CN114012096A - 一种各向异性Sm-Fe-N磁粉的制备方法 - Google Patents

一种各向异性Sm-Fe-N磁粉的制备方法 Download PDF

Info

Publication number
CN114012096A
CN114012096A CN202111309611.0A CN202111309611A CN114012096A CN 114012096 A CN114012096 A CN 114012096A CN 202111309611 A CN202111309611 A CN 202111309611A CN 114012096 A CN114012096 A CN 114012096A
Authority
CN
China
Prior art keywords
powder
nitriding
hydrogen
temperature
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111309611.0A
Other languages
English (en)
Inventor
岳明
孟子翔
刘卫强
张东涛
路清梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202111309611.0A priority Critical patent/CN114012096A/zh
Publication of CN114012096A publication Critical patent/CN114012096A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种各向异性Sm‑Fe‑N磁粉的制备方法,属于磁性材料领域。工艺流程为:熔炼→速凝→氢破碎→脱氢→旋转氮化→低温细磨→各向异性Sm‑Fe‑N磁粉。采用速凝工艺获得富Sm相呈网状分布在晶界处,晶粒均匀的速凝片;通过采用氮化前氢破碎(HD)引起主相合金体积膨胀,使粒子中产生微裂纹及孔洞,有助于氮化和再研磨过程,为后续氮化打开通道,活化粉末表面;在高纯N2或NH3和H2混合气氛旋转料筒中进行渗氮,料筒内沿轴向方向设有一带网孔或网格的挡板,对筒内粉末原料起搅拌作用,使氮的扩散速度增加,提高氮含量,进而提高矫顽力;氮化后均匀化1~2h,使氮原子扩散更加充分;在液氮中球磨,防止出现氮化物分解现象。

Description

一种各向异性Sm-Fe-N磁粉的制备方法
技术领域
本专利发明了一种各向异性Sm-Fe-N磁粉的制备方法,属于磁性材料领域。
背景技术
1983年住友特殊金属的佐川真人(Masato Sagawa)发明了烧结Nd-Fe-B永磁体,因其具有较高的磁能积、高矫顽力、原材料价格低廉且制备方法简单而得到广泛应用,是目前使用最广泛的稀土永磁。同期,美国发明了使用快淬方法制备Nd-Fe-B磁粉。使用快淬磁粉制成的粘接磁体因其具有较高尺寸精度、方便制备异性磁体也得到市场的广泛认可。稀土永磁成为现代社会中重要的基础材料,在仪器、仪表、汽车、计算机、家用电器、医疗保健以及航空航天领域广泛应用。
1990年爱尔兰大学Coey教授研究组和北京大学杨应昌研究组基于在稀土-过度金属化合物中氮的间隙原子效应,发现Sm2Fe17Nx(简称钐铁氮)永磁材料具有优异的内禀磁性能,可与钕铁硼相媲美,被誉为继Nd-Fe-B之后的新一代永磁材料。由于Sm2Fe17Nx在高温下会分解,故不能烧结,只能做成粘接磁体。Sm2Fe17Nx稀土永磁材料居里温度为470℃(Nd-Fe-B为312℃)、各向异性场为14T(是Nd-Fe-B的两倍),均比Nd-Fe-B材料高,从实用化的角度看,Sm2Fe17Nx的热稳定性、抗氧化性和耐蚀性都优于Nd2Fe14B。它的另一突出优点是可以制成各向异性粘接磁粉和粘接磁体。
CN1254338C公开了一种还原扩散法制备Sm-Fe-N永磁合金粉末的方法,该方法反应温度低,成分易于控制,但在制备过程中粉末容易发生氧化,导致矫顽力不高;CN1479326A公开一种机械合金化法制备钐铁氮稀土永磁粉末的方法,该方法改进了渗氮工艺,制备出了高含氮量的SmFeN永磁材料,但该方法渗氮周期长,渗氮效率低;CN102737801A公开一种采用快淬法制备Sm-Fe-N各向异性磁粉的方法,该方法通过改善熔炼温度及浇铸速度,获得主相呈细小柱状晶排列的速凝薄带Sm2Fe17,但该方法仍然存在氮化效率较低,氮化效果较差,并且在球磨过程中也容易导致SmFeN粉末的分解,最终导致SmFeN粉末难以实现产业化生产。
为了进一步简化制备工艺、提高各向异性氮化物永磁粉的矫顽力,本文采用氮化前氢破碎(HD)方式来引起主相合金体积膨胀,有助于氮化和再研磨过程,为后续氮化打开通道,活化粉末表面;在高纯N2或NH3和H2混合气氛旋转料筒中进行渗氮,料筒内沿轴向方向设有一带网孔或网格的挡板,将料筒内分成对称的两半,对筒内粉末原料起搅拌作用,使氮的扩散速度增加,提高氮含量;进一步采用氮化后均匀化1~2h,使氮原子扩散更加充分;最后在液氮气氛中进行球磨,保证球磨过程处于低温状态,防止出现氮化物分解现象。采用该方法制备的磁粉性价比高,有望实现产业化中大批量生产。
发明内容
本发明的目的在于通过采用速凝工艺获得富Sm相呈网状分布在晶界处,晶粒均匀的速凝片,利用氮化前氢破碎(HD)方式来引起主相合金体积膨胀,使粒子中产生微裂纹及孔洞,为后续氮化打开通道,活化粉末表面,在高纯N2或NH3和H2混合气氛旋转料筒中进行渗氮,其中料筒内沿轴向方向设有一带网孔或网格的挡板,将料筒内分成对称的两半,对筒内粉末原料起搅拌作用,使氮的扩散速度增加,提高氮含量,进而提高矫顽力,随后采用氮化后均匀化1~2h,使氮原子扩散更加充分,最后在液氮气氛中进行球磨,保证球磨过程处于低温状态,防止出现氮化物分解现象。
本发明制备各向异性Sm-Fe-N合金粉末的工艺流程为:熔炼→速凝→氢破碎→脱氢→旋转氮化→低温细磨→各向异性Sm-Fe-N磁粉→将磁粉进行磁性能测试。具体制备步骤如下:
(1)熔炼:应用中频感应速凝炉熔炼钐铁合金,融化的合金流到旋转的铜辊上快速凝固成薄片,通过控制铜辊的转速1.8~2.2m/s、熔体温度1510~1580℃,获得富Sm相呈网状分布在晶界处、晶粒分布均匀的速凝片,速凝片厚度0.2~0.4mm;
(2)氢破碎(HD):对熔炼合格的速凝片采用氢破碎(HD),将速凝片放入高压反应釜中,密封,速凝片在H2气氛中进行吸氢,吸氢温度为150~280℃,吸氢压力为0.1~8MPa,吸氢时间1~12h;
(3)脱氢:将氢破碎后的粉末放置于HDDR炉中进行脱氢,脱氢温度350~450℃,脱氢时间为1~5h;
(4)氮化处理:将脱氢后的Sm-Fe合金粉过400目筛,迅速放在高纯N2或NH3和H2混合气氛旋转料筒中进行渗氮,旋转料筒内沿轴向方向直径面设有一带网孔或网格的挡板,将旋转料筒内分成对称的两半,旋转料筒转动时对筒内粉末原料起搅拌作用,氮化气体压力0.08~0.15MPa,氮化温度475~525℃,氮化时间3~7h,氮化完成后抽出N2或NH3和H2混合气体,充入氩气,均匀化1~2h;
(5)低温细磨:以正庚烷为球磨介质,在液氮气氛中进行球磨,球料比为15:1~30:1,球磨时间1~16h;
(6)干燥和取样:将球磨好的粉末放入常温干燥箱中进行干燥,获得各向异性Sm-Fe-N磁粉。在2T磁场下取向固化制备测量样品,利用振动样品磁强计(VSM)测量磁粉磁性能。
步骤(1)中钐铁合金成分采用主相的名义成分Sm2.34Fe17,增加17%Sm的烧损。
本发明与现有技术相比具有以下有益效果:
1.本发明采用设备为常规的熔炼、破碎、氮化设备,工艺流程简单,实施方便;
2.本发明采用速凝技术,可以获得组织均匀、富Sm相呈网状分布在晶界处的Sm-Fe速凝片(厚度300μm),不需要经过均匀化退火处理;
2.本发明采用高压氢破碎工艺制备的Sm-Fe-N磁性粉末可以显著提高氮化率。在吸氢破碎过程中,氢原子可以进入Sm-Fe合金的9e八面体晶位,引起主相合金体积膨胀,有助于氮化和再研磨过程,使粒子中产生微裂纹及孔洞,为后续氮化打开通道,活化粉末表面,使氮的扩散速度增加,提高氮含量,进而提高矫顽力,同时还可以抑制α-Fe相的产生;
3.本发明采用旋转搅拌氮化的方法制备的Sm-Fe-N磁性粉末,不仅在氮化过程中可以更有效的增大与氮原子的接触面积,使氮化更加充分,进而具有较高的磁性能,而且还可以实现大批量生产提高生产效率,并且采用氮化后均匀化1~2h,使氮原子扩散更加充分;
4、本发明与传统的制粉工艺相比,可以极大地缩短操作时间,尤其经过多次吸氢一脱氢循环,可以在不太高的压力下把Sm2Fe17合金破碎成符合氮化工艺要求的磁粉粒度,从而直接取代了传统的破碎磨粉工艺,防止氧化,提高了出粉率,降低了生产成本;
5、本发明采用液氮气氛中进行球磨,保证球磨过程处于低温状态,防止出现氮化物分解现象,有利于获得高矫顽力。
附图说明
图1.图中为速凝片截面SEM图,图中浅灰色相主要是Sm2Fe17相,晶间分布的白色相为富Sm相。
图2.炉管及内部结构示意图。
图3.速凝片氢爆后的SEM图,从图中可见,粒子中产生大量微裂纹及孔洞。
具体实施方式
下面结合实施例和对比例对本发明作进一步说明,但本发明并不限于以下实施例。
实施例1:
熔炼选用主相的名义成分Sm2.34Fe17,增加17%Sm的烧损,将配好的原料放入到中频感应速凝炉中进行熔炼,将炉内抽成高真空,防止熔炼时原料氧化,熔体温度1510~1580℃,等全部融化结束后,控制铜辊的转速2.0m/s进行浇铸,得速凝片;
对合格速凝片采用氢破碎(HD),将速凝片放入高压反应釜中,在H2气氛中进行吸氢,吸氢温度为200℃,吸氢压力为0.12MPa,吸氢时间2h,反应结束后,随后将氢破碎(HD)处理后的Sm-Fe合金粉继续进行脱氢处理,调整脱氢温度为400℃,保温时间为4h;
取出粉末样品,立即将粉末进行氮化处理,保持氮化前新鲜断面,在高纯N2的气氛中采用旋转法进行渗氮,调整炉管转速,将温度升至500℃后,通入0.1MPa高纯N2,保温5h后,抽出N2,通入高纯Ar,保温1.5h,冷却,取出氮化粉末;
以正庚烷为球磨介质,球料比为15:1,在液氮球磨机上进行球磨,球磨时间12h;将球磨好的粉末放入常温干燥箱中进行干燥,获得各向异性Sm-Fe-N磁粉。对粉末采用小坩埚进行蜡封,在2T磁场下取向固化制备测量样品,利用振动样品磁强计(VSM)测量磁粉磁性能。获得粉末氮含量为:2.95%;磁性能为:Hcj:11.02kOe;Br:11.28kG。
实施例2:
熔炼选用主相的名义成分Sm2.34Fe17,增加17%Sm的烧损,将配好的原料放入到中频感应速凝炉中进行熔炼,将炉内抽成高真空,防止熔炼时原料氧化,熔体温度1510~1580℃,等全部融化结束后,控制铜辊的转速2.0m/s进行浇铸,得速凝片;
对合格速凝片采用氢破碎(HD),将速凝片放入高压反应釜中,在H2气氛中进行吸氢,吸氢温度为200℃,吸氢压力为5MPa,吸氢时间2h,反应结束后,随后将氢破碎(HD)处理后的Sm-Fe合金粉继续进行脱氢处理,调整脱氢温度为400℃,保温时间为4h;
取出粉末样品,立即将粉末进行氮化处理,保持氮化前新鲜断面,在高纯N2的气氛中采用旋转法进行渗氮,调整炉管转速,将温度升至500℃后,通入0.1MPa高纯N2,保温5h后,抽出N2,通入高纯Ar,保温1.5h,冷却,取出氮化粉末;
以正庚烷为球磨介质,球料比为15:1,在液氮球磨机上进行球磨,球磨时间12h;将球磨好的粉末放入常温干燥箱中进行干燥,获得各向异性Sm-Fe-N磁粉。对粉末采用小坩埚进行蜡封,在2T磁场下取向固化制备测量样品,利用振动样品磁强计(VSM)测量磁粉磁性能。获得粉末氮含量为:3.15%;磁性能为:Hcj:12.57kOe;Br:12.80kG。
实施例3:
熔炼选用主相的名义成分Sm2.34Fe17,增加17%Sm的烧损,将配好的原料放入到中频感应速凝炉中进行熔炼,将炉内抽成高真空,防止熔炼时原料氧化,熔体温度1510~1580℃,等全部融化结束后,控制铜辊的转速2.0m/s进行浇铸,得速凝片;
对合格速凝片采用氢破碎(HD),将速凝片放入高压反应釜中,在H2气氛中进行吸氢,吸氢温度为200℃,吸氢压力为8MPa,吸氢时间2h,反应结束后,随后将氢破碎(HD)处理后的Sm-Fe合金粉继续进行脱氢处理,调整脱氢温度为400℃,保温时间为4h;
取出粉末样品,立即将粉末进行氮化处理,保持氮化前新鲜断面,在高纯N2的气氛中采用旋转法进行渗氮,调整炉管转速,将温度升至500℃后,通入0.1MPa高纯N2,保温5h后,抽出N2,通入高纯Ar,保温1.5h,冷却,取出氮化粉末;
以正庚烷为球磨介质,球料比为15:1,在液氮球磨机上进行球磨,球磨时间12h;将球磨好的粉末放入常温干燥箱中进行干燥,获得各向异性Sm-Fe-N磁粉。对粉末采用小坩埚进行蜡封,在2T磁场下取向固化制备测量样品,利用振动样品磁强计(VSM)测量磁粉磁性能。获得粉末氮含量为:3.05%;磁性能为:Hcj:11.65kOe;Br:11.91kG。
实施例4:
熔炼选用主相的名义成分Sm2.34Fe17,增加17%Sm的烧损,将配好的原料放入到中频感应速凝炉中进行熔炼,将炉内抽成高真空,防止熔炼时原料氧化,熔体温度1510~1580℃,等全部融化结束后,控制铜辊的转速2.0m/s进行浇铸,得速凝片;
对合格速凝片采用氢破碎(HD),将速凝片放入高压反应釜中,在H2气氛中进行吸氢,吸氢温度为150℃,吸氢压力为5MPa,吸氢时间2h,反应结束后,随后将氢破碎(HD)处理后的Sm-Fe合金粉继续进行脱氢处理,调整脱氢温度为400℃,保温时间为4h;
取出粉末样品,立即将粉末进行氮化处理,保持氮化前新鲜断面,在高纯N2的气氛中采用旋转法进行渗氮,调整炉管转速,将温度升至500℃后,通入0.1MPa高纯N2,保温5h后,抽出N2,通入高纯Ar,保温1.5h,冷却,取出氮化粉末;
以正庚烷为球磨介质,球料比为15:1,在液氮球磨机上进行球磨,球磨时间12h;将球磨好的粉末放入常温干燥箱中进行干燥,获得各向异性Sm-Fe-N磁粉。对粉末采用小坩埚进行蜡封,在2T磁场下取向固化制备测量样品,利用振动样品磁强计(VSM)测量磁粉磁性能。获得粉末氮含量为:3.05%;磁性能为:Hcj:12.10kOe;Br:12.27kG。
实施例5:
熔炼选用主相的名义成分Sm2.34Fe17,增加17%Sm的烧损,将配好的原料放入到中频感应速凝炉中进行熔炼,将炉内抽成高真空,防止熔炼时原料氧化,熔体温度1510~1580℃,等全部融化结束后,控制铜辊的转速2.0m/s进行浇铸,得速凝片;
对合格速凝片采用氢破碎(HD),将速凝片放入高压反应釜中,在H2气氛中进行吸氢,吸氢温度为280℃,吸氢压力为5MPa,吸氢时间2h,反应结束后,随后将氢破碎(HD)处理后的Sm-Fe合金粉继续进行脱氢处理,调整脱氢温度为400℃,保温时间为4h;
取出粉末样品,立即将粉末进行氮化处理,保持氮化前新鲜断面,在高纯N2的气氛中采用旋转法进行渗氮,调整炉管转速,将温度升至500℃后,通入0.1MPa高纯N2,保温5h后,抽出N2,通入高纯Ar,保温1.5h,冷却,取出氮化粉末;
以正庚烷为球磨介质,球料比为15:1,在液氮球磨机上进行球磨,球磨时间12h;将球磨好的粉末放入常温干燥箱中进行干燥,获得各向异性Sm-Fe-N磁粉。对粉末采用小坩埚进行蜡封,在2T磁场下取向固化制备测量样品,利用振动样品磁强计(VSM)测量磁粉磁性能。获得粉末氮含量为:3.12%;磁性能为:Hcj:12.36kOe;Br:12.68kG。
对比例1:
熔炼选用主相的名义成分Sm2.34Fe17,增加17%Sm的烧损,将配好的原料放入到中频感应速凝炉中进行熔炼,将炉内抽成高真空,防止熔炼时原料氧化,熔体温度1510~1580℃,等全部融化结束后,控制铜辊的转速2.0m/s进行浇铸,得速凝片;
对合格速凝片采用盘磨破碎,取出粉末样品,立即将粉末进行氮化处理,保持氮化前新鲜断面,在高纯N2的气氛中采用旋转法进行渗氮,调整炉管转速,将温度升至500℃后,通入0.1MPa高纯N2,保温5h后,抽出N2,通入高纯Ar,保温1.5h,冷却,取出氮化粉末;
以正庚烷为球磨介质,球料比为15:1,在液氮球磨机上进行球磨,球磨时间12h;将球磨好的粉末放入常温干燥箱中进行干燥,获得各向异性Sm-Fe-N磁粉。对粉末采用小坩埚进行蜡封,在2T磁场下取向固化制备测量样品,利用振动样品磁强计(VSM)测量磁粉磁性能。获得粉末氮含量为:2.56%;磁性能为:Hcj:9.12kOe;Br:9.85kG。
对比例2:
熔炼选用主相的名义成分Sm2.34Fe17,增加17%Sm的烧损,将配好的原料放入到中频感应速凝炉中进行熔炼,将炉内抽成高真空,防止熔炼时原料氧化,熔体温度1510~1580℃,等全部融化结束后,控制铜辊的转速2.0m/s进行浇铸,得速凝片;
对合格速凝片采用氢破碎(HD),将速凝片放入高压反应釜中,在H2气氛中进行吸氢,吸氢温度为200℃,吸氢压力为5MPa,吸氢时间2h,反应结束后,随后将氢破碎(HD)处理后的Sm-Fe合金粉继续进行脱氢处理,调整脱氢温度为400℃,保温时间为4h;
取出粉末样品,立即将粉末进行氮化处理,保持氮化前新鲜断面,在高纯N2的气氛中采用传统不旋转的方法进行渗氮,将温度升至500℃后,通入0.1MPa高纯N2,保温5h后,抽出N2,通入高纯Ar,保温1.5h,冷却,取出氮化粉末;
以正庚烷为球磨介质,球料比为15:1,在液氮球磨机上进行球磨,球磨时间12h;将球磨好的粉末放入常温干燥箱中进行干燥,获得各向异性Sm-Fe-N磁粉。对粉末采用小坩埚进行蜡封,在2T磁场下取向固化制备测量样品,利用振动样品磁强计(VSM)测量磁粉磁性能。获得粉末氮含量为:2.71%;磁性能为:Hcj:9.98kOe;Br:10.65kG。
对比例3:
熔炼选用主相的名义成分Sm2.34Fe17,增加17%Sm的烧损,将配好的原料放入到中频感应速凝炉中进行熔炼,将炉内抽成高真空,防止熔炼时原料氧化,熔体温度1510~1580℃,等全部融化结束后,控制铜辊的转速2.0m/s进行浇铸,得速凝片;
对合格速凝片采用氢破碎(HD),将速凝片放入高压反应釜中,在H2气氛中进行吸氢,吸氢温度为200℃,吸氢压力为5MPa,吸氢时间2h,反应结束后,随后将氢破碎(HD)处理后的Sm-Fe合金粉继续进行脱氢处理,调整脱氢温度为400℃,保温时间为4h;
取出粉末样品,立即将粉末进行氮化处理,保持氮化前新鲜断面,在高纯N2的气氛中采用旋转法进行渗氮,调整炉管转速,将温度升至500℃后,通入0.1MPa高纯N2,保温5h后,抽出N2,通入高纯Ar,保温1.5h,冷却,取出氮化粉末;
以正庚烷为球磨介质,球料比为15:1,在滚动球磨机上进行球磨,球磨时间12h;将球磨好的粉末放入常温干燥箱中进行干燥,获得各向异性Sm-Fe-N磁粉。对粉末采用小坩埚进行蜡封,在2T磁场下取向固化制备测量样品,利用振动样品磁强计(VSM)测量磁粉磁性能。获得粉末氮含量为:2.79%;磁性能为:Hcj:10.08kOe;Br:10.65kG。
表1各实施例和对比例中氮含量、剩磁及矫顽力
Figure BDA0003341459000000091

Claims (4)

1.一种Sm-Fe-N各向异性磁粉的制备方法,其特征在于:工艺流程为:熔炼→速凝→氢破碎→脱氢→旋转氮化→低温细磨→各向异性Sm-Fe-N磁粉,具体制备步骤如下:
(1)熔炼:应用中频感应速凝炉熔炼钐铁合金,融化的合金流到旋转的铜辊上快速凝固成薄片,通过控制铜辊的转速1.8~2.2m/s、熔体温度1510~1580℃,获得富Sm相呈网状分布在晶界处、晶粒分布均匀的速凝片,速凝片厚度0.2~0.4mm;
(2)氢破碎(HD):对熔炼合格的速凝片采用氢破碎(HD),将速凝片放入高压反应釜中,密封,速凝片在H2气氛中进行吸氢,吸氢温度为150~280℃,吸氢压力为0.1~8MPa,吸氢时间1~12h;
(3)脱氢:将氢破碎后的粉末放置于HDDR炉中进行脱氢,脱氢温度350~450℃,脱氢时间为1~5h;
(4)氮化处理:将脱氢后的Sm-Fe合金粉过400目筛,迅速放在高纯N2或NH3和H2混合气氛旋转料筒中进行渗氮,氮化气体压力0.08~0.15,氮化温度475~525℃,氮化时间3~7h,氮化完成后抽出N2或NH3和H2混合气体,充入氩气,均匀化1~2h;
(5)低温细磨:以正庚烷为球磨介质,在液氮气氛中进行球磨,球料比为15:1~30:1,球磨时间1~16h;
(6)干燥和取样:将球磨好的粉末放入常温干燥箱中进行干燥,获得各向异性Sm-Fe-N
磁粉。
2.根据权利要求1所述的一种Sm-Fe-N各向异性磁粉的制备方法,其特征在于:步骤(1)中钐铁合金成分采用主相的名义成分Sm2.34Fe17,增加17%Sm的烧损。
3.根据权利要求1所述的一种Sm-Fe-N各向异性磁粉的制备方法,其特征在于旋转料筒内沿轴向方向直径面设有一带网孔或网格的挡板,将旋转料筒内分成对称的两半,旋转料筒转动时对筒内粉末原料起搅拌作用。
4.根据权利要求1或2所述的方法制备得到的一种Sm-Fe-N各向异性磁粉。
CN202111309611.0A 2021-11-06 2021-11-06 一种各向异性Sm-Fe-N磁粉的制备方法 Pending CN114012096A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111309611.0A CN114012096A (zh) 2021-11-06 2021-11-06 一种各向异性Sm-Fe-N磁粉的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111309611.0A CN114012096A (zh) 2021-11-06 2021-11-06 一种各向异性Sm-Fe-N磁粉的制备方法

Publications (1)

Publication Number Publication Date
CN114012096A true CN114012096A (zh) 2022-02-08

Family

ID=80062115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111309611.0A Pending CN114012096A (zh) 2021-11-06 2021-11-06 一种各向异性Sm-Fe-N磁粉的制备方法

Country Status (1)

Country Link
CN (1) CN114012096A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288339A (en) * 1990-07-25 1994-02-22 Siemens Aktiengesellschaft Process for the production of magnetic material based on the Sm-Fe-N system of elements
US5609695A (en) * 1993-12-21 1997-03-11 Matsushita Electric Industrial Co., Ltd. Method for producing alloy powder of the R2 T17 system, a method for producing magnetic powder of the R2 T17 Nx system, and a high pressure heat-treatment apparatus
JP2007327101A (ja) * 2006-06-08 2007-12-20 Sumitomo Metal Mining Co Ltd 希土類−鉄−窒素系磁石微粉末の製造方法
CN102737801A (zh) * 2012-07-11 2012-10-17 北京科技大学 一种Sm-Fe-N各向异性磁粉的制备方法
CN108292547A (zh) * 2015-11-24 2018-07-17 住友电气工业株式会社 稀土磁体及其制造方法
JP2019019349A (ja) * 2017-07-12 2019-02-07 住友電気工業株式会社 磁性粉末の製造方法、及び磁性粉末

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288339A (en) * 1990-07-25 1994-02-22 Siemens Aktiengesellschaft Process for the production of magnetic material based on the Sm-Fe-N system of elements
US5609695A (en) * 1993-12-21 1997-03-11 Matsushita Electric Industrial Co., Ltd. Method for producing alloy powder of the R2 T17 system, a method for producing magnetic powder of the R2 T17 Nx system, and a high pressure heat-treatment apparatus
JP2007327101A (ja) * 2006-06-08 2007-12-20 Sumitomo Metal Mining Co Ltd 希土類−鉄−窒素系磁石微粉末の製造方法
CN102737801A (zh) * 2012-07-11 2012-10-17 北京科技大学 一种Sm-Fe-N各向异性磁粉的制备方法
CN108292547A (zh) * 2015-11-24 2018-07-17 住友电气工业株式会社 稀土磁体及其制造方法
JP2019019349A (ja) * 2017-07-12 2019-02-07 住友電気工業株式会社 磁性粉末の製造方法、及び磁性粉末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨金波;韩景智;刘顺荃;王常生;杜红林;杨应昌;: "各向异性粘结稀土永磁材料研究", 中国材料进展, vol. 34, no. 11, pages 819 - 827 *

Similar Documents

Publication Publication Date Title
TWI755152B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
CN106960712B (zh) 一种亚稳态钐铁合金氮化晶化的方法
CN113593799B (zh) 一种细晶、高矫顽力烧结钕铁硼磁体及其制备方法
CN103928204A (zh) 一种低稀土含量的各向异性纳米晶NdFeB致密磁体及其制备方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
CN109859922B (zh) 一种低重稀土含量的R-Fe-B类磁体的制备方法
CN111378907A (zh) 一种提高钕铁硼永磁材料矫顽力的辅助合金及应用方法
CN111312461A (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
CN111210960A (zh) 一种高方形度高磁能积钐钴永磁材料及制备方法
CN112216460A (zh) 纳米晶钕铁硼磁体及其制备方法
CN101719405A (zh) 低能耗耐腐蚀铝合金与钕铁硼型稀土永磁的双相复合材料
CN113838622A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN112582123B (zh) 低温度系数高使用温度烧结钐钴磁体的制备方法
CN112103022A (zh) 一种ThMn12基稀土永磁体及其制备方法
CN114012096A (zh) 一种各向异性Sm-Fe-N磁粉的制备方法
CN108806910A (zh) 提高钕铁硼磁性材料矫顽力的方法
CN113205938B (zh) 一种低成本高性能的烧结钕铁硼永磁材料及其制备工艺
CN113517104B (zh) 主辅相合金钐钴磁体材料、烧结体用材料、其制备方法和应用
CN108777202B (zh) 一种提高Zr元素固溶度的钐钴磁体及方法
CN113539664B (zh) 一种Sm基各向异性复合磁体的制备方法
CN112863798A (zh) 一种钐铁氮磁粉及其制备方法
JP7146029B1 (ja) ネオジム鉄ホウ素永久磁石及びその製造方法と使用
CN110957094B (zh) 一种钕铁硼磁铁的烧结方法
Sun et al. The synthesis of Nd‐Fe‐Co‐B by reduction‐diffusion and its magnetic properties
CN113205937A (zh) 一种无重稀土高性能烧结钕铁硼永磁材料及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination