CN113996348A - 一种豇豆结构压电光催化复合纤维的制备方法 - Google Patents

一种豇豆结构压电光催化复合纤维的制备方法 Download PDF

Info

Publication number
CN113996348A
CN113996348A CN202111229912.2A CN202111229912A CN113996348A CN 113996348 A CN113996348 A CN 113996348A CN 202111229912 A CN202111229912 A CN 202111229912A CN 113996348 A CN113996348 A CN 113996348A
Authority
CN
China
Prior art keywords
piezoelectric
cowpea
composite fiber
photocatalytic
photocatalytic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111229912.2A
Other languages
English (en)
Other versions
CN113996348B (zh
Inventor
汤玉斐
郑婉星
刘照伟
齐敏
邢国鑫
李丹
庞晶曼
孟庆男
赵康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202111229912.2A priority Critical patent/CN113996348B/zh
Publication of CN113996348A publication Critical patent/CN113996348A/zh
Application granted granted Critical
Publication of CN113996348B publication Critical patent/CN113996348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种豇豆结构压电光催化复合纤维的制备方法,具体按照以下步骤实施:步骤1,制备压电纳米芯;步骤2,压电纳米芯包膜;步骤3,制备夹层中空压电光催化微球;步骤4,电纺制备豇豆结构压电光催化复合纤维;步骤5,将步骤4所得的豇豆结构压电光催化复合纤维进行极化处理,得到可碰撞增强压电场的豇豆结构压电光催化复合纤维。本发明一种豇豆结构压电光催化复合纤维的制备方法,解决了现有技术中压电光催化材料的压电场因屏蔽电荷造成压电光催化效率受限的问题。

Description

一种豇豆结构压电光催化复合纤维的制备方法
技术领域
本发明属于复合纤维制备技术领域,具体涉及一种豇豆结构压电光催化复合纤维的制备方法。
背景技术
半导体光催化材料通过氧化还原反应可绿色、简便、高效的降解污染物,广泛应用于水净化与能源领域。然而,光生载流子分离率低的问题,限制了光催化效率的进一步提升。压电光催化技术通过在光催化反应过程中引入压电场,可有效驱动光生载流子的分离。目前,压电光催化复合材料中压电场易受屏蔽电荷影响,且压电场的引入大多依赖于外力对压电材料表面的直接作用,其存在能量传递削弱的问题,从而降低对光生载流子分离的驱动力,因此,提高压电光催化复合材料中压电材料对外力的敏感度与利用率显得尤为重要。
Liu等人(Liu Y L,Wu J M.Synergistically catalytic activities ofBiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye moleculethrough piezophototronic effect[J].Nano Energy,2019,56:74-81.)通过溶胶凝胶法制备了BiFeO3/TiO2核壳结构压电光催化剂,其对甲基紫具有较好的压电光催化活性,然而压电相BiFeO3作为核被TiO2所包裹,致使压电场的产生只能通过作用于TiO2表面的力经过二次传递至BiFeO3,降低了对外力的响应,从而降低压电场的强度。
中国专利《一种核壳结构的ZnO/MgO复合压电光催化剂的制备方法》(申请号:202011086411.9,公开号:CN112337456A,公告日:2021.02.09)公开了一种核壳结构的ZnO/MgO复合压电光催化剂的制备方法,利用超声聚合得到以MgO为核,ZnO为壳的复合压电光催化剂,其制备方法简单,但光催化相作为核,降低了对光的响应,限制了壳层在外载荷作用下压电场对光生载流子的分离。
中国专利《一种具有高压电/光催化活性的钛酸钡/硫化铟复合纳米颗粒及制备方法》(申请号:202010871438.2,公开号:CN111939938A,公告日:2020.11.17)公开了一种核壳结构的BaTiO3/In2S3复合纳米颗粒的制备方法,其以BaTiO3为核,In2S3为壳,与纯硫化铟相比具有更好的催化性能,但BaTiO3产生压电场只能来自直接作用于复合纳米颗粒的外力,对外力的利用率较低,从而限制提高压电光催化效率,并且颗粒型催化剂不利于循环使用。
中国专利《一种中空核壳结构ZnO/In2O3异质II型光催化材料及其制备方法》(申请号:202011053335.1,公开号:CN112058252A,公告日:2020.12.11)使用水热法合成了中空核壳结构ZnO/In2O3异质II型光催化材料,其结构有利于光的反射,抑制了光生载流子的体内复合,但缺乏提高表面电荷分离的驱动力。
发明内容
本发明的目的是提供一种豇豆结构压电光催化复合纤维的制备方法,解决了现有技术中压电光催化材料的压电场因屏蔽电荷造成压电光催化效率受限的问题。
本发明所采用的技术方案是,一种豇豆结构压电光催化复合纤维的制备方法,体按照以下步骤实施:
步骤1,制备压电纳米芯
按质量百分比分别称取:压电陶瓷前驱体26%-34%、氮化硼纳米颗粒1%-3%、溶剂63%-73%,以上组分质量百分比之和为100%;将压电陶瓷前驱体与氮化硼纳米颗粒加入到溶剂中,搅拌均匀,得到混合凝胶,干燥,煅烧,研磨,得到压电纳米芯;
步骤2,制备压电纳米芯包膜
按质量百分比分别称取:压电纳米芯8%-15%、高分子聚合物0.5%-1.5%、分散剂0.8%-1.2%、溶剂82.3%-90.7%,以上组分质量总和为100%;将压电纳米芯、高分子聚合物、分散剂加入溶剂中,搅拌均匀,得到混合溶液,烘干,得到包膜的压电纳米芯;
步骤3,制备夹层中空的压电光催化微球;
将包膜的压电纳米芯置于含有光催化前驱体水热溶液中,在合适的水热时间和温度下进行水热处理,冲洗,烘干,煅烧后得到夹层中空压电光催化微球;
步骤4,电纺制备豇豆结构压电光催化复合纤维;
按质量百分比分别称取:夹层中空压电光催化微球2%-5%、KH-570硅烷偶联剂0.5%-1.2%、SiO2前驱体纺丝液93.8%-97.5%,以上组分质量总和为100%;将夹层中空压电光催化微球和KH-570硅烷偶联剂加入到SiO2前驱体纺丝液中,搅拌均匀,得到纺丝液,之后进行静电纺丝,煅烧后进行极化处理,得到豇豆结构压电光催化复合纤维。
本发明的特点还在于,
步骤1中,干燥温度为90℃-120℃,干燥时间为10h-12h,煅烧温度为500℃-700℃,煅烧时间为1h-2h;氮化硼纳米颗粒的粒径为50-100nm。
步骤1中,压电陶瓷前驱体为钛的前驱体、钡盐、铋盐中的任意两种或多种;钛的前驱体为钛酸异丙酯、钛酸丁酯、四氯化钛、异丙醇钛中的任意一种或多种;钡盐为乙酸钡、氯化钡、硝酸钡中的任意一种或多种;铋盐为硝酸铋、氯化铋中的任意一种或两种;溶剂为乙醇、乙二醇、冰醋酸、N,N-二甲基甲酰胺、丙酮、去离子水中的任意一种或多种。
步骤2中,烘干温度为60℃-80℃,烘干时间为12-24h;高分子聚合物为聚偏氟乙烯、聚苯乙烯、聚乙烯中的任意一种;分散剂为KH-570或者KH-792;溶剂为N,N-二甲基甲酰胺或者丙酮。
步骤3中,水热温度为160℃-180℃,水热时间为12h-24h;烘干温度为60℃-80℃;煅烧温度为400℃-600℃,保温时间为1-2h。
步骤3中,光催化前驱体为锌盐、钛盐以及钛的化合物、镉盐以及镉的化合物中的任意一种或多种;锌盐为乙酸锌、硝酸锌中的任意一种或两种,钛盐以及钛的化合物为硫酸钛、四氯化钛中的任意一种或两种,镉盐以及镉的化合物为四水硝酸铬、氯化铬中的任意一种或两种;水热溶液由中性介质和碱性介质混合而成,中性介质为去离子水,碱性介质为氨水、氢氧化钠、六亚甲基四胺、尿素中的任意一种。
步骤4中,煅烧温度为550℃-650℃,保温时间为1h-2h;极化温度110℃-120℃,极化时间20min-30min。
步骤4中,静电纺丝参数为:纺丝电压为22-28kV,接收距离为18-20cm,纺丝温度为20℃~30℃,湿度为10%-20%,推进速度为:0.1ml/L-0.15ml/L。
步骤4中,SiO2前驱体纺丝液中正硅酸乙酯为24%-26%、聚乙烯醇为4%-6%、磷酸为0.1%-0.3%、去离子水为67.7%-71.9%,以上组分质量总和为100%。
本发明的有益效果是:本发明一种豇豆结构压电光催化复合纤维的制备方法,能够通过压电纳米芯在光催化纳米壳中的反复碰撞增加压电场,促进光生载流子分离效率,提高光催化效率。同时,外包的柔性SiO2纤维增强了压电光催化复合纤维对外力的响应,受力时可提供压电纳米芯碰撞的动力。并且,夹层中空压电光催化微球可提高光的反射,提高光利用率,在水污染处理等领域有广阔的应用前景。
附图说明
图1是本发明制备的豇豆结构压电光催复合纤维单根形貌示意图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种豇豆结构压电光催化复合纤维的制备方法,具体按照以下步骤实施:
步骤1,制备压电纳米芯,具体为:
按质量百分比分别称取:压电陶瓷前驱体26%-34%、氮化硼纳米颗粒1%-3%、溶剂63%-73%,以上组分质量百分比之和为100%;将压电陶瓷前驱体与氮化硼纳米颗粒加入到溶剂中,搅拌均匀,得到混合凝胶,在90℃-120℃的条件下干燥10h-12h,之后在500℃-700℃的条件下煅烧,并保温1h-2h,研磨,得到压电纳米芯;
压电陶瓷前驱体为钛的前驱体、钡盐、铋盐中的任意两种或多种;钛的前驱体为钛酸异丙酯、钛酸丁酯、四氯化钛、异丙醇钛中的任意一种或多种;钡盐为乙酸钡、氯化钡、硝酸钡中的任意一种或多种;铋盐为硝酸铋、氯化铋中的任意一种或两种;溶剂为乙醇、乙二醇、冰醋酸、N,N-二甲基甲酰胺、丙酮、去离子水中的任意一种或多种;
氮化硼纳米颗粒的粒径为50-100nm;
步骤2,制备压电纳米芯包膜,具体为:
按质量百分比分别称取:压电纳米芯8%-15%、高分子聚合物0.5%-1.5%、分散剂0.8%-1.2%、溶剂82.3%-90.7%,以上组分质量总和为100%;将压电纳米芯、高分子聚合物、分散剂加入溶剂中,搅拌均匀,得到混合溶液,将混合溶液在60℃-80℃的条件下烘干12-24h,得到包膜的压电纳米芯;
高分子聚合物为聚偏氟乙烯、聚苯乙烯、聚乙烯中的任意一种;分散剂为KH-570或者KH-792;溶剂为N,N-二甲基甲酰胺或者丙酮;
步骤3,制备夹层中空压电光催化微球,具体为:
将步骤2得到包膜的压电纳米芯、光催化前驱体置于水热溶液中进行水热反应,水热温度为160℃-180℃,水热时间为12h-24h,水热反应后,用去离子水与乙醇分别冲洗3-5次,在60℃-80℃的条件下烘干,最后,在400℃-600℃的条件下煅烧,并保温1-2h,得到夹层中空压电光催化微球;
光催化前驱体为锌盐、钛盐以及钛的化合物、镉盐以及镉的化合物中的任意一种或多种;其中,锌盐为乙酸锌、硝酸锌中的任意一种或两种,钛盐以及钛的化合物为硫酸钛、四氯化钛中的任意一种或两种,镉盐以及镉的化合物为四水硝酸铬、氯化铬中的任意一种或两种;
水热溶液由中性介质和碱性介质混合而成,其中,中性介质为去离子水,碱性介质为氨水、氢氧化钠、六亚甲基四胺、尿素中的任意一种。
步骤4,电纺制备豇豆结构压电光催化复合纤维,具体为:
按质量百分比分别称取:夹层中空压电光催化微球2%-5%、KH-570硅烷偶联剂0.5%-1.2%、SiO2前驱体纺丝液93.8%-97.5%,以上组分质量总和为100%;将夹层中空压电光催化微球和KH-570硅烷偶联剂加入到SiO2前驱体纺丝液中,搅拌均匀,得到纺丝液,之后将纺丝液进行电纺丝,再将电纺后的复合纤维在550℃-650℃的条件下煅烧,并保温1h-2h,最后将复合纤维进行极化处理,即可得到豇豆结构压电光催化复合纤维;
静电纺丝参数为:纺丝电压为22-28kV,接收距离为18-20cm,纺丝温度为20℃-30℃,湿度为10%-20%,推进速度为:0.1ml/L-0.15ml/L;
SiO2前驱体纺丝液中正硅酸乙酯为24%-26%、聚乙烯醇为4%-6%、磷酸为0.1%-0.3%、去离子水为67.7%-71.9%,以上组分质量总和为100%;
极化温度110℃-120℃,极化时间20min-30min;
本发明选择尺寸为50-100nm的氮化硼纳米颗粒添加于压电纳米芯中,通过其负载量的控制提高压电纳米芯的分散度;通过控制高分子聚合物的加入量可调控包膜的厚度为50-85nm,以控制压电纳米芯在光催化纳米壳中有充足的碰撞空间;在水热温度为160-180℃,水热时间为12h-24h的范围内控制所得夹层中空压电光催化微球大小为250-275nm,以保证静电纺丝时微球在SiO2纤维中逐个聚集排列,得到豇豆结构压电光催化复合纤维;通过控制纺丝电压为22-28kV,接收距离为18-20cm,以控制SiO2纤维直径为300-350nm,保证夹层中空压电光催化微球对光的吸收;极化处理得到可碰撞增强压电场的豇豆结构压电光催化复合纤维。
夹层中空压电光催化微球外部包裹柔性SiO2纤维,有利于二次回收,提高实际使用率,且夹层中空压电光催化微球可提高光的反射,提高光利用率。在载荷作用下,柔性SiO2纤维发生变形并将力传递至压电纳米芯,使其在光催化纳米壳中自由碰撞,产生压电场打破电荷屏蔽,促进光生载流子的分离,从而提高压电光催化降解效率。柔性SiO2纤维搭载无机压电光催化材料在实际中使用具有良好的稳定性。本发明在利用微小力,降低能源消耗的水处理领域具有广阔的应用前景。
实施例1
制备SiO2/ZnO@BaTiO3可碰撞增强压电场的豇豆结构压电光催化复合纤维
将0.334g的氮化硼纳米颗粒加入到4.74g的无水乙醇中,超声分散均匀后加入2.55g乙酸钡、6.295g的乙酸与2.8g的钛酸丁酯,搅拌均匀后反应混合物在95℃的水浴中凝胶化,得到混合凝胶。将混合凝胶在120℃下干燥12h后研磨成粉,在700℃下煅烧2h得到压电BaTiO3纳米球。
将压电纳米芯进行包膜处理,将4.376g的压电BaTiO3纳米球、0.433g的聚偏氟乙烯、0.452g的硅烷偶联剂KH-570加入到34.228g的N,N二甲基甲酰胺和4.723g的丙酮的混合溶剂中,搅拌均匀后,将混合溶液在80℃下烘干12h,得到包膜的压电BaTiO3纳米球。
将包膜的压电BaTiO3纳米球进行水热处理;将2.068g的包膜压电BaTiO3纳米球置于0.238g六水合硝酸锌、1.122g六亚甲基四胺与40ml去离子水的水热溶液中,在160℃下水热18h。水热完毕后,将产物用无水乙醇和去离子水清洗若干次,70℃下干燥12h,干燥后的产物在400℃下煅烧,保温2h,得到夹层中空ZnO@BaTiO3压电光催化微球。
将0.994g聚乙烯醇完全溶解于13.835g去离子水中,再加入5g正硅酸乙酯和0.05g磷酸,待溶液搅拌均匀后将0.411g夹层中空ZnO@BaTiO3压电光催化微球与0.103g硅烷偶联剂KH-570均匀的分散其中,得到纺丝液。将纺丝液置入推进泵中,调节纺丝电压为22kV,接受距离为20cm,纺丝温度为30℃,湿度为10%,推进速度为0.1mL/h,进行静电纺丝,将静电纺丝得到的复合纤维在550℃下煅烧,保温2h,得到豇豆结构压电光催化复合纤维。将豇豆结构压电光催化复合纤维在110℃下极化30min,得到SiO2/ZnO@BaTiO3可碰撞增强压电场的豇豆结构压电光催化复合纤维。
实施例2
制备SiO2/TiO2@Bi4Ti3O12可碰撞增强压电场的豇豆结构压电光催化复合纤维
将0.107g的氮化硼纳米颗粒加入到4.571g的N,N-二甲基甲酰胺和0.762g的无水乙醇中,超声分散均匀后加入1.825g硝酸铋、2.285g的冰乙酸与1.179g的钛酸丁酯,搅拌均匀后反应混合物在95℃的水浴中凝胶化,得到混合凝胶。将混合凝胶在120℃下干燥12h后研磨成粉,在500℃下煅烧2h得到压电Bi4Ti3O12纳米球。
将压电Bi4Ti3O12纳米球进行包膜处理,将6.765g的压电Bi4Ti3O12纳米球、0.677g的聚乙烯、0.541g的硅烷偶联剂KH-570加入到37.117g的N,N二甲基甲酰胺中,搅拌均匀后,将混合溶液在70℃下烘干18h,得到包膜的压电Bi4Ti3O12纳米球。
将包膜的Bi4Ti3O12压电纳米球进行水热处理。将2.001g的包膜压电BaTiO3纳米球置于3.452g的TiCl4与0.04g尿素的水热溶液中在180℃下水热24h。水热完毕后,将产物用无水乙醇和去离子水清洗若干次,70℃下干燥12h,干燥后的产物在600℃下煅烧,保温2h,得到夹层中空TiO2@Bi4Ti3O12压电光催化微球。
将0.442g聚乙烯醇完全溶解于7.830g去离子水中,再加入2.761g正硅酸乙酯和0.011g磷酸,待溶液搅拌均匀后将0.464g夹层中空TiO2@Bi4Ti3O12压电光催化微球与0.128g硅烷偶联剂KH-570均匀的分散其中,得到纺丝液。将纺丝液置入推进泵中,调节纺丝电压为24kV,接受距离为20cm,纺丝温度为20℃,湿度为20%,推进速度为0.12mL/h,进行静电纺丝。将静电纺丝得到的复合纤维在650℃下煅烧,保温2h,得到豇豆结构压电光催化复合纤维。
将豇豆结构压电光催化复合纤维在120℃下极化20min,得到SiO2/TiO2@Bi4Ti3O12可碰撞增强压电场的豇豆结构压电光催化复合纤维。
实施例3
制备SiO2/ZnO@Bi4Ti3O12可碰撞增强压电场的豇豆结构压电光催化复合纤维
将0.443g的氮化硼纳米颗粒加入到5.67g的N,N-二甲基甲酰胺和1.185g的无水乙醇中,超声分散均匀后加入2.19g Bi(NO3)3·5H2O、3.148g的冰乙酸与1.415g的钛酸丁酯,搅拌均匀后反应混合物在95℃的水浴中凝胶化,得到混合凝胶。将混合凝胶在90℃下干燥12h后研磨成粉,在500℃下煅烧2h得到压电Bi4Ti3O12纳米球。
将压电Bi4Ti3O12纳米球进行包膜处理,将3.630g的压电Bi4Ti3O12纳米球、0.589g的聚乙烯、0.363g的硅烷偶联剂KH-570加入到35.201g的N,N二甲基甲酰胺和5.589g的丙酮的混合溶剂中,搅拌均匀后,将混合溶液在60℃下烘干24h,得到包膜的压电Bi4Ti3O12纳米球。
将包膜的压电Bi4Ti3O12纳米球进行水热处理。将2.068g的包膜压电Bi4Ti3O12纳米球置于0.589g的六水合硝酸锌、2g的氢氧化钠与50ml去离子水的水热溶液中,在200℃下水热24h。水热完毕后,将产物用无水乙醇和去离子水清洗若干次,80℃下干燥12h,干燥后的产物在500℃下煅烧,保温2h,得到夹层中空ZnO@Bi4Ti3O12压电光催化微球。
将0.663g聚乙烯醇完全溶解于7.477g去离子水中,再加入2.871g正硅酸乙酯和0.033g磷酸,待溶液搅拌均匀后将0.589g夹层中空ZnO@Bi4Ti3O12压电光催化微球与0.141g硅烷偶联剂KH-570均匀的分散其中,得到纺丝液。将纺丝液置入推进泵中,调节纺丝电压为28kV,接收距离为18cm,纺丝温度为20℃,湿度为10%,推进速度为0.1mL/h,进行静电纺丝。将静电纺丝得到的复合纤维在550℃下煅烧,保温2h,得到豇豆结构压电光催化复合纤维。
将豇豆结构压电光催化复合纤维在110℃下极化30min,得到SiO2/ZnO@Bi4Ti3O12可碰撞增强压电场的豇豆结构压电光催化复合纤维。
实施例4
制备SiO2/TiO2@BaTiO3可碰撞增强压电场的豇豆结构压电光催化复合纤维
将0.111g的氮化硼纳米颗粒加入到2.311g的无水乙醇中,超声分散均匀后加入1.417g乙酸钡、3.186g的乙酸与1.556g的钛酸丁酯,搅拌均匀后反应混合物在95℃的水浴中凝胶化,得到混合凝胶。将混合凝胶在120℃下干燥12h后研磨成粉,在700℃下煅烧2h得到压电BaTiO3纳米球。
将压电纳米芯进行包膜处理,将3.528g的压电BaTiO3纳米球、0.663g的聚苯乙烯、0.531g的硅烷偶联剂KH-792加入到34.809g的N,N二甲基甲酰胺和4.572g的丙酮的混合溶剂中,搅拌均匀后,将混合溶液在60℃下烘干12h,得到包膜的压电BaTiO3纳米球。
将包膜的BaTiO3压电纳米球进行水热处理。将2.001g的包膜压电BaTiO3纳米球置于0.11mol/L的TiCl4水溶液中在160℃下水热16h。水热完毕后,将产物用无水乙醇和去离子水清洗若干次,80℃下干燥12h,干燥后的产物在600℃下煅烧,保温2h,得到夹层中空TiO2@BaTiO3压电光催化微球。
将0.552g聚乙烯醇完全溶解于7.686g去离子水中,再加入2.778g正硅酸乙酯和0.028g磷酸,待溶液搅拌均匀后将0.227g夹层中空TiO2@BaTiO3压电光催化微球与0.057gKH-570均匀的分散其中,得到纺丝液。将纺丝液置入推进泵中,调节纺丝电压为26kV,接受距离为18cm,纺丝温度为20℃,湿度为20%,推进速度为0.15mL/h,进行静电纺丝。将静电纺丝得到的复合纤维在650℃下煅烧,保温2h,得到豇豆结构压电光催化复合纤维。
将豇豆结构压电光催化复合纤维在120℃下极化20min,得到SiO2/TiO2@BaTiO3可碰撞增强压电场的豇豆结构压电光催化复合纤维。
表1是实施例1中SiO2/ZnO@BaTiO3可碰撞增强压电场的豇豆结构压电光催化复合纤维、SiO2/ZnO/BaTiO3压电光催化复合纤维、ZnO@BaTiO3压电光催化复合材料以及ZnO/BaTiO3压电光催化复合材料在90min内压电光催化与光催化降解左氧氟沙星(LEVO)的降解率对比。从表1可以看出,SiO2/ZnO@BaTiO3压电光催化复合纤维对LEVO的压电光催化降解率高于光催化降解率,是由于在外力作用下压电BaTiO3纳米球在ZnO球壳中发生碰撞产生的内电场加快了光生载流子的分离。SiO2/ZnO/BaTiO3压电光催化复合纤维与SiO2/ZnO@BaTiO3压电光催化复合纤维相比,LEVO的压电光催化降解率较低,是因为SiO2/ZnO/BaTiO3压电光催化复合纤维中压电效应的产生只能来自于外力对复合纤维的直接作用,而SiO2/ZnO@BaTiO3压电光催化复合纤维中压电效应的产生不仅源于外力的直接作用,还包括力的传递致使压电纳米球自发碰撞,因此SiO2/ZnO/BaTiO3压电光催化复合纤维的压电光催化降解率较低。ZnO@BaTiO3压电光催化复合材料与实施例1中的复合纤维相比,5次循环后的降解率大幅降低,是由于前者的宏观形态为粉末状,循环稳定性受结构与形态的限制。实施例1中的复合纤维以柔性SiO2纤维为载体,不仅可重复响应外力作用,且可传递力,这使得其在经历5次压电光催化循环后仍然保持优异的压电光催化降解率。
表1压电光催化复合材料降解左氧氟沙星的降解率对比
Figure BDA0003314989470000141
Figure BDA0003314989470000151
图1是本发明制备的可碰撞增强压电场的豇豆结构压电光催化复合纤维单根形貌示意图,其中,1为压电纳米芯,2为光催化纳米壳,3为柔性SiO2纤维,从图1中可以看出压电纳米芯可在光催化纳米壳中自由碰撞,且柔性SiO2纤维受力作用时极易传递至压电纳米芯并使其发生碰撞。

Claims (9)

1.一种豇豆结构压电光催化复合纤维的制备方法,其特征在于,具体按照以下步骤实施:
步骤1,制备压电纳米芯
按质量百分比分别称取:压电陶瓷前驱体26%-34%、氮化硼纳米颗粒1%-3%、溶剂63%-73%,以上组分质量百分比之和为100%;将压电陶瓷前驱体与氮化硼纳米颗粒加入到溶剂中,搅拌均匀,得到混合凝胶,干燥,煅烧,研磨,得到压电纳米芯;
步骤2,制备压电纳米芯包膜
按质量百分比分别称取:压电纳米芯8%-15%、高分子聚合物0.5%-1.5%、分散剂0.8%-1.2%、溶剂82.3%-90.7%,以上组分质量总和为100%;将压电纳米芯、高分子聚合物、分散剂加入溶剂中,搅拌均匀,得到混合溶液,烘干,得到包膜的压电纳米芯;
步骤3,制备夹层中空的压电光催化微球;
将包膜的压电纳米芯置于含有光催化前驱体水热溶液中,在合适的水热时间和温度下进行水热处理,冲洗,烘干,煅烧后得到夹层中空压电光催化微球;
步骤4,电纺制备豇豆结构压电光催化复合纤维;
按质量百分比分别称取:夹层中空压电光催化微球2%-5%、KH-570硅烷偶联剂0.5%-1.2%、SiO2前驱体纺丝液93.8%-97.5%,以上组分质量总和为100%;将夹层中空压电光催化微球和KH-570硅烷偶联剂加入到SiO2前驱体纺丝液中,搅拌均匀,得到纺丝液,之后进行静电纺丝,煅烧后进行极化处理,得到豇豆结构压电光催化复合纤维。
2.根据权利要求1所述的一种豇豆结构压电光催化复合纤维的制备方法,其特征在于,所述步骤1中,干燥温度为90℃-120℃,干燥时间为10h-12h,煅烧温度为500℃-700℃,煅烧时间为1h-2h;氮化硼纳米颗粒的粒径为50-100nm。
3.根据权利要求1所述的一种豇豆结构压电光催化复合纤维的制备方法,其特征在于,所述步骤1中,压电陶瓷前驱体为钛的前驱体、钡盐、铋盐中的任意两种或多种;钛的前驱体为钛酸异丙酯、钛酸丁酯、四氯化钛、异丙醇钛中的任意一种或多种;钡盐为乙酸钡、氯化钡、硝酸钡中的任意一种或多种;铋盐为硝酸铋、氯化铋中的任意一种或两种;溶剂为乙醇、乙二醇、冰醋酸、N,N-二甲基甲酰胺、丙酮、去离子水中的任意一种或多种。
4.根据权利要求1所述的一种豇豆结构压电光催化复合纤维的制备方法,其特征在于,所述步骤2中,烘干温度为60℃-80℃,烘干时间为12-24h;高分子聚合物为聚偏氟乙烯、聚苯乙烯、聚乙烯中的任意一种;分散剂为KH-570或者KH-792;溶剂为N,N-二甲基甲酰胺或者丙酮。
5.根据权利要求1所述的一种豇豆结构压电光催化复合纤维的制备方法,其特征在于,所述步骤3中,水热温度为160℃-180℃,水热时间为12h-24h;烘干温度为60℃-80℃;煅烧温度为400℃-600℃,保温时间为1-2h。
6.根据权利要求1所述的一种豇豆结构压电光催化复合纤维的制备方法,其特征在于,所述步骤3中,光催化前驱体为锌盐、钛盐以及钛的化合物、镉盐以及镉的化合物中的任意一种或多种;锌盐为乙酸锌、硝酸锌中的任意一种或两种,钛盐以及钛的化合物为硫酸钛、四氯化钛中的任意一种或两种,镉盐以及镉的化合物为四水硝酸铬、氯化铬中的任意一种或两种;水热溶液由中性介质和碱性介质混合而成,中性介质为去离子水,碱性介质为氨水、氢氧化钠、六亚甲基四胺、尿素中的任意一种。
7.根据权利要求1所述的一种豇豆结构压电光催化复合纤维的制备方法,其特征在于,所述步骤4中,煅烧温度为550℃-650℃,保温时间为1h-2h;极化温度110℃-120℃,极化时间20min-30min。
8.根据权利要求1所述的一种豇豆结构压电光催化复合纤维的制备方法,其特征在于,所述步骤4中,静电纺丝参数为:纺丝电压为22-28kV,接收距离为18-20cm,纺丝温度为20℃~30℃,湿度为10%-20%,推进速度为:0.1ml/L-0.15ml/L。
9.根据权利要求1所述的一种豇豆结构压电光催化复合纤维的制备方法,其特征在于,所述步骤4中,SiO2前驱体纺丝液中正硅酸乙酯为24%-26%、聚乙烯醇为4%-6%、磷酸为0.1%-0.3%、去离子水为67.7%-71.9%,以上组分质量总和为100%。
CN202111229912.2A 2021-10-21 2021-10-21 一种豇豆结构压电光催化复合纤维的制备方法 Active CN113996348B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111229912.2A CN113996348B (zh) 2021-10-21 2021-10-21 一种豇豆结构压电光催化复合纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111229912.2A CN113996348B (zh) 2021-10-21 2021-10-21 一种豇豆结构压电光催化复合纤维的制备方法

Publications (2)

Publication Number Publication Date
CN113996348A true CN113996348A (zh) 2022-02-01
CN113996348B CN113996348B (zh) 2023-08-22

Family

ID=79923576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111229912.2A Active CN113996348B (zh) 2021-10-21 2021-10-21 一种豇豆结构压电光催化复合纤维的制备方法

Country Status (1)

Country Link
CN (1) CN113996348B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136880A (ja) * 2000-11-01 2002-05-14 Kanagawa Acad Of Sci & Technol 光触媒体およびそれを用いた環境浄化方法
US20170056873A1 (en) * 2015-03-13 2017-03-02 The Research Foundation For The State University Of New York Metal oxide nanofibrous materials for photodegradation of environmental toxins
CN107611252A (zh) * 2017-09-08 2018-01-19 天津城建大学 一种ZnO/BaTiO3复合材料制备方法、ZnO/BaTiO3复合材料及应用
CN110540430A (zh) * 2019-08-12 2019-12-06 西安理工大学 一种具有多级结构的压电光催化复合纤维的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136880A (ja) * 2000-11-01 2002-05-14 Kanagawa Acad Of Sci & Technol 光触媒体およびそれを用いた環境浄化方法
US20170056873A1 (en) * 2015-03-13 2017-03-02 The Research Foundation For The State University Of New York Metal oxide nanofibrous materials for photodegradation of environmental toxins
CN107611252A (zh) * 2017-09-08 2018-01-19 天津城建大学 一种ZnO/BaTiO3复合材料制备方法、ZnO/BaTiO3复合材料及应用
CN110540430A (zh) * 2019-08-12 2019-12-06 西安理工大学 一种具有多级结构的压电光催化复合纤维的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEILI DENG: "Cowpea-Structured PVDF/ZnO nanofibers based flexible self-powered piozoelectric bending motion sensor towards remote control of gestures", NANO ENERY, no. 55, pages 516 - 525 *

Also Published As

Publication number Publication date
CN113996348B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
CN102335605B (zh) 一种铜-二氧化钛核壳型纳米粒子的制备方法
CN110540430B (zh) 一种具有多级结构的压电光催化复合纤维的制备方法
CN101279250B (zh) 一种负载型氮掺杂一维结构TiO2及其制备方法
CN105597728B (zh) 二氧化钛/钛酸铋超声强化型光催化剂及其制备方法
CN106732712A (zh) 具有多层级结构的石墨相氮化碳同型异质结光催化材料的合成方法及应用
CN106492849A (zh) 一种BiOCl超薄纳米片光催化剂的制备方法
CN110813298B (zh) 一种钛酸钴@氧化镍核壳光催化材料及其制备方法和应用
CN109502987A (zh) 一种基于空心氧化硅制备高硬度减反膜的方法
CN113564916B (zh) 一种柔性压电光催化纳米纤维的原位制备方法
CN109395762A (zh) 一种具有核壳结构的二氧化锡/氮掺杂石墨/硫化锌复合材料及其制备方法
CN104310791B (zh) 一种利用空心纳米复合粒子构建自洁减反膜的方法
CN111359666A (zh) 硫化铋基复合可见光催化剂及其制备方法
CN104772149B (zh) 一种Bi2O3/BiFeO3/TiO2纳米花光催化材料及其制备方法
CN107376955B (zh) 一种光催化抗菌材料及其制备方法
CN112973686A (zh) 一种热释电效应增强异质结构复合材料光催化性能的方法及应用
CN104925816A (zh) 一种二氧化钛改性棒状二氧化硅核壳材料及其制备方法
CN113996348B (zh) 一种豇豆结构压电光催化复合纤维的制备方法
CN108607536B (zh) 一种制备铋掺杂纳米二氧化钛光催化剂的方法
CN106000440A (zh) g-C3N4量子点负载二氧化钛纳米颗粒的制备方法
CN111514902B (zh) 2,9,16,23-四硝基酞菁铜敏化NiO/Bi2WO6纳米纤维催化剂及制备方法
CN102399072B (zh) 一种智能节能涂层的制备方法
CN105381820B (zh) 天然沸石‑二氧化钛‑杂多酸三元复合催化剂及其制备方法和应用
CN114588895A (zh) 一种具有光催化除甲醛和抗菌功能的纳米银修饰二氧化钛相变微胶囊及其制备方法、应用
CN106391110B (zh) 具有光催化性的氢氧化苯甲酸铜-SiO2复合材料的制备方法
CN110302804B (zh) 一种VS4-TiO2/AC光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant