CN113564916B - 一种柔性压电光催化纳米纤维的原位制备方法 - Google Patents

一种柔性压电光催化纳米纤维的原位制备方法 Download PDF

Info

Publication number
CN113564916B
CN113564916B CN202110823758.5A CN202110823758A CN113564916B CN 113564916 B CN113564916 B CN 113564916B CN 202110823758 A CN202110823758 A CN 202110823758A CN 113564916 B CN113564916 B CN 113564916B
Authority
CN
China
Prior art keywords
flexible
solution
photocatalytic
piezoelectric
nanofiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110823758.5A
Other languages
English (en)
Other versions
CN113564916A (zh
Inventor
汤玉斐
陈希
刘照伟
赵康
赵敬忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202110823758.5A priority Critical patent/CN113564916B/zh
Publication of CN113564916A publication Critical patent/CN113564916A/zh
Application granted granted Critical
Publication of CN113564916B publication Critical patent/CN113564916B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/44Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic Table; Zincates; Cadmates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种柔性压电光催化纳米纤维的原位制备方法,具体按照以下步骤实施:经静电纺丝和煅烧得到表面光滑晶粒尺寸小的柔性无机纤维,纤维表面通过表面活性剂作用干燥后形成均匀孤岛状结构,利用原位生长最终得到中间光催化剂表面孤岛状压电片的复合柔性压电光催化纤维。本发明获得了一种具有良好力学性能和稳定性的柔性无机压电光催化纳米纤维,在后续外加载荷作用时其耐久性更强,循环次数更多,在污水处理、空气净化、抗菌杀毒、光分解水制氢等领域有广阔的应用前景。

Description

一种柔性压电光催化纳米纤维的原位制备方法
技术领域
本发明属于复合纤维制备技术领域,涉及一种柔性压电光催化纳米纤维的原位制备方法。
背景技术
环境污染和清洁能源短缺,逐渐成为威胁人类文明可持续发展的重要原因引起全球学者的广泛关注。半导体光催化剂不仅能利用太阳能在室温下将水分解产生清洁能源氢能,降解有害物质,在能源及环境领域也呈现广阔的前景,有望解决全球能源和环境问题。但是目前半导体光催化技术存在的主要问题之一是光催化效率较低,而光生载流子的分离效率是决定光催化剂活性的关键因素之一。为了促进光生电子-空穴对的分离,学者开发了很多改性的方法如在半导体表面负载贵金属、构筑异质结等,近年来有研究者发现将压电材料与光催化剂耦合,在借助外部环境中的能量,可以使压电材料受到外力作用时产生压电效应,从而在材料内部形成内建电场,加速光生电子-空穴对的分离,提高光催化反应效率。压电光催化是实现优异催化性能的有效方法之一,但是压电光催化剂通常需要超声等高能耗条件,从而限制了实际应用和进一步发展。因此,有关压电光催化性能得新材料设计研究具有重要得科学意义。
通过静电纺丝技术与原位生长法将压电材料和光催化材料相结合,制备无机柔性压电光催化复合纤维。压电材料与光催化剂结合界面处可以通过压电效应产生的压电场促进光生载流子的分离,提高催化效率。然而,目前复合无机光催化材料普遍存在脆性大、易断裂等缺点,从宏观上看主要表现为碎片和粉末形式,在液相悬浮体系光催化剂中仍会面临易团聚、难回收等问题,同时压电材料的复合界面数量也有限,这些问题都严重限制了复合压电光催化剂的实际应用。因此提高复合界面的数量同时保证其柔韧性能,显得格外重要。
中国专利《柔性钇稳定氧化锆纳米纤维膜的制备方法》(申请号:CN201811575756.3,授权号:CN109465004 A,公告日:2019.03.15)公开了一种柔性钇稳定氧化锆纳米纤维膜的制备方法。制备方法包含配制静电纺丝前驱体溶液;对前驱体溶液进行均质、分散处理;高温煅烧后自然冷却至室温,制得柔性钇稳定氧化锆纳米纤维膜。本发明实现重复使用,该纤维膜材料可实现对有机染料的有效降解,有望应用在污水处理等领域。其是单一的ZrO2纳米纤维存在太阳光利用率低、量子效率低等的问题。
中国专利《一种柔性压电纳米纤维膜及其制备方法和应用》(申请号:CN201810097765.X,授权号:CN108251971 A,公告日:2018.07.06)该柔性压电纳米纤维膜的制备方法利用静电纺丝的方法在PVDF的纤维中掺杂ZnO纳米颗粒修饰PVDF纤维,提高了最终柔性压电纳米纤维膜的压电性能。PVDF是一种有机压电材料,光催化活性差,其制备的复合纤维压电光催化活性较弱。
Shao等人(Zhang Z,Shao C,Li X,Sun Y,Zhang M,Mu J,et al.Hierarchicalassembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2nanofibers:enhanced photocatalytic activity based on photoinduced interfacialcharge transfer[J].Nanoscale,2013,5(2):606-618.)通过在TiO2纳米纤维上水热生长SnS2纳米片来构筑多级异质结光催化剂,发现SnS2/TiO2纤维在降解染料和苯酚方面,比单一组分的TiO2纤维和SnS2纳米片都具有更好的光催化活性。但SnS2不能提高纤维的机械强度,宏观上以碎片和粉末形式存在,在液相悬浮体系光催化剂中仍会面临易团聚、难回收的问题。
Zhou等人(Fang Zhou,Zhi guang Zhang,Juan Wangc,Shulai Huang,Jie Liuc,Yongping Lic,Qiang Wangb*and Wenjun Liu In situ preparation of 2DMoS2nanosheets vertically supported on TiO2/PVDF flexible fibers and theirphotocatalytic performance[J].Nanotechnology,al 2020Nanotechnology 31375606)采用静电纺丝和低温水热无酸法相结合的方法,制备了垂直支撑在TiO2/PVDF柔性纤维上的二维MoS2纳米片。负载的2D-MoS2纳米片不仅可以拓宽TiO2的光俘获范围,而且可以大大抑制光生电子-空穴对的复合速率。但PVDF是一种有机材料,存在易降解的问题。
发明内容
本发明的目的是提供一种柔性压电光催化纳米纤维的原位制备方法,具体复合纤维稳定性好、机械性能高且能改进有效的界面接触提高光催化效率的特点。
本发明所采用的技术方案是,一种柔性压电光催化纳米纤维的原位制备方法,具体按照以下步骤实施:
步骤1、配制前驱体纺丝液;
先将聚合物加入到有机溶剂中搅拌均匀得到溶液A,然后将稀土金属盐稳定剂加入到光催化剂前驱体溶液中混合均匀得到溶液B,最后将溶液A与溶液B混合,搅拌均匀得到柔性光催化纤维前驱体纺丝液;
步骤2、静电纺丝制备柔性光催化纤维;
将步骤1得到的前驱体纺丝液置于推进泵中,设置纺丝电压、推进速度、接收距离、温度及湿度,进行静电纺丝,再进行煅烧处理得到柔性光催化纤维;
步骤3、纤维表面构建孤岛结构;
将步骤2得到的柔性光催化纤维在压电相溶液和表面活性剂的混合溶液中进行浸渍处理,干燥处理后得到表面具有孤岛结构的柔性光催化纤维;
步骤4、原位生长柔性复合纤维;
在步骤3得到的柔性光催化纤维表面旋涂压电相前驱体溶胶,重复旋涂若干次,在纤维表面孤岛结构处原位生长压电纳米片,经煅烧处理得到柔性复合纳米纤维;
步骤5、高温极化处理;
将步骤4得到的柔性复合纳米纤维进行高温极化处理,得到柔性压电光催化纳米纤维。
本发明的特点还在于:
步骤1中稀土金属盐稳定剂与光催化剂前驱体的质量比为:1:50~150,每克B溶液加入抑制剂0.02~0.05g,并在磁力搅拌器上水浴加热混合,温度为40~60℃,时间为1~3h,得到溶液B。
步骤1中溶液A与溶液B混合时,加入酸溶液调节PH值,使得PH值小于7,并在磁力搅拌器上水浴加热混合,温度为40~60℃,时间为6~12h。
步骤1中光催化剂前驱体为钛盐、锌盐、镉盐中的任意一种,聚合物为聚乙烯吡咯烷酮、聚乙烯醇中的任意一种,稀土金属盐稳定剂为硝酸镧、钨酸钠、硝酸铈、硝酸钇、硝酸钕中的任意一种,有机溶剂为乙酸、无水乙醇、DMF、去离子水中的任意一种或多种,抑制剂为醋酸或硝酸,钛盐为钛酸丁酯、钛酸异丙酯、四氯化钛中的任意一种或两种。
步骤2中纺丝电压为16~18kv,接收距离为15cm~18cm,纺丝温度在20℃~30℃,纺丝湿度为10%~30%,推进泵推进速度为0.3mL/h~0.6mL/h;煅烧处理温度为500℃~700℃,时间为1~4h。
步骤3中压电相溶液和表面活性剂的混合溶液中压电相盐溶液、表面活性剂和去离子水的摩尔比为1:0.01~0.4:30~70。
步骤3中压电相溶液为硝酸钡、醋酸钡、硫酸钡、氯化钡、硝酸锌、碘化锌、溴化锌、二水合醋酸锌中的任意一种;表面活性剂为十六烷基三甲基溴化铵CTAB、十六烷基三甲基氯化铵CTAC、三乙酰氧基硼氢化钠STAB、十四烷基三甲基溴化铵TTAB中的一种或几种。
步骤3中干燥处理具体为在烘箱中进行干燥,温度为60~120℃,时间为30~60min。
步骤4具体为,将压电相前驱体溶胶逐滴滴加到柔性光催化纤维表面中央,旋涂机以转速200r/min~1000r/min旋转,重复旋转步骤,获得3~10层溶胶的复合薄膜;再将复合薄膜进行煅烧,升温速率2~5℃/min,煅烧温度100~300℃,煅烧时间1~3h,煅烧气氛为空气,溶剂挥发过程中在柔纳米纤维载体表面同步原位反应,形成压电相,冷却至室温得到柔性复合纳米纤维。
步骤5中极化电压为1.0-1.5kv/mm,极化温度为:140℃,极化时间为30min。
本发明的有益效果是:本发明所制备的柔性复合纤维具有良好的稳定性和机械性能且有效界面接触高,光催化效率优异。本发明在纺丝前驱体溶液中调节稀土金属盐的比例使得其与光催化前驱体发生络合反应,后续经静电纺丝后煅烧获得表面光滑的柔性纳米纤维,稀土元素的添加以及比例调控有效保证了其在光催化剂材料晶格中取代掺杂,可有效减小晶粒尺寸,极大程度的降低纳米纤维的脆性,提升纳米纤维柔性。将阳离子型表面活性剂添加入压电溶液中,降低溶液表面张力,使得其能够与柔性纤维表面结合,形成孤岛状结构。调控旋涂溶胶的组成成分,钡溶胶的加入使得其与纤维表面孤岛结构上的阳离子表面活性剂化学结合,逐渐在孤岛结构表面原位生长,获得具有孤岛结构压电纳米片的柔性复合材料。经煅烧及高温极化处理后,最终获得中间光催化剂表面孤岛状压电片的复合柔性压电光催化纤维。在低频微扰载荷的作用下,能充分利用压电材料与光催化剂界面的内电场作用,有效驱动光生电子和空穴的分离,从而高效提高光催化反应效率。同时所制备的柔性复合材料具有良好的力学性能、稳定性。其有效界面接触高,进一步提高光催化反应效率。在污水处理、空气净化、抗菌杀毒、光分解水制氢等领域有广阔的应用前景。
附图说明
图1是本发明制备的柔性压电光催化复合纤维的单根形貌示意图。
图中,1.压电陶瓷相,2.光催化剂纳米纤维。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种柔性压电光催化纳米纤维的原位制备方法,具体按照以下步骤实施:
步骤1,配置纺丝液:先配置纺丝液;以高分子聚合物为模板,在常温下称取一定量的聚合物粉末,加入有机溶剂中搅拌均匀获得溶液A,B溶液的稀土金属盐稳定剂与光催化剂前驱体的质量比为:1:(50~150);加入抑制水解剂,每克B溶液加入抑制剂的量为0.02~0.05g,在磁力搅拌器上水浴加热,温度40~60℃,搅拌1~3h;溶液A与溶液B混合加入酸溶液调节PH值使PH值小于7,水浴加热温度40~60℃,搅拌6~12h,制备得到纺丝液;
步骤2,静电纺丝制备柔性光催化纤维,将光催化剂前驱体、聚合物和溶剂混合成的均匀纺丝液置入推进泵中,静电纺丝参数为:纺丝电压为16~18kv,接收距离为15cm~18cm,纺丝温度在20℃~30℃,湿度在10%~30%,推进泵推进速度为0.3mL/h~0.6mL/h,将静电纺丝制备的前驱体纤维在500℃~700℃下煅烧,保温1~4h,得到柔性光催化纤维;
步骤3、孤岛结构的构建为:步骤2制备的柔性光催化纤维浸渍适量浓度和比例的压电相盐溶液和表面活性剂,干燥后得到孤岛结构,制备过程中压电相盐溶液、表面活性剂和去离子水的摩尔比为1:(0.01~0.4):(30~70);
压电相盐为:硝酸钡、醋酸钡、硫酸钡、氯化钡、硝酸锌、碘化锌、溴化锌、二水合醋酸锌中的任意一种;表面活性剂为十六烷基三甲基溴化铵(CTAB)、十六烷基三甲基氯化铵(CTAC)、三乙酰氧基硼氢化钠(STAB)、十四烷基三甲基溴化铵(TTAB)中的一种或几种任意混合物,
在烘箱中干燥处理:温度60~120℃,时间30~60min;
步骤4、原位生长制得复合柔性光催化复合纤维,具体为:
先通过溶胶凝胶法制备含压电相均匀透明的前驱体混合溶胶,按照Ba:Ti=1称取一定钛酸丁酯,室温下加入适量冰醋酸和无水乙醇,然后,在30℃下逐滴滴加(Ba:Ti=1)的醋酸钡水溶液,搅拌30min,形成0.01~0.06mol/L均匀透明的混合前驱体溶胶;
选择二水合乙酸锌作为前驱体,乙二醇甲醚作为有机溶剂,乙醇胺作为稳定剂,将一定量的二水合乙酸锌溶解于适量乙二醇甲醚中,再加入等摩尔的乙醇胺,在75℃下充分搅拌2h,形成锌离子浓度为0.1~1mol/L的淡黄色透明前驱体溶液;
将前驱体溶胶逐滴滴加到薄膜中央,旋涂机以转速200r/min~1000r/min旋转,重复旋转步骤,获得3~10层溶胶的复合薄膜,再将复合薄膜进行煅烧,升温速率2~5℃/min,煅烧温度100~300℃,煅烧时间1~3h,煅烧气氛为空气,在溶剂挥发过程中在柔纳米纤维载体表面同步原位反应,形成压电相,冷却至室温环境得到复合柔性纳米纤维膜;
步骤5、高温极化处理;
将步骤4得到的柔性复合纳米纤维进行高温极化处理,极化电压为1.0-1.5kv/mm,极化温度为:140℃,极化时间为30min,得到柔性压电光催化纳米纤维如图1所示,其中1为压电陶瓷相,2为光催化剂纳米纤维。
实施例1
制备BaTiO3-TiO2复合柔性纤维膜
将1g六水合硝酸钇、3.5g钛酸异丙酯、1g PVP、6g DMF和2g冰醋酸混合成的均匀纺丝液置入推进泵中,调节纺丝电压为12kv,接收距离为18cm,纺丝温度为30℃,湿度为10%,推进泵推进速度为0.3mL/h,进行静电纺丝,再在550℃下煅烧处理2h,得到柔性TiO2纳米纤维;
按照Ba:Ti=1称取3g钛酸丁酯,室温下加入10ml冰醋酸和10ml无水乙醇,然后,在搅拌下滴加1.456g醋酸钡水溶液,搅拌30min,形成均匀透明的混合溶胶。
将柔性TiO2纤维膜固定在旋涂机上,先吸取0.1mol/L的质量比(CTAC:Ba(NO3)2=7:3)的混合溶液滴到薄膜中央,旋涂机以转速200r/min~1000r/min旋转。柔性基地停止旋转,再滴入含锌的溶胶,室温下旋涂机以转速200r/min~1000r/min旋转,重复旋涂5次,再在200℃空气中煅烧2h,随炉冷却至室温得到BaTiO3-TiO2复合柔性纤维膜。
将得到的复合柔性纳米纤维膜进行极化处理,极化电压为:1.0-1.5kv/mm,极化温度为:140℃,极化时间为:30min,从而得到复合压电光催化复合纤维。
实施例2
制备BaTiO3-ZnO复合柔性纤维膜
将0.8g六水合硝酸钇、3.5g硝酸锌、1.5g PVP、6g DMF和2g冰醋酸混合成的均匀纺丝液置入推进泵中,调节纺丝电压为12kv,接收距离为18cm,纺丝温度为30℃,湿度为10%,推进泵推进速度为0.3mL/h,进行静电纺丝,再在550℃下煅烧处理2h,得到柔性ZnO纳米纤维;
按照Ba:Ti=1称取3g钛酸丁酯,室温下加入10ml冰醋酸和10ml无水乙醇,然后,在搅拌下滴加1.456g醋酸钡水溶液,搅拌30min,形成均匀透明的混合溶胶。
将柔性ZnO纤维膜固定在旋涂机上,先吸取0.1mol/L的质量比(CTAB:Ba(NO3)2=3:2)的混合溶液滴到薄膜中央,旋涂机以转速200r/min~1000r/min旋转。柔性基地停止旋转,再滴入含钡的溶胶,室温下旋涂机以转速200r/min~1000r/min旋转,重复旋涂5次,再在200℃空气中煅烧2h,随炉冷却至室温得到BaTiO3-ZnO复合柔性纤维膜。
将得到的复合柔性纳米纤维膜进行极化处理,极化电压为:1.0-1.5kv/mm,极化温度为:140℃,极化时间为:30min,从而得到复合压电光催化复合纤维。
实施例3
制备ZnO-TiO2复合柔性纤维膜
将1g六水合硝酸钇、3.5g钛酸异丙酯、1g PVP、6g DMF和2g冰醋酸混合成的均匀纺丝液置入推进泵中,调节纺丝电压为12kv,接收距离为18cm,纺丝温度为30℃,湿度为10%,推进泵推进速度为0.3mL/h,进行静电纺丝,再在550℃下煅烧处理2h,得到柔性TiO2纳米纤维;
选择二水合乙酸锌作为前驱体,乙二醇甲醚作为有机溶剂,乙醇胺作为稳定剂,将3.78g的二水合乙酸锌溶解于4.3g乙二醇甲醚中,再加入等摩尔的乙醇胺,在75℃下充分搅拌2h,形成锌离子浓度为0.5mol/L的淡黄色透明溶液。
将柔性TiO2纤维膜固定在旋涂机上,先吸取0.1mol/L的质量比(CTAC:Zn(NO3)2=5:1)的混合溶液滴到薄膜中央,旋涂机以转速200r/min~1000r/min旋转。柔性基地停止旋转,再滴入含锌的溶胶,室温下旋涂机以转速200r/min~1000r/min旋转,重复旋涂5次,再在200℃空气中煅烧2h,随炉冷却至室温得到ZnO-TiO2复合柔性纤维膜。
将得到的复合柔性纳米纤维膜进行极化处理,极化电压为:1.0-1.5kv/mm,极化温度为:140℃,极化时间为:30min,从而得到复合压电光催化复合纤维。
实施例4
制备BaTiO3-CdO复合柔性纤维膜
将0.8g六水合硝酸钇、2.56g乙酸镉、2.77g PVP、6g DMF和2g冰醋酸混合成的均匀纺丝液置入推进泵中,调节纺丝电压为12kv,接收距离为18cm,纺丝温度为30℃,湿度为10%,推进泵推进速度为0.3mL/h,进行静电纺丝,再在550℃下煅烧处理2h,得到柔性CdO纳米纤维;
按照Ba:Ti=1称取3g钛酸丁酯,室温下加入10ml冰醋酸和10ml无水乙醇,然后,在搅拌下滴加1.456g醋酸钡水溶液,搅拌30min,形成均匀透明的混合溶胶。
将柔性CdO纤维膜固定在旋涂机上,先吸取0.1mol/L的质量比(CTAC:Ba(NO3)2=5:1)的混合溶液滴到薄膜中央,旋涂机以转速200r/min~1000r/min旋转。柔性基地停止旋转,再滴入含钡的溶胶,室温下旋涂机以转速200r/min~1000r/min旋转,重复旋涂6次,再在200℃空气中煅烧2h,随炉冷却至室温得到BaTiO3-CdO复合柔性纤维膜。
将得到的复合柔性纳米纤维膜进行极化处理,极化电压为:1.0-1.5kv/mm,极化温度为:140℃,极化时间为:30min,从而得到复合压电光催化复合纤维。
本发明通过添加0.6%~2%的稀土金属盐并与光催化前驱体在溶液中发生络合反应利用静电纺丝和煅烧方法保证纤维具有光滑表面同时稀土元素在光催化剂材料的晶格中取代掺杂,有效减小了的晶粒尺寸,最终得到柔性无机纤维。通过添加阳离子型表面活性剂降低水溶液的表面张力,干燥后能在在柔性纤维表面形成均匀孤岛状结构。进一步旋涂带钡原子的压电相的溶胶,钡溶胶能化学吸附阳离子表面活性剂,溶胶在孤岛结构上生长,接着调节烧结温度和时间,使压电材料通过原位生长在光催化纳米纤维表面。最终得到中间光催化剂表面孤岛状压电材料的复合柔性压电光催化纤维。在低频微扰的外界条件下,该复合柔性纤维能充分利用压电材料与光催化剂界面的内电场作用,有效驱动光生电子和空穴的分离,具有很高的光催化活性。

Claims (5)

1.一种柔性压电光催化纳米纤维的原位制备方法,其特征在于,具体按照以下步骤实施:
步骤1、配制前驱体纺丝液;
先将聚合物加入到有机溶剂中搅拌均匀得到溶液A,然后将稀土金属盐稳定剂加入到光催化剂前驱体溶液中混合均匀得到溶液B,最后将溶液A与溶液B混合,搅拌均匀得到柔性光催化纤维前驱体纺丝液;
所述步骤1中稀土金属盐稳定剂与光催化剂前驱体的质量比为:1:50~150,每克B溶液加入抑制剂0.02~0.05g,并在磁力搅拌器上水浴加热混合,温度为40~60℃,时间为1~3h,得到溶液B;所述步骤1中光催化剂前驱体为钛盐、锌盐、镉盐中的任意一种,聚合物为聚乙烯吡咯烷酮、聚乙烯醇中的任意一种,稀土金属盐稳定剂为硝酸镧、钨酸钠、硝酸铈、硝酸钇、硝酸钕中的任意一种,有机溶剂为乙酸、无水乙醇、DMF、去离子水中的任意一种或多种,抑制剂为醋酸或硝酸,钛盐为钛酸丁酯、钛酸异丙酯、四氯化钛中的任意一种或两种;
步骤2、静电纺丝制备柔性光催化纤维;
将步骤1得到的前驱体纺丝液置于推进泵中,设置纺丝电压、推进速度、接收距离、温度及湿度,进行静电纺丝,再进行煅烧处理得到柔性光催化纤维;
步骤3、纤维表面构建孤岛结构;
将步骤2得到的柔性光催化纤维在压电相溶液和表面活性剂的混合溶液中进行浸渍处理,干燥处理后得到表面具有孤岛结构的柔性光催化纤维;
所述步骤3中压电相溶液和表面活性剂的混合溶液中压电相盐溶液、表面活性剂和去离子水的摩尔比为1:0.01~0.4:30~70;所述步骤3中压电相溶液为硝酸钡、醋酸钡、硫酸钡、氯化钡、硝酸锌、碘化锌、溴化锌、二水合醋酸锌中的任意一种;表面活性剂为十六烷基三甲基溴化铵CTAB、十六烷基三甲基氯化铵CTAC、三乙酰氧基硼氢化钠STAB、十四烷基三甲基溴化铵TTAB中的一种或几种;
步骤4、原位生长柔性复合纤维;
在步骤3得到的柔性光催化纤维表面旋涂压电相前驱体溶胶,重复旋涂若干次,在纤维表面孤岛结构处原位生长压电纳米片,经煅烧处理得到柔性复合纳米纤维;
步骤5、高温极化处理;
将步骤4得到的柔性复合纳米纤维进行高温极化处理,得到柔性压电光催化纳米纤维;
所述步骤5中极化电压为1.0-1.5kv/mm,极化温度为:140℃,极化时间为30min。
2.根据权利要求1所述的一种柔性压电光催化纳米纤维的原位制备方法,其特征在于,所述步骤1中溶液A与溶液B混合时,加入酸溶液调节pH值,使得pH值小于7,并在磁力搅拌器上水浴加热混合,温度为40~60℃,时间为6~12h。
3.根据权利要求1所述的一种柔性压电光催化纳米纤维的原位制备方法,其特征在于,所述步骤2中纺丝电压为16~18kv,接收距离为15cm~18cm,纺丝温度在20℃~30℃,纺丝湿度为10%~30%,推进泵推进速度为0.3mL/h~0.6mL/h;煅烧处理温度为500℃~700℃,时间为1~4h。
4.根据权利要求1所述的一种柔性压电光催化纳米纤维的原位制备方法,其特征在于,所述步骤3中干燥处理具体为在烘箱中进行干燥,温度为60~120℃,时间为30~60min。
5.根据权利要求1所述的一种柔性压电光催化纳米纤维的原位制备方法,其特征在于,所述步骤4具体为,将压电相前驱体溶胶逐滴滴加到柔性光催化纤维表面中央,旋涂机以转速200r/min~1000r/min旋转,重复旋转步骤,获得3~10层溶胶的复合薄膜;再将复合薄膜进行煅烧,升温速率2~5℃/min,煅烧温度100~300℃,煅烧时间1~3h,煅烧气氛为空气,溶剂挥发过程中在柔纳米纤维载体表面同步原位反应,形成压电相,冷却至室温得到柔性复合纳米纤维。
CN202110823758.5A 2021-07-21 2021-07-21 一种柔性压电光催化纳米纤维的原位制备方法 Active CN113564916B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110823758.5A CN113564916B (zh) 2021-07-21 2021-07-21 一种柔性压电光催化纳米纤维的原位制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110823758.5A CN113564916B (zh) 2021-07-21 2021-07-21 一种柔性压电光催化纳米纤维的原位制备方法

Publications (2)

Publication Number Publication Date
CN113564916A CN113564916A (zh) 2021-10-29
CN113564916B true CN113564916B (zh) 2023-04-18

Family

ID=78165932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110823758.5A Active CN113564916B (zh) 2021-07-21 2021-07-21 一种柔性压电光催化纳米纤维的原位制备方法

Country Status (1)

Country Link
CN (1) CN113564916B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114059235B (zh) * 2021-11-29 2022-12-02 南京摩开科技有限公司 一种光响应聚氨酯导电纳米纤维膜及其制备方法
CN114395862B (zh) * 2021-12-22 2023-01-17 盐城工学院 一种柔性MOFs/氧化物半导体纳米纤维膜及其制备方法
CN114471712B (zh) * 2022-01-26 2023-12-08 中国人民解放军联勤保障部队第九八九医院 一种用于净化空气的压电光催化薄膜的制备方法
CN114917961B (zh) * 2022-06-10 2023-07-21 东南大学 基于超润湿表面的金属半导体异质结构光催化滤网的制备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014915A (zh) * 2012-12-21 2013-04-03 福建师范大学 一种掺杂氧化镧的二氧化钛一维纳米材料及其制备方法
KR101781680B1 (ko) * 2014-12-02 2017-09-25 한양대학교 산학협력단 유연성 및 신축성이 우수한 압전 섬유 및 이의 제조방법
CN110540430B (zh) * 2019-08-12 2021-10-22 西安理工大学 一种具有多级结构的压电光催化复合纤维的制备方法
CN113046856B (zh) * 2021-04-08 2022-11-15 西安理工大学 一种具有高循环稳定性的压电光催化复合纤维的制备方法

Also Published As

Publication number Publication date
CN113564916A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN113564916B (zh) 一种柔性压电光催化纳米纤维的原位制备方法
CN104153123B (zh) 一种柔性氧化钛纳米纤维膜及其制备方法
CN103451773B (zh) 铁酸铋纳米纤维材料及其制备方法
CN104190458B (zh) 一种双元素改性纳米二氧化钛溶胶的低温制备工艺
CN105126886B (zh) 一种TiO2/WO3/g-C3N4全介孔纳米纤维的制备方法
CN102489289A (zh) 一种SnO2/TiO2复合纳米纤维光催化剂及制备方法
CN104148047A (zh) 一种碳掺杂氧化锌基可见光催化剂的宏量制备方法
CN104607216B (zh) 磷铝共掺杂型导电氧化锌纳米催化剂的一步合成方法
CN113737395A (zh) 一种柔性二氧化钛纳米纤维膜及其制备方法和应用
CN101244381B (zh) TiO2-Al2O3复合纳米粉体材料的制备方法
CN107362792B (zh) 一种钛酸锶/铌酸锡复合纳米材料的制备方法
CN102486967A (zh) 复合有序多孔纳米二氧化钛薄膜的制备方法
CN105148965B (zh) 一种TiO2/WO3/g-C3N4全介孔纳米纤维
Liu et al. Fabrication and photocatalytic properties of flexible BiOI/SiO2 hybrid membrane by electrospinning method
KR20110091291A (ko) 고효율 염료감응형 태양전지
CN115467047B (zh) 一种高效抗菌光催化的连续氧化铝纤维的制备方法
CN113101952B (zh) 一种Bi4O5I2/Bi5O7I复合光催化剂及其制备方法、应用
CN113078266B (zh) 一种多酸修饰的二氧化钛纳米材料及其制备方法和应用
CN109225348B (zh) 一核双壳结构的氧化镍@钛酸钙@聚乙烯醇催化材料及其制备方法
CN111790367B (zh) 一种TiO2/ZnO异质纳米纤维高效光催化剂的制备方法
CN108187720B (zh) 一种N-Au共掺杂的复合二氧化钛纳米线的制备方法
CN109772338B (zh) 一种含缺陷的Ni/NiTiO3-x/C复合纳米纤维膜光催化材料
CN109019667B (zh) 一种ZnO/Sm2O3复合薄膜及其制备方法和应用
WO2024187661A1 (zh) 一种柔性氧化铜/陶瓷氧化物纳米纤维膜及其制备方法
CN115530183B (zh) C/n@二氧化钛、金属氧化物掺杂c/n@二氧化钛及其纳米纤维与制备方法和杀菌设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant