CN114010799B - 一种光热协同化疗的靶向可降解纳米药物载体及其制备方法 - Google Patents

一种光热协同化疗的靶向可降解纳米药物载体及其制备方法 Download PDF

Info

Publication number
CN114010799B
CN114010799B CN202111310152.8A CN202111310152A CN114010799B CN 114010799 B CN114010799 B CN 114010799B CN 202111310152 A CN202111310152 A CN 202111310152A CN 114010799 B CN114010799 B CN 114010799B
Authority
CN
China
Prior art keywords
polydopamine
mesoporous silica
doped mesoporous
photo
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111310152.8A
Other languages
English (en)
Other versions
CN114010799A (zh
Inventor
杨盛超
杨怡平
崔林
刘志勇
吴建宁
孟桂花
李文娟
林富丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shihezi University
Original Assignee
Shihezi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shihezi University filed Critical Shihezi University
Priority to CN202111310152.8A priority Critical patent/CN114010799B/zh
Publication of CN114010799A publication Critical patent/CN114010799A/zh
Priority to AU2022211878A priority patent/AU2022211878B9/en
Application granted granted Critical
Publication of CN114010799B publication Critical patent/CN114010799B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明为一种光热协同化疗的靶向可降解纳米药物载体及其制备方法。一种光热协同化疗的靶向可降解纳米药物载体的制备方法,包括:(1)制备聚多巴胺掺杂的介孔二氧化硅;(2)对所述的聚多巴胺掺杂的介孔二氧化硅进行氨基化修饰;(3)负载抗癌药物;(4)依次采用活化后的羧甲基壳聚糖、叶酸进行修饰;(5)将步骤(4)的产物分散到PBS溶液中,过滤,得所述的光热协同化疗的靶向可降解纳米药物载体。本发明所述的一种光热协同化疗的靶向可降解纳米药物载体及其制备方法,该药物载体具有高的生物相容性、可降解以及靶向特性,是提高肿瘤治疗效果的有效途径。

Description

一种光热协同化疗的靶向可降解纳米药物载体及其制备方法
技术领域
本发明属于纳米药物载体技术领域,具体涉及一种光热协同化疗的靶向可降解纳米药物载体及其制备方法。
背景技术
国际癌症研究机构2020年12月15日,发布了2020年全球癌症负担报告。摘录全球和我国宫颈癌相关数据,2020年全球新增癌症病例数1929万,其中457万例在中国,占全球新发病例数的23.7%。寻找更加有效的癌症治疗方法已经成为需要攻坚的主要课题。目前,化疗和放疗是现阶段的两种主流治疗方式,但其因低效率和全身毒性等副作用限制了它们的进一步发展。
而对纳米药物载体的研究有望解决低效率和全身毒性的问题,它具有可设计的物理、化学和生物学性能,在一定程度上改善药物在体内组织器官中的分布,有效提高药物利用度,从而提高化疗药物生物安全性。
纳米肿瘤治疗通过化学方法合成结构稳定的纳米材料作为药物载体,纳米级别的载体通过EPR效应能够有效的富集在肿瘤血管附近,并且使得药物特异性释放在肿瘤所处的微环境中,从而使得药物对人体的副作用降低,也可实现一定的对肿瘤细胞抑制的目的。但是,硅基纳米载体药物进入体内后发挥作用以及未发挥作用的纳米粒子,会蓄积在人体的组织器官中,虽然药物不得已释放,但其长期续集会引发炎症等各种生理反应。使得生物安全性得不到解决。因此,对硅基载体进行改进,使其能够解决降解问题是很重要的,而载体的表面修饰是体内循环和提升治疗效率的关键。使其自身在人体内有效作用的之后,能够在体内自身的微环境中得到有效的降解和清除,从而可降解的纳米药物载体得到越来越多的关注,成为近年来研究的热点。
大量研究表明,肿瘤细胞的外表面pH显弱酸性,可以利用这种微环境的特性接入靶向物质,比如带有-NH-的生物素、叶酸等物质。此类物质对pH的特殊响应性,其对肿瘤能够进行特异性的识别,从而达到精准、主动靶向的目的。
介孔二氧化硅具有较高的孔隙率、高比表面积、热稳定性,载药量大、结构稳定、生物相容性好、无毒副作用的特点,但其在体内循环时间较短,且容易蓄积于器官,单一介孔二氧化硅负载后进入人体,不能对病症有效治疗。因此需要从其降解、循环、靶向等方面综合考虑进行纳米载体的设计。
有鉴于此,本发明提出一种新的光热协同化疗的靶向可降解纳米药物载体及其制备方法,满足可降解、靶向、化疗和光热治疗协同的要求,提升效率,减少副作用,这对肿瘤治疗具有重要意义。
发明内容
本发明的目的在于提供一种光热协同化疗的靶向可降解纳米药物载体的制备方法,利用结构化设计,获得一种光热/化疗协同治疗肿瘤的纳米药物载体,弥补了传统药物利用率低,毒副作用强的缺陷,解决了硅基材料长期不可降解的问题,通过生物质羧甲基壳聚糖实现了纳米载体的稳定性和可降解性,达到高效治疗癌症的目的。
为了实现上述目的,所采用的技术方案为:
一种光热协同化疗的靶向可降解纳米药物载体的制备方法,包括以下步骤:
(1)制备聚多巴胺掺杂的介孔二氧化硅;
(2)对所述的聚多巴胺掺杂的介孔二氧化硅进行氨基化修饰,得氨基修饰后的聚多巴胺掺杂的介孔二氧化硅;
(3)负载抗癌药物:将所述的氨基修饰后的聚多巴胺掺杂的介孔二氧化硅加入到抗癌药物水溶液中,搅拌24h后,得负载抗癌药物的聚多巴胺掺杂的介孔二氧化硅;
(4)对所述的负载抗癌药物的聚多巴胺掺杂的介孔二氧化硅,依次采用活化后的羧甲基壳聚糖、叶酸进行修饰,得叶酸修饰的羧甲基壳聚糖壳层的聚多巴胺掺杂的介孔二氧化硅;
(5)将所述的叶酸修饰的羧甲基壳聚糖壳层的聚多巴胺掺杂的介孔二氧化硅分散到PBS溶液中,过滤,得所述的光热协同化疗的靶向可降解纳米药物载体。
进一步地,所述的步骤(1)中,制备聚多巴胺掺杂的介孔二氧化硅的方法为:
将CTAC、超纯水、三乙醇胺混合均匀后,加入盐酸多巴胺并混合均匀;再滴加20v/v%的TEOS/环己烷溶液,反应12h后,依次离心洗涤、洗去CTAC、真空干燥,得到聚多巴胺掺杂的介孔二氧化硅。
再进一步地,所述的步骤(1)中,洗去CTAC的方法为:采用6g/L的硝酸铵乙醇溶液,在60℃搅拌12h后,离心洗涤。
再进一步地,所述的步骤(1)中,离心洗涤前,混合及反应过程的温度为60±2℃。
再进一步地,所述的步骤(1)中,盐酸多巴胺分次添加。
再进一步地,所述的步骤(1)中,真空干燥温度不高于40℃。
进一步地,所述的步骤(2)中,氨基化修饰过程中温度为60±2℃。
进一步地,所述的步骤(3)中,抗癌药物为抗癌药物DOX;
所述的步骤(4)中,羧甲基壳聚糖和叶酸用EDC和NHS进行活化,分别活化4h和16h。
再进一步地,所述的步骤(3)中,氨基修饰后的聚多巴胺掺杂的介孔二氧化硅、抗癌药物和水的质量比为1:1.5:1.5;
所述的步骤(4)中,羧甲基壳聚糖和负载抗癌药物的聚多巴胺掺杂的介孔二氧化硅的质量比为1:1
活化后的叶酸和羧甲基壳聚糖修饰的聚多巴胺掺杂的介孔二氧化硅的质量比为1:1。
本发明的另一个目的在于提供一种光热协同化疗的靶向可降解纳米药物载体,采用上述的制备方法制备而成,是一种多功能,光热/化疗协同治疗肿瘤的纳米药物载体,羧甲基壳聚糖的修饰使其合成的纳米粒子可以很低的溶血和好的体液环境分散性,靶向可以实现纳米粒子在肿瘤中的高效蓄积;极大的提高了药物载体的生物相容性、在人体中的稳定性和可降解特性,可用于癌细胞中药物的递送。
与现有技术相比,本发明的有益效果在于:
1、本发明的技术方案,采用的聚多巴胺掺杂的介孔二氧化硅由油水两相法制得,其具有大的比表面积以及丰富孔道结构,主要用于提高药物载体的载药量。
2、本发明的技术方案中,CMCS的修饰使其合成的纳米粒子可以有效的分散于模拟体液环境,实现纳米粒子良好的分散性与生物相容性,有利于在肿瘤中的高效蓄积。
3、本发明的技术方案中,靶向分子叶酸的修饰使得药物载体进行主动靶向,进一步提高了其在肿瘤部位的聚集。本发明实施例中展现了提高载体生物相容性、可降解以及在肿瘤部位的聚集,可用于肿瘤部位药物的递送。
附图说明
图1为实施例1中PDA/MSN、PDA/MSN-NH2、PDA/MSN-CMCS、PDA/MSN-CMCS-FA的表面电位变化情况;
图2为实施例2中PDA/MSN-CMCS-FA纳米粒子透射电镜图,图比例尺为200纳米;
图3为实施例3中PDA/MSN-CMCS-FA的光热效果曲线;
图4为实施例4中PDA/MSN-CMCS、PDA/MSN-CMCS-FA的纳米粒子粒径分布;
图5为实施例4中DOX@PDA/MSN-CMCS-FA药物释放情况;
图6为实施例4中酸性环境下14d降解示意图;
图7为实施例5中PDA/MSN-CMCS、PDA/MSN-CMCS-FA、DOX@PDA/MSN-CMCS、DOX@PDA/MSN-CMCS-FA的细胞毒性。
具体实施方式
为了进一步阐述本发明一种光热协同化疗的靶向可降解纳米药物载体及其制备方法,达到预期发明目的,以下结合较佳实施例,对依据本发明提出的一种光热协同化疗的靶向可降解纳米药物载体及其制备方法,其具体实施方式、结构、特征及其功效,详细说明如后。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构或特点可由任何合适形式组合。
下面将结合具体的实施例,对本发明一种光热协同化疗的靶向可降解纳米药物载体及其制备方法做进一步的详细介绍:
本发明针对目前临床药物的有效利用率低的问题,致力于设计一种具有靶向可降解纳米药物载体来提高药物有效利用率以及生物安全性。目前癌症治疗中,临床药物面临低效率和副作用严重的问题,纳米药物载体的研究有望解决此类问题,它具有可设计的物理、化学和生物学性能,从而提高药物利用度、改变药物组织器官分布、提高药物生物安全性。针对纳米药物载体难以降解和抗肿瘤效率低的问题,本发明以多级结构为研究对象,利用聚多巴胺掺杂介孔二氧化硅、制备多孔蠕虫状孔道可调和生物相容性好的纳米载体,去负载抗癌药物实现释药与降解,然后使用偶联稳定性涂层和靶向叶酸于聚多巴胺掺杂的介孔二氧化硅上,获得光热/化疗协同治疗之后能够有效降解。高效杀死肿瘤细胞,提升效率,减少生物毒性。该方法制备工艺简单,材料制备安全有效,具有个性化纳米载体的特点,将为设计具有实际应用价值的纳米药物载体提供研究思路和依据,主要用于纳米医疗领域。
具体的技术方案为:
一种光热协同化疗的靶向可降解纳米药物载体的制备方法,包括以下步骤:
(1)制备聚多巴胺掺杂的介孔二氧化硅;
(2)对所述的聚多巴胺掺杂的介孔二氧化硅进行氨基化修饰,得氨基修饰后的聚多巴胺掺杂的介孔二氧化硅;
(3)负载抗癌药物:将所述的氨基修饰后的聚多巴胺掺杂的介孔二氧化硅加入到抗癌药物水溶液中,搅拌24h后,得负载抗癌药物的聚多巴胺掺杂的介孔二氧化硅;
(4)对所述的负载抗癌药物的聚多巴胺掺杂的介孔二氧化硅,依次采用活化后的羧甲基壳聚糖、叶酸进行修饰,得叶酸修饰的羧甲基壳聚糖壳层的聚多巴胺掺杂的介孔二氧化硅(采用活化后的羧甲基壳聚糖修饰结束、洗涤后不得干燥,将其在水中分散,按照1mg/mL的浓度保存在4℃的环境中);
(5)将所述的叶酸修饰的羧甲基壳聚糖壳层的聚多巴胺掺杂的介孔二氧化硅分散到PBS溶液中,过滤,得所述的光热协同化疗的靶向可降解纳米药物载体。
优选地,所述的步骤(1)中,制备聚多巴胺掺杂的介孔二氧化硅的方法为:
将CTAC、超纯水、三乙醇胺混合均匀后,加入盐酸多巴胺并混合均匀;再滴加20v/v%的TEOS/环己烷溶液,反应12h后,依次离心洗涤、洗去CTAC、真空干燥,得到聚多巴胺掺杂的介孔二氧化硅。
介孔二氧化硅是以十六烷基三甲基氯化铵为模板,在模板的表面沉积硅源正硅酸乙酯和聚多巴胺,再通萃取模板得聚多巴胺掺杂的介孔二氧化硅纳米粒子。介孔二氧化硅具有大的比表面积以及丰富孔道结构,主要用于提高药物载体的载药量。
所有药物纯度以及反应温度要严格遵守。TEOS必须为GC纯度,CTAC纯度必须为99%,溶解后必须为浓稠胶状品质。在滴加TEOS/环己烷时磁子转速必须为低速。
进一步优选地,所述的步骤(1)中,洗去CTAC的方法为:采用6g/L的硝酸铵乙醇溶液,在60℃搅拌12h后,离心洗涤。
进一步优选地,所述的步骤(1)中,离心洗涤前,混合及反应过程的温度为60±2℃。
进一步优选地,所述的步骤(1)中,盐酸多巴胺分次添加。
进一步优选地,所述的步骤(1)中,真空干燥温度不高于40℃。
优选地,所述的步骤(2)中,氨基化聚多巴胺掺杂的介孔二氧化硅的方法为:无水乙醇用醋酸调节pH到4,将150mg聚多巴胺掺杂的介孔二氧化硅分散于40mL乙醇醋酸溶液中,加入1gAPTES后60℃搅拌24h,离心洗涤。
优选地,所述的步骤(2)中,氨基化修饰过程中温度为60±2℃。
优选地,所述的步骤(3)中,抗癌药物为抗癌药物DOX;
所述的步骤(4)中,羧甲基壳聚糖和叶酸用EDC和NHS进行活化,分别活化4h和16h。
进一步优选地,所述的步骤(3)中,氨基修饰后的聚多巴胺掺杂的介孔二氧化硅、抗癌药物和水的质量比为1:1.5:1.5;
所述的步骤(4)中,羧甲基壳聚糖和负载抗癌药物的聚多巴胺掺杂的介孔二氧化硅的质量比为1:1
活化后的叶酸和羧甲基壳聚糖修饰的聚多巴胺掺杂的介孔二氧化硅的质量比为1:1。
本发明通过PDA掺杂,能够有效将带有苯环类抗癌药物紧密结合,并在近红外光的照射下产生光热效果,在肿瘤的酸性环境中有效释放药物,实现癌症组织的光热/化疗协同治疗,提升载体载药的治疗效率和一定的生物降解性;通过羧甲基壳聚糖的连接使其合成的纳米粒子可有效分散于模拟体液环境;通过修饰叶酸来进行主动的靶向进一步提高了药物在肿瘤部位的聚集。本发明建立在生物安全的基础上极大的提高了药物载体的生物相容性、在人体中的循环时间。掺杂有机分子聚多巴胺不仅具有生物安全性、光热治疗效果,并且给肿瘤酸性环境中的纳米粒子降解提供了重要的位点。
实施例1.
具体操作步骤如下:
(1)制备聚多巴胺掺杂的介孔二氧化硅(PDA/MSN):
将25wt%的CTAC(纯度99%)8mL、12mL超纯水、48μL三乙醇胺混合,在60℃搅拌1h,搅拌均匀后,加入50-150mg盐酸多巴胺(纯度98%)并继续搅拌20min。再用恒压漏斗滴加20v/v%的TEOS/环己烷溶液(TEOS纯度GC),在60℃反应12h后,离心洗涤;然后用6g/L的硝酸铵/乙醇溶液在60℃下搅拌12h,洗去CTAC,离心洗涤。最后在不高于40℃的温度下真空干燥,得到灰黑色聚多巴胺掺杂的介孔二氧化硅。
(2)氨基化修饰聚多巴胺掺杂的介孔二氧化硅(PDA/MSN-NH2):
无水乙醇用醋酸调节pH到4后,将150mg聚多巴胺掺杂的介孔二氧化硅分散于40mL乙醇醋酸溶液中,再加入1g的APTES,在60℃下搅拌24h,离心洗涤,得到氨基化修饰聚多巴胺掺杂的介孔二氧化硅(PDA/MSN-NH2)。
(3)制备负载抗癌药物DOX的聚多巴胺掺杂的介孔二氧化硅(DOX@PDA/MSN):
将氨基化的聚多巴胺掺杂的介孔二氧化硅纳米粒子和抗癌药物DOX加入到水中(氨基化的聚多巴胺掺杂的介孔二氧化硅纳米粒子、抗癌药物DOX和水的质量比为1:1.5:1.5),搅拌24h,通过静电作用和Π-Π共轭负载上抗癌药物,得负载抗癌药物DOX的聚多巴胺掺杂的介孔二氧化硅(DOX@PDA/MSN)。
通过对上清液吸光度的测定,进一步定量负载的DOX在纳米颗粒上的吸附量。
(4)CMCS修饰的聚多巴胺掺杂的介孔二氧化硅(PDA/MSN-CMCS):
制备活化的羧甲基壳聚糖(简称CMCS):将10mgCMCS分散于5mL水中,加入25mgEDC和25mgNHS,在N2保护的条件下,室温活化4h后,加入10mg的DOX@PDA/MSN-NH2,超声处理5min,继续搅拌12h,洗涤后,按照1mg/mL的浓度保存在4℃的环境中。
(5)制备叶酸活性酯(FA-NHS):
叶酸活化处理:3g叶酸溶解于30mLDMSO中,加入EDC12g、NHS12g。活化16h后,用15v/v%的丙酮/乙醚将DMSO洗去,剩下粘稠的黄色流体。将黄色流体在20℃下真空干燥,得叶酸活性酯(FA-NHS),保存于冰箱。
(6)叶酸活性酯的修饰(DOX@PDA/MSN-CMCS-FA)
将10mgFA-NHS和10mL(1mg/mL)PDA/MSN-CMCS超声混合3min,均匀搅拌12h,然后离心洗涤。将洗涤后的产物分散于无菌PBS中后,用0.45μm滤膜过滤,得到无菌的叶酸修饰的羧甲基壳聚糖壳层的聚多巴胺掺杂的介孔二氧化硅纳米粒子,即所述的光热协同化疗的靶向可降解的纳米药物载体。最终使得纳米粒子分散性良好,同时具有较好的稳定性。
为了提高产品的保质期,4℃保存。
对实施例1制备过程中的PDA/MSN、PDA/MSN-NH2、PDA/MSN-CMCS、PDA/MSN-CMCS-FA进行表面电位变化测试,结果如图1所示。结合图1,通过Zeta电位的表征进一步展现了纳米粒子的制备过程。
实施例2.
对实施例1中制备的光热协同化疗的靶向可降解的纳米药物载体进行载药性能测试。
对制备的DOX@PDA/MSN-CMCS-FA纳米粒子进行形貌分析,结果如图2所示,制备了具有高比表面积的聚多巴胺掺杂的介孔二氧化硅,羧甲基壳聚糖的包裹使得表面呈现出聚合物膜,载药量最高可以达到约10%,具有较高的载药量。本发明制备的纳米药物载体的药物负载效果好,为以后的药物或其他大分子、蛋白质等负载提供了可能性。
实施例3:光热性能
将实施例1制备的DOX@PDA/MSN-CMCS-FA纳米粒子,即所述的光热协同化疗的靶向可降解纳米药物载体,在808纳米红外光下进行光热性能的测定。
结果如图3的DOX@PDA/MSN-CMCS-FA的光热效果曲线所示,在808纳米红外光下,随着照射时间的延长,纳米粒子浓度越高,溶液升温越迅速,说明以该方法得到的纳米粒子具有较强的光热转换能力,且红外光照射,减少了对生物体的伤害。
在近红外光照下(808纳米),随着时间增长,浓度越高,升温效果越明显,具有良好的光热性能,可以有效抑制肿瘤生长。
实施例4:测定DOX@PDA/MSN-CMCS-FA纳米粒子的稳定性。
(1)对实施例1制备的叶酸修饰的羧甲基壳聚糖包裹聚多巴胺掺杂的介孔二氧化硅纳米粒子,即所述的光热协同化疗的靶向长循环纳米药物载体(DOX@PDA/MSN-CMCS-FA)。在10%FBS溶液下将纳米粒子充分分散,在制备完成及制备完成后的24小时两个时间点测定纳米粒子的粒径分布。
结果如图4的DOX@PDA/MSN-CMCS的DOX@PDA/MSN-CMCS-FA的纳米粒子稳定性及粒径分布图所示,粒径分布并没有明显变换,且粒径曲线呈正态分布,在200纳米以内,符合高效利用纳米粒子的粒径大小,且纳米粒子可以在体液状态下实现稳定分布存在。
(2)对DOX@PDA/MSN-CMCS-FA在不同pH的PBS溶液中进行释药的实验测试,结果如图5所示。图5为DOX@PDA/MSN-CMCS-FA在pH=5、6.5、7.4的PBS溶液中随时间变化的释药情况。由图5可知,本发明制备的DOX@PDA/MSN-CMCS-FA在不同pH下都可以酸性响应的释药效果。
图6为DOX@PDA/MSN-CMCS-FA在pH=5的PBS溶液中14d后降解图片,尺寸500nm(右)。由图6可知,在酸性条件下,本发明制备的DOX@PDA/MSN-CMCS-FA可以降解。
实施例5:测定该核壳结构纳米粒子细胞毒性
采用不同浓度的实施例1制备的DOX@PDA/MSN-CMCS、DOX@PDA/MSN-CMCS-FA分别与Hela细胞共孵育时,检测细胞毒性,并设置两种不同条件:无近红外光照射和有近红外光照射。结果如图7所示,左图为无近红外光照射,右图为有近红外光照射。
由图7可知,载药后的纳米粒子随DOX@PDA/MSN-CMCS、DOX@PDA/MSN-CMCS-FA浓度的增加具有较好的杀死肿瘤细胞的效果。因DOX@PDA/MSN-CMCS-FA具有靶向效果,细胞存活率(约11%)低于DOX@PDA/MSN-CMCS(约20%),具有更强的细胞毒性,有效提高药物载体的生物利用率。在近红外光的照射下,产生的光热效果对细胞有更强的抑制作用,DOX@PDA/MSN-CMCS-FA+NIR组在100μg/mL浓度下,细胞的存活率更低(约8.5%)。
由本发明的实施例可知,本发明利用生物质材料CMCS、聚多巴胺制备可降解的靶向纳米载体。通过调控所加盐酸多巴胺及表面活性剂十六烷基三甲基氯化铵的比例,制备掺杂的介孔硅,实现纳米粒子的高载药性能。通过引入叶酸,利用肿瘤附近酸性微环境实现纳米粒子的精准靶向。通过以上物质的结合及包覆,锚定,形成宏观尺度下的纳米粒子,使得载药纳米载体具有靶向可降解的特性,同时可以实现药物载体的个性化,降低患者对纳米药物载体的非特异性毒性。
以上所述,仅是本发明实施例的较佳实施例而已,并非对本发明实施例作任何形式上的限制,依据本发明实施例的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明实施例技术方案的范围内。

Claims (8)

1.一种光热协同化疗的靶向可降解纳米药物载体的制备方法,其特征在于,包括以下步骤:
(1)制备聚多巴胺掺杂的介孔二氧化硅;
(2)对所述的聚多巴胺掺杂的介孔二氧化硅分散于乙醇醋酸溶液中,再加入APTES,在60±2℃下进行氨基化修饰,得氨基修饰后的聚多巴胺掺杂的介孔二氧化硅;
(3)负载抗癌药物:将所述的氨基修饰后的聚多巴胺掺杂的介孔二氧化硅加入到抗癌药物水溶液中,搅拌24h后,得负载抗癌药物的聚多巴胺掺杂的介孔二氧化硅;
所述的抗癌药物为抗癌药物DOX;
(4)对所述的负载抗癌药物的聚多巴胺掺杂的介孔二氧化硅,依次采用活化后的羧甲基壳聚糖、叶酸进行修饰,得叶酸修饰的羧甲基壳聚糖壳层的聚多巴胺掺杂的介孔二氧化硅;
所述的羧甲基壳聚糖和叶酸用EDC和NHS进行活化,分别活化4h和16h;
(5)将所述的叶酸修饰的羧甲基壳聚糖壳层的聚多巴胺掺杂的介孔二氧化硅分散到PBS溶液中,过滤,得所述的光热协同化疗的靶向可降解纳米药物载体。
2.根据权利要求1所述的制备方法,其特征在于,
所述的步骤(1)中,制备聚多巴胺掺杂的介孔二氧化硅的方法为:
将CTAC、超纯水、三乙醇胺混合均匀后,加入盐酸多巴胺并混合均匀;再滴加20v/v%的TEOS/环己烷溶液,反应12h后,依次离心洗涤、洗去CTAC、真空干燥,得到聚多巴胺掺杂的介孔二氧化硅;
所述的CTAC的浓度为25wt%,其与盐酸多巴胺的体积质量比为8mL:50-150mg。
3.根据权利要求2所述的制备方法,其特征在于,
所述的步骤(1)中,洗去CTAC的方法为:采用6g/L的硝酸铵乙醇溶液,在60℃搅拌12h后,离心洗涤。
4.根据权利要求2所述的制备方法,其特征在于,
所述的步骤(1)中,离心洗涤前,混合及反应过程的温度为60±2℃。
5.根据权利要求2所述的制备方法,其特征在于,
所述的步骤(1)中,盐酸多巴胺分次添加。
6.根据权利要求2所述的制备方法,其特征在于,
所述的步骤(1)中,真空干燥温度不高于40℃。
7.根据权利要求1所述的制备方法,其特征在于,
所述的步骤(3)中,氨基修饰后的聚多巴胺掺杂的介孔二氧化硅、抗癌药物和水的质量比为1:1.5:1.5;
所述的步骤(4)中,羧甲基壳聚糖和负载抗癌药物的聚多巴胺掺杂的介孔二氧化硅的质量比为1:1
活化后的叶酸和羧甲基壳聚糖修饰的聚多巴胺掺杂的介孔二氧化硅的质量比为1:1。
8.一种光热协同化疗的靶向可降解纳米药物载体,其特征在于,所述的靶向可降解纳米药物载体采用权利要求1-7任一项所述的制备方法制备而成。
CN202111310152.8A 2021-11-03 2021-11-03 一种光热协同化疗的靶向可降解纳米药物载体及其制备方法 Active CN114010799B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111310152.8A CN114010799B (zh) 2021-11-03 2021-11-03 一种光热协同化疗的靶向可降解纳米药物载体及其制备方法
AU2022211878A AU2022211878B9 (en) 2021-11-03 2022-08-04 Targeting Degradable Nano-Drug Carrier for Chemo/Photothermal Synergistic Therapy and Preparation Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111310152.8A CN114010799B (zh) 2021-11-03 2021-11-03 一种光热协同化疗的靶向可降解纳米药物载体及其制备方法

Publications (2)

Publication Number Publication Date
CN114010799A CN114010799A (zh) 2022-02-08
CN114010799B true CN114010799B (zh) 2023-12-22

Family

ID=80061990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111310152.8A Active CN114010799B (zh) 2021-11-03 2021-11-03 一种光热协同化疗的靶向可降解纳米药物载体及其制备方法

Country Status (2)

Country Link
CN (1) CN114010799B (zh)
AU (1) AU2022211878B9 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143499B (zh) * 2020-08-25 2023-06-16 上海大学 一种诊疗一体化的稀土发光纳米诊疗剂、制备方法及其应用
CN114522248A (zh) * 2022-02-17 2022-05-24 石河子大学 一种紫外/活性氧双响应门控肝癌细胞靶向纳米药物载体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106806343A (zh) * 2017-02-17 2017-06-09 清华大学深圳研究生院 一种叶酸和聚多巴胺修饰的肿瘤靶向介孔二氧化硅纳米粒及制备方法与应用
CN109125293A (zh) * 2018-09-07 2019-01-04 浙江理工大学 负载有两种药物且具有双层控释-磁靶向-光热-磁热功能的抗肝癌纳米微粒的制备方法
CN113289030A (zh) * 2021-03-04 2021-08-24 石河子大学 一种光热协同化疗的靶向长循环纳米药物载体的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105853365B (zh) * 2016-05-06 2019-01-18 福州大学 一种兼具pH响应性及叶酸靶向性并负载熊果酸的二氧化硅-壳聚糖-叶酸纳米材料及应用
CN108434460B (zh) * 2018-04-20 2021-05-14 西北大学 一种靶向性介孔二氧化硅纳米药物及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106806343A (zh) * 2017-02-17 2017-06-09 清华大学深圳研究生院 一种叶酸和聚多巴胺修饰的肿瘤靶向介孔二氧化硅纳米粒及制备方法与应用
CN109125293A (zh) * 2018-09-07 2019-01-04 浙江理工大学 负载有两种药物且具有双层控释-磁靶向-光热-磁热功能的抗肝癌纳米微粒的制备方法
CN113289030A (zh) * 2021-03-04 2021-08-24 石河子大学 一种光热协同化疗的靶向长循环纳米药物载体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
单晓庆 等.纳米金修饰羧甲基壳聚糖封堵 介孔二氧化硅载药系统的研究.现代化工.2020,第第40卷卷(第第9期期),摘要,第106页第2段,实验方法,结论. *

Also Published As

Publication number Publication date
CN114010799A (zh) 2022-02-08
AU2022211878B9 (en) 2023-05-18
AU2022211878B1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
Wu et al. An injectable and tumor-specific responsive hydrogel with tissue-adhesive and nanomedicine-releasing abilities for precise locoregional chemotherapy
CN114010799B (zh) 一种光热协同化疗的靶向可降解纳米药物载体及其制备方法
CN111671914B (zh) 一种近红外光响应的纳米颗粒及控释系统
He et al. Localized multidrug co-delivery by injectable self-crosslinking hydrogel for synergistic combinational chemotherapy
Wu et al. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy
CN113289030B (zh) 一种光热协同化疗的靶向长循环纳米药物载体的制备方法
Li et al. Black phosphorus nanosheets and docetaxel micelles co-incorporated thermoreversible hydrogel for combination chemo-photodynamic therapy
Chen et al. A novel self-coated polydopamine nanoparticle for synergistic photothermal-chemotherapy
CN113018251B (zh) 一种具有pH和谷胱甘肽双重响应的双药物控释系统及其制备方法
Gao et al. AuNRs@ MIL-101-based stimuli-responsive nanoplatform with supramolecular gates for image-guided chemo-photothermal therapy
CN101683322B (zh) 超临界二氧化碳法制备纳米盐酸小檗碱脂质体的方法
CN113500199B (zh) 一种基于金铂双金属活性氧自生成纳米材料的制备方法及其产品和应用
CN112656944B (zh) 一种齐墩果酸纳米凝胶的制备方法及其应用
CN114652699B (zh) 一种尺寸转变型纳米递药载体及其制备方法和应用
Yang et al. Targeted intelligent mesoporous polydopamine nanosystems for multimodal synergistic tumor treatment
CN113577277B (zh) 一种PEOz和聚多巴胺-钆离子网络修饰的可降解介孔硅纳米给药系统及制备方法
CN106619569B (zh) 共载化疗药物和核酸的肿瘤靶向纳米粒子及制备方法
CN110922587B (zh) 一种纳米药物的制备方法及其在治疗骨肉瘤中的应用
Zhou et al. Synthesis of lenvatinib-loaded upconversion@ polydopamine nanocomposites for upconversion luminescence imaging-guided chemo-photothermal synergistic therapy of anaplastic thyroid cancer
CN111514315B (zh) 一种肿瘤靶向无定形磷酸钙荧光纳米复合材料负载药物的方法
CN114470239A (zh) 一种聚多巴胺包覆的缓释型MnO2纳米微球载药系统
CN110917172B (zh) 一种氧化钼纳米片封堵中空介孔硅纳米材料及其制备和应用
CN111643481A (zh) 一种纳米药物与制备方法以及在治疗胰腺导管癌中的应用
CN118161626B (zh) 一种红细胞膜仿生修饰的“核-壳”型纳米复合材料的制备方法及其应用
CN116966151B (zh) 一种多重响应的阿霉素-槲皮素共递送体系的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant