出前后桥臂的占空比即可以控制两相电感电流的形状,进而可以实现所有开关管的软开关,最后通过采样两相输入电流并通过电流内环实现两相的均流。
进一步地,所述的主功率电路包括输入电压源Vin、第一主电感Lb_1、第二主电感Lb_2,开关管Q1~8,母线电容Cbus,谐振电容Cr,谐振电感Lr,变压器Tr1,同步整流管QSR1~2,输出电容Co和负载RL;其中开关管Q1、Q2、Q3、Q4、第一主电感Lb_1和母线电容Cbus构成A相四开关Buck-Boost;开关管Q5、Q6、Q7、Q8、第二主电感Lb_2和母线电容Cbus构成B相四开关Buck-Boost;其后接谐振电容Cr,谐振电感Lr和变压器Tr,它们共同构成谐振腔,A相和B相四开关Buck-Boost的后桥臂、谐振腔、同步整流管QSR1~2以及输出电容Co构成全桥LLC谐振变换器,也即两相四开关Buck-Boost的后桥臂和全桥LLC的开关管是共用的,这有利于减小后桥臂四个开关管的导通损耗。
进一步地,所述的输入电压、两相输入电流、两相负电流和母线电压采样电路需要分别采样输入电压、两相输入电流、两相负电流和母线电压;对于输入电压采样采用同相运算放大器,其输入直接和输入电压源Vin的正端连接;对于输入电流采样在输入电流采样点有很高的共模电压,采用电流霍尔传感器完成两相输入电流的采样,其串在输入电压源Vin的正端;两相负电流利用采样电阻接运算放大器完成采样,采样电阻分别接在A相开关管Q2和B相开关管Q6的S端和地之间,运算放大器的两个输入分别接采样电阻两端构成差分采样;对于母线电压采样采用同相运算放大器,其输入直接和母线电压源Vbus的正端连接;它们的输出端口经过低通滤波后分别连接到单片机模块的ADC模块。
进一步地,所述的输出电压隔离采样电路利用隔离差分运算放大器完成采样,该运算放大器的输入差分通道和输出电容Co两端连接,输出通道经低通滤波器后和单片机模块的ADC模块连接,同时该隔离运算放大器隔离两侧的供电由辅助电源电路提供,该隔离运算放大器可以采用AMC1311以及NSI1311等以及同类型芯片。
进一步地,所述的单片机模块包括ADC模块、移相角计算模块、数字PI模块、HRPWM模块,单片机模块的供电和ADC参考源由辅助电源电路提供;ADC模块采集经低通滤波器滤波后的输入电压、两相输入电流、两相电感负电流、母线电压以及输出电压,他们分别和其对应采样电路连接,输出电压和由辅助源电路提供的参考源信号的差值经过数字PI模块得到内部电流环的参考信号,该电流参考信号和ADC采集的两相输入电流的差值分别经过另外的数字PI模块得到两相Buck-Boost的前桥臂的占空比信号送给HRPWM模块,同时ADC采样输入电压、两相输入电流、两相电感负电流、母线电压等信号并送给移相角计算模块得到移相角信号,HRPWM模块根据这个移相角信号生成各个开关管的驱动信号,并把这些驱动信号传递给隔离驱动电路。
进一步地,所述的隔离驱动电路直接和单片机模块的HRPWM模块和主功率电路连接,该模块的供电由辅助电源电路提供,所述的隔离驱动电路采用英飞凌的2EDF7275K和纳芯微的NSI6602A隔离半桥驱动器,其也可以用其他芯片替代。
进一步地,所述的辅助电源电路包括原边和副边两套辅助电源策略,原边辅助电源首先采用型号为UCC28881D的Buck变换器作为第一级稳压器,其内部集成MOSFET,将输入电压直接降为约12V,该12V直接给到隔离驱动电路为开关管供电,12V电压经过稳压器MP2317将电压降为4V,再经过线性稳压器将4V电压将为3.3V为单片机模块和输入电压、两相输入电流、两相负电流和母线电压采样电路供电,3.3V电压经过REF5030得到3.0V电压作为单片机模块的ADC参考源;副边辅助电源从输出电压取电,一方面采用MP2317将电压降为5V为输出电压隔离采样电路供电,另一方面采用TPS71550将电压降为6V为隔离驱动电路中的副边同步整流管供电,器件型号可被同类型的芯片代替,另外电压等级也可以根据实际情况而改变,比如多路并联开关管可降低导通损耗,而开关频率提高后各开关管和同步整流管的驱动损耗会随之增加,选取最优的辅助电源供电电压可降低损耗。
本发明与现有的技术相比,其显著优点在于:
1.在宽电压和宽负载的条件下,与同类电路相比,效率和功率密度有一定优势。
2.在宽输入电压、输出电压以及输出功率的范围内,可以实现所有开关管的零电压开通(ZVS),所有副边同步整流管的零电流关断(ZCS)。
3.后桥臂为复用结构,四开关Buck-Boost的电感电流可以直接流入谐振腔,极大的降低了导通损耗和磁芯损耗。
附图说明
图1是本发明两相交错四开关Buck-Boost集成LLC的高频高效DC-DC隔离变换器的主功率电路结构、控制结构以及辅助电源电路结构示意图;
图2是本发明实施例中单片机模块的算法流程图;
图3是本发明实施例中两相交错四开关Buck-Boost集成LLC的高频高效DC-DC隔离变换器的主电路示意图;
图4是本发明实施例中四开关Buck-Boost一个开关周期内的电感电流的波形;
图5是本发明实施例中变换器的工作模态图;
图6是本发明实施例中变换器一个开关周期内的关键波形,从上到下依次是驱动信号、谐振电流和励磁电流信号、两相电感电流信号以及流过各个开光管的电流信号;
图7是本发明实施例中变换器的在不同功率下的移相角关于输入电压和母线电压三维波形图。
上述图中的主要符号名称:Vin,输入电压。Iin_1,A相输入电流。Iin_2,B相输入电流。Ineg_1,A相电感负电流。Ineg_2,B相电感负电流。Vbus,母线电压。Vo,输出电压。Q1~Q8,开光管。Coss1~Coss8,各开关管寄生电容。Lb1,A相电感。Lb2,B相电感。Cbus,母线电容。Cr,谐振电容。Lr,谐振电感。Lm,励磁电感。Tr,变压器。QSR1~QSR2,同步整流管。Cb,输出滤波电容。RL,负载电阻。s1~s8,开关管驱动信号。δ,移相角。D,Q1和Q3占空比。iLb1,A相电感电流。iLb2,B相电感电流。iLr,谐振电流。iLm,励磁电流。iQ1~iQ8,开关管Q1~Q8流过的电流。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
具体实施例一 两相交错四开关Buck-Boost集成LLC的高频高效DC-DC隔离变换器工作原理
1.1电压增益
图3是两相交错四开关Buck-Boost集成LLC的高频高效DC-DC隔离变换器主电路。设定:1.开关管电容线性理想;2.定义电感电流从左到右为正方向;3.死区时间足够短;4.输出电容足够大。
虽然四开关Buck-Boost和LLC共用后桥臂,但是它们的增益不会互相影响;图4为四开关Buck-Boost一个开关周期内的电感电流的波形,根据电感的伏秒平衡关系可以得到输入到母线电压的增益为
Figure BDA0003341112190000051
其中后桥臂的占空比为0.5,因为LLC的工作频率为谐振频率,所以LLC的增益可以表示为
Figure BDA0003341112190000052
其中n为变压器的变比,所以变换器总的增益可以表示为
Figure BDA0003341112190000053
由图(4)可得电感电流的表达式为
Figure BDA0003341112190000054
由输入输出功率守恒
Figure BDA0003341112190000055
可得,Ineg可以表示为
Figure BDA0003341112190000056
其中η为效率。
所以其他时刻的电感电流可以得到
Figure BDA0003341112190000061
1.2模态分析
图5给出了变换器的工作模态图,图6给出了变换器在一个开关周期内的关键波形,从上到下依次为驱动信号、谐振电流和励磁电流信号、两相电感电流信号以及流过各个开光管的电流信号。因为LLC工作方式为开环定频方式,且开关频率等于谐振频率,所以次级侧可以等效为一个与励磁电感并联的电阻Req。在进行模态分析前,我们首先假设图中所标为两相电感电流和谐振电流的正方向,根据输入电压和母线电压的相对大小,可以有两种工作模式,分别为降压模式和升压模式,每个工作模式又分六个模态,因为降压模式和升压模式本质上是一样的,这里以降压模式举例,下面结合图5和图6进行详细的模态分析。
模态一(t0-t1):如图5(a),A相:在t0时刻,Q2关断,iLb1为负,iLb1开始为Coss1放电,Coss2充电,当Q1两端的电压变为0时,Q1零电压开通,Q3维持关断,Q4维持开通;B相:开关管无动作,Q5维持关断,Q6维持开通,Q7维持开通,Q8维持关断;该模态A相电感电流由负转正,B相电感电流有正转负。
模态二(t1-t2):如图5(b),A相:在t1时刻,Q4关断,iLb1为正,iLr为负,两者同时为Coss3放电,Coss4充电,当Q3两端电压为0时,Q3零电压开通,Q1维持开通,Q2维持关断;B相:在t1时刻,Q7关断,iLb2为负,iLr为负,两者同时为Coss7放电,Coss8充电,当Q8两端电压为0时,Q8零电压开通,Q5维持关断,Q6维持开通。
模态三(t2-Ts/2):如图5(c),A相:在t2时刻,Q1关断,iLb1为正,iLb1开始为Coss2放电,Coss1充电,当Q2两端电压为0时,Q2零电压开通,Q3维持开通,Q4维持关断;B相:开关管无动作,Q5维持关断,Q6维持开通,Q7维持关断,Q8维持开通。
模态四(Ts/2-t3):如图5(d),A相:开关管无动作,Q1维持关断,Q2维持开通,Q3维持开通,Q8维持关断;B相:在Ts/2时刻,Q6关断,iLb2为负,iLb2开始为Coss5放电,Coss6充电,当Q5两端电压为0时,Q5零电压开通,Q7维持关断,Q8维持开通。
模态五(t3-t4):如图5(e),A相:在t3时刻,Q3关断,iLb1为负,iLr为正,两者同时为Coss3充电,Coss4放电,当Q4两端电压为0时,Q4零电压开通,Q1维持关断,Q2维持开通;B相:在t3时刻,Q8关断,iLb2为正,iLr为正,两者同时为Coss7放电,Coss8充电,当Q7两端电压为0时,Q7零电压开通,Q5维持开通,Q6维持关断。
模态六(t4-Ts):如图5(f),A相:开关管无动作,Q1维持关断,Q2维持开通,Q3维持关断,Q8维持开通;B相:在t4时刻,Q5关断,iLb2为正,iLb2开始为Coss5充电,Coss6放电,当Q6两端电压为0时,Q6零电压开通,Q7维持开通,Q8维持关断。
1.3软开关实现的条件
为了实现变换器的高效率,在开关过程中全部开关管采用软开关技术。通过在开关动作前后引入谐振,使开关管的开通电压先降到零,就可以消除开关过程中电压、电流的重叠,从而大大减小甚至消除开关损耗。从以上的模态分析不难分析出开关管实现软开关的条件为
Figure BDA0003341112190000071
其中tdead为死区时间,我们假设Coss1=Coss2=Coss3=Coss4=Coss,IQ1~IQ4分别为开关管Q1~Q4开通时刻流入开关管的电流;B相开关管实现软开关的条件和A相是一样的,这里便不再赘述。
结合式(5)和(6)可得:
Figure BDA0003341112190000072
因为后桥臂和LLC的开关管是共用的,所以后桥臂的开关管会同时流过四开关Buck-Boost和LLC的谐振电流,这更加有利于实现开关管的软开关,式(8)中第一项表达式中
Figure BDA0003341112190000081
即为在该时刻LLC的谐振电流。
由式(8)可知,为满足所有的开关管都可以实现软开关,移相角需要满足的条件为
Figure BDA0003341112190000082
所以取移相角为临界值即可以实现所有开关管的软开关,同时又能保证电感电流的有效值最小,不会增加额外的损耗。
图7则给出了移相角关于输入电压和母线电压的三维图,其中(a)为满载(500W)条件下,(b)为半载条件下,(c)为四分之一载条件下。
具体实施例二两相交错四开关Buck-Boost集成LLC的高频高效DC-DC隔离变换器
结合之前分析,可以设计出图1所示电路和图2所示的软件流程图。图1包括主功率电路(1)、控制电路(2)和辅助电源电路(3),其中控制电路(2)包括单片机模块(4),输入电压、两相输入电流、两相负电流和母线电压采样电路(5),输出电压隔离采样电路(6),以及隔离驱动电路(7);所述主功率电路(1)分别与辅助电源电路(3)、输入电压、两相输入电流、两相负电流和母线电压采样电路(5)、输出电压隔离采样电路(6)以及隔离驱动电路(7)连接,单片机模块(4)分别与辅助电源电路(3)、输入电压、两相输入电流、两相负电流和母线电压采样电路(5)、输出电压隔离采样电路(6),以及隔离驱动电路(7)连接,辅助电源电路(3)分别与功率电路(1)、单片机模块(4)、输入电压、两相输入电流、两相负电流和母线电压采样电路(5)、输出电压隔离采样电路(6)、以及隔离驱动电路(7)连接。
单片机模块(4)采集输入电压、两相输入电流、两相电感负电流、母线电压和输出电压,并进行处理后输出前桥臂和后桥臂的移相角信号,固定后桥臂占空比为0.5,通过控制前桥臂占空比即可达到稳压的目的,结合移相角信号再通过ePWM模块输出前后桥臂的占空比即可以控制两相电感电流的形状,进而可以实现所有开关管的软开关,最后通过采样两相输入电流并通过电流内环实现两相的均流。
2、进一步地,所述的主功率电路(1)包括输入电压源Vin、第一主电感Lb_1、第二主电感Lb_2,开关管Q1~8,母线电容Cbus,谐振电容Cr,谐振电感Lr,变压器Tr1,同步整流管QSR1~2,输出电容Co和负载RL;其中开关管Q1、Q2、Q3、Q4、第一主电感Lb_1和母线电容Cbus构成A相四开关Buck-Boost;开关管Q5、Q6、Q7、Q8、第二主电感Lb_2和母线电容Cbus构成B相四开关Buck-Boost;其后接谐振电容Cr,谐振电感Lr和变压器Tr,它们共同构成谐振腔,A相和B相四开关Buck-Boost的后桥臂、谐振腔、同步整流管QSR1~2以及输出电容Co构成全桥LLC谐振变换器,也即两相四开关Buck-Boost的后桥臂和全桥LLC的开关管是共用的,这有利于减小后桥臂四个开关管的导通损耗。
进一步地,所述的输入电压、两相输入电流、两相负电流和母线电压采样电路(5)需要分别采样输入电压、两相输入电流、两相负电流和母线电压;对于输入电压采样采用同相运算放大器,其输入直接和输入电压源Vin的正端连接;对于输入电流采样在输入电流采样点有很高的共模电压,采用电流霍尔传感器完成两相输入电流的采用,其串在输入电压源Vin的正端;两相负电流利用采样电阻接运算放大器完成采样,采样电阻分别接在A相开关管Q2和B相开关管Q6的S端和地之间,运算放大器的两个输入分别接采样电阻两端构成差分采样;对于母线电压采样采用同相运算放大器,其输入直接和母线电压源Vbus的正端连接;它们的输出端口经过低通滤波后分别连接到单片机模块(4)的ADC模块。
进一步地,所述的输出电压隔离采样电路(6)利用隔离差分运算放大器完成采样,该运算放大器的输入差分通道和输出电容Co两端连接,输出通道经低通滤波器后和单片机模块(4)的ADC模块连接,同时该隔离运算放大器隔离两侧的供电由辅助电源电路(3)提供,该隔离运算放大器可以采用AMC1311以及NSI1311等以及同类型芯片。
进一步地,所述的单片机模块(4)包括ADC模块、移相角计算模块、数字PI模块、HRPWM模块,单片机模块(4)的供电和ADC参考源由辅助电源电路(3)提供;ADC模块采集经低通滤波器滤波后的输入电压、两相输入电流、两相电感负电流、母线电压以及输出电压,他们分别和其对应采样电路连接,输出电压和由辅助源电路(3)提供的参考源信号的差值经过数字PI模块得到内部电流环的参考信号,该电流参考信号和ADC采集的两相输入电流的差值分别经过另外的数字PI模块得到两相Buck-Boost的前桥臂的占空比信号送给HRPWM模块,同时ADC采样输入电压、两相输入电流、两相电感负电流、母线电压等信号并送给移相角计算模块得到移相角信号,HRPWM模块根据这个移相角信号生成各个开关管的驱动信号,并把这些驱动信号传递给隔离驱动电路(7)。
进一步地,所述的隔离驱动电路(7)直接和单片机模块(4)的HRPWM模块和主功率电路(1)连接,该模块的供电由辅助电源电路(3)提供,所述的隔离驱动电路(7)采用英飞凌的2EDF7275K和纳芯微的NSI6602A隔离半桥驱动器,其也可以用其他芯片替代。
进一步地,所述的辅助电源电路(3)包括原边和副边两套辅助电源策略,原边辅助电源首先采用型号为UCC28881D的Buck变换器作为第一级稳压器,其内部集成MOSFET,将输入电压直接降为约12V,该12V直接给到隔离驱动电路(7)为开关管供电,12V电压经过稳压器MP2317将电压降为4V,再经过线性稳压器将4V电压将为3.3V为单片机模块(4)和输入电压、两相输入电流、两相负电流和母线电压采样电路(5)供电,3.3V电压经过REF5030得到3.0V电压作为单片机模块的ADC参考源;副边辅助电源从输出电压取电,一方面采用MP2317将电压降为5V为输出电压隔离采样电路(6)供电,另一方面采用TPS71550将电压降为6V为隔离驱动电路(7)中的副边同步整流管供电,器件型号可被同类型的芯片代替,另外电压等级也可以根据实际情况而改变,比如多路并联开关管可降低导通损耗,而开关频率提高后各开关管和同步整流管的驱动损耗会随之增加,选取最优的辅助电源供电电压可降低损耗。
而图2所示软件流程图包括预启动、软起动和正常工作三部分,其中预启动为初步判断工作范围是否正常,例如输入电压不是要求工作输入电压则不启动,软起动流程图则是让占空比以一定步进慢慢增加到正常工作占空比,从而实现软起动,正常工作则是包括PID的计算和移相角δ的计算,另外还要进行过电压保护,过功率保护以及短路保护等;以上实施方案仅为本发明技术思路,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思路,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (7)

1.两相交错四开关升降压集成LLC的DCDC隔离变换器,包括主功率电路(1)、控制电路(2)和辅助电源电路(3),其中控制电路(2)包括单片机模块(4),输入电压、两相输入电流、两相负电流和母线电压采样电路(5),输出电压隔离采样电路(6),以及隔离驱动电路(7);所述主功率电路(1)分别与辅助电源电路(3)、输入电压、两相输入电流、两相负电流和母线电压采样电路(5)、输出电压隔离采样电路(6)以及隔离驱动电路(7)连接,单片机模块(4)分别与辅助电源电路(3)、输入电压、两相输入电流、两相负电流和母线电压采样电路(5)、输出电压隔离采样电路(6),以及隔离驱动电路(7)连接,辅助电源电路(3)分别与功率电路(1)、单片机模块(4)、输入电压、两相输入电流、两相负电流和母线电压采样电路(5)、输出电压隔离采样电路(6)、以及隔离驱动电路(7)连接;
单片机模块(4)采集输入电压、两相输入电流、两相电感负电流、母线电压和输出电压,并进行处理后输出前桥臂和后桥臂的移相角信号,固定后桥臂占空比为0.5,通过控制前桥臂占空比即可达到稳压的目的,结合移相角信号再通过ePWM模块输出前后桥臂的占空比即可以控制两相电感电流的形状,进而可以实现所有开关管的软开关,最后通过采样两相输入电流并通过电流内环实现两相的均流。
2.根据权利要求1两相交错四开关升降压集成LLC的DCDC隔离变换器,其特征在于:所述的主功率电路(1)包括输入电压源Vin、第一主电感Lb_1、第二主电感Lb_2,开关管Q1~8,母线电容Cbus,谐振电容Cr,谐振电感Lr,变压器Tr,同步整流管QSR1~2,输出电容Co和负载RL;其中开关管Q1、Q2、Q3、Q4、第一主电感Lb_1和母线电容Cbus构成A相四开关Buck-Boost;开关管Q5、Q6、Q7、Q8、第二主电感Lb_2和母线电容Cbus构成B相四开关Buck-Boost;其后接谐振电容Cr,谐振电感Lr和变压器Tr,它们共同构成谐振腔,A相和B相四开关Buck-Boost的后桥臂、谐振腔、同步整流管QSR1~2以及输出电容Co构成全桥LLC谐振变换器,也即两相四开关Buck-Boost的后桥臂和全桥LLC的开关管是共用的,这有利于减小后桥臂四个开关管的导通损耗。
3.根据权利要求1两相交错四开关升降压集成LLC的DCDC隔离变换器,其特征在于:所述的输入电压、两相输入电流、两相负电流和母线电压采样电路(5)需要分别采样输入电压、两相输入电流、两相负电流和母线电压;对于输入电压采样采用同相运算放大器,其输入直接和输入电压源Vin的正端连接;对于输入电流采样在输入电流采样点有很高的共模电压,采用电流霍尔传感器完成两相输入电流的采样,其串在输入电压源Vin的正端;两相负电流利用采样电阻接运算放大器完成采样,采样电阻分别接在A相开关管Q2和B相开关管Q6的S端和地之间,运算放大器的两个输入分别接采样电阻两端构成差分采样;对于母线电压采样采用同相运算放大器,其输入直接和母线电压源Vbus的正端连接;它们的输出端口经过低通滤波后分别连接到单片机模块(4)的ADC模块。
4.根据权利要求1两相交错四开关升降压集成LLC的DCDC隔离变换器,其特征在于:所述的输出电压隔离采样电路(6)利用隔离差分运算放大器完成采样,该运算放大器的输入差分通道和输出电容Co两端连接,输出通道经低通滤波器后和单片机模块(4)的ADC模块连接,同时该隔离运算放大器隔离两侧的供电由辅助电源电路(3)提供,该隔离运算放大器可以采用AMC1311以及NSI1311等以及同类型芯片。
5.根据权利要求1两相交错四开关升降压集成LLC的DCDC隔离变换器,其特征在于:所述的单片机模块(4)包括ADC模块、移相角计算模块、数字PI模块、HRPWM模块,单片机模块(4)的供电和ADC参考源由辅助电源电路(3)提供;ADC模块采集经低通滤波器滤波后的输入电压、两相输入电流、两相电感负电流、母线电压以及输出电压,他们分别和其对应采样电路连接,输出电压和由辅助源电路(3)提供的参考源信号的差值经过数字PI模块得到内部电流环的参考信号,该电流参考信号和ADC采集的两相输入电流的差值分别经过另外的数字PI模块得到两相Buck-Boost的前桥臂的占空比信号送给HRPWM模块,同时ADC采样输入电压、两相输入电流、两相电感负电流、母线电压等信号并送给移相角计算模块得到移相角信号,HRPWM模块根据这个移相角信号生成各个开关管的驱动信号,并把这些驱动信号传递给隔离驱动电路(7)。
6.根据权利要求1两相交错四开关升降压集成LLC的DCDC隔离变换器,其特征在于:所述的隔离驱动电路(7)直接和单片机模块(4)的HRPWM模块和主功率电路(1)连接,该模块的供电由辅助电源电路(3)提供,所述的隔离驱动电路(7)采用英飞凌的2EDF7275K和纳芯微的NSI6602A隔离半桥驱动器,其也可以用其他芯片替代。
7.根据权利要求1两相交错四开关升降压集成LLC的DCDC隔离变换器,其特征在于:所述的辅助电源电路(3)包括原边和副边两套辅助电源策略,原边辅助电源首先采用型号为UCC28881D的Buck变换器作为第一级稳压器,其内部集成MOSFET,将输入电压直接降为约12V,该12V直接给到隔离驱动电路(7)为开关管供电,12V电压经过稳压器MP2317将电压降为4V,再经过线性稳压器将4V电压将为3.3V为单片机模块(4)和输入电压、两相输入电流、两相负电流和母线电压采样电路(5)供电,3.3V电压经过REF5030得到3.0V电压作为单片机模块的ADC参考源;副边辅助电源从输出电压取电,一方面采用MP2317将电压降为5V为输出电压隔离采样电路(6)供电,另一方面采用TPS71550将电压降为6V为隔离驱动电路(7)中的副边同步整流管供电,器件型号可被同类型的芯片代替,另外电压等级也可以根据实际情况而改变,比如多路并联开关管可降低导通损耗,而开关频率提高后各开关管和同步整流管的驱动损耗会随之增加,选取最优的辅助电源供电电压可降低损耗。
CN202111309007.8A 2021-11-05 2021-11-05 两相交错四开关升降压集成llc的dcdc隔离变换器 Active CN114024442B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111309007.8A CN114024442B (zh) 2021-11-05 2021-11-05 两相交错四开关升降压集成llc的dcdc隔离变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111309007.8A CN114024442B (zh) 2021-11-05 2021-11-05 两相交错四开关升降压集成llc的dcdc隔离变换器

Publications (2)

Publication Number Publication Date
CN114024442A true CN114024442A (zh) 2022-02-08
CN114024442B CN114024442B (zh) 2024-03-26

Family

ID=80061671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111309007.8A Active CN114024442B (zh) 2021-11-05 2021-11-05 两相交错四开关升降压集成llc的dcdc隔离变换器

Country Status (1)

Country Link
CN (1) CN114024442B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115622378A (zh) * 2022-12-06 2023-01-17 眉山博雅新材料股份有限公司 一种高频电源及应用于高频电源的直流稳压器件
CN116505757A (zh) * 2023-06-28 2023-07-28 湖北工业大学 一种交错并联llc谐振变换器及均流方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944396A (zh) * 2014-04-11 2014-07-23 燕山大学 一种llc谐振型三端口dc-dc变换器及其控制方法
CN103944397A (zh) * 2014-04-11 2014-07-23 燕山大学 Boost型隔离DC/DC变换器及其控制方法
CN110311546A (zh) * 2019-06-26 2019-10-08 南京理工大学 定占空比比值控制的降压升降压pfc变换器
CN111342664A (zh) * 2020-02-24 2020-06-26 华中科技大学 一种集成dc-dc变换器及其控制方法
CN111342665A (zh) * 2020-02-24 2020-06-26 华中科技大学 一种隔离型双向dc-dc变换器及其控制方法
CN112117900A (zh) * 2020-08-14 2020-12-22 南京理工大学 谐波互消并联控制的并联定开关频率crm和dcm升压pfc变换器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944396A (zh) * 2014-04-11 2014-07-23 燕山大学 一种llc谐振型三端口dc-dc变换器及其控制方法
CN103944397A (zh) * 2014-04-11 2014-07-23 燕山大学 Boost型隔离DC/DC变换器及其控制方法
CN110311546A (zh) * 2019-06-26 2019-10-08 南京理工大学 定占空比比值控制的降压升降压pfc变换器
CN111342664A (zh) * 2020-02-24 2020-06-26 华中科技大学 一种集成dc-dc变换器及其控制方法
CN111342665A (zh) * 2020-02-24 2020-06-26 华中科技大学 一种隔离型双向dc-dc变换器及其控制方法
CN112117900A (zh) * 2020-08-14 2020-12-22 南京理工大学 谐波互消并联控制的并联定开关频率crm和dcm升压pfc变换器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙孝峰;申彦峰;李午英;王宝诚;: "交错并联双向Buck/Boost集成LLC谐振型三端口直流变换器", 电工技术学报, no. 14, 25 July 2016 (2016-07-25) *
李鹏程;张纯江;阚志忠;贲冰;: "软开关高增益Buck-Boost集成CLLC型直流双向变换器", 中国电机工程学报, no. 11, 5 June 2018 (2018-06-05) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115622378A (zh) * 2022-12-06 2023-01-17 眉山博雅新材料股份有限公司 一种高频电源及应用于高频电源的直流稳压器件
CN116505757A (zh) * 2023-06-28 2023-07-28 湖北工业大学 一种交错并联llc谐振变换器及均流方法
CN116505757B (zh) * 2023-06-28 2023-09-22 湖北工业大学 一种交错并联llc谐振变换器及均流方法

Also Published As

Publication number Publication date
CN114024442B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
CN110932557B (zh) 一种基于倍压整流电路的高增益准谐振dc-dc变换器
CN105305829B (zh) 电流型单向dc‑dc变换器及对称双pwm加移相控制方法
CN110707931A (zh) 一种llc谐振变换器及控制方法
CN113595415A (zh) 一种ac/dc谐振变换器
CN112600435B (zh) 一种融合型多端口谐振式功率变换系统
CN111725993B (zh) 一种高效Sepic软开关变换器及其控制方法
CN114024442B (zh) 两相交错四开关升降压集成llc的dcdc隔离变换器
WO2019036201A1 (en) BIDIRECTIONAL LEVEL 1 ELECTRIC VEHICLE CHARGER WITH SINGLE-PHASE SINGLE FLOOR
CN105896986A (zh) 一种谐振变换器及其控制方法
CN110798073A (zh) 一种宽电压范围输出电流馈电变换器
CN106169873A (zh) 适用于高压或大电流输出的混合串并联全桥电路及其控制方法
CN110649814A (zh) 一种全桥三电平llc谐振变换器的混合控制方法
CN110224601B (zh) 一种基于三绕组耦合电感的高增益Boost变换器及其工作方法
CN109842299B (zh) 组合式直流变换系统及其控制方法
CN111431415B (zh) 一种并联输入串联输出的高升压隔离型直流变换器
CN114257097B (zh) 一种多模式切换的宽输出直流变换器及其切换控制
CN111342664A (zh) 一种集成dc-dc变换器及其控制方法
CN111464040A (zh) 一种适用于不同输入电网的dcdc架构及其控制方法
CN109698627B (zh) 一种基于开关电容器的全桥dc/dc变换器及其调制策略
CN111064370A (zh) 一种llc和dab混合的双向dc-dc变流器
CN109412420B (zh) 双向隔离dc/dc电路及其采用的控制方法
Fangyuan et al. High efficiency bidirectional DC-DC converter with wide gain range for photovoltaic energy storage system utilization
CN107171563A (zh) 紧调整输出的组合变流器
CN114825936A (zh) 一种基于耦合电感的两相交错飞跨电容双向直流变换器
CN111525798A (zh) 一种三绕组高变比零纹波双向dc/dc变换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant