CN113981417B - 优化石墨舟饱和效果的方法 - Google Patents

优化石墨舟饱和效果的方法 Download PDF

Info

Publication number
CN113981417B
CN113981417B CN202111214807.1A CN202111214807A CN113981417B CN 113981417 B CN113981417 B CN 113981417B CN 202111214807 A CN202111214807 A CN 202111214807A CN 113981417 B CN113981417 B CN 113981417B
Authority
CN
China
Prior art keywords
silicon nitride
graphite boat
radio frequency
furnace tube
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111214807.1A
Other languages
English (en)
Other versions
CN113981417A (zh
Inventor
程平
朱露
张凯胜
孙铁囤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou EGing Photovoltaic Technology Co Ltd
Original Assignee
Changzhou EGing Photovoltaic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou EGing Photovoltaic Technology Co Ltd filed Critical Changzhou EGing Photovoltaic Technology Co Ltd
Priority to CN202111214807.1A priority Critical patent/CN113981417B/zh
Publication of CN113981417A publication Critical patent/CN113981417A/zh
Application granted granted Critical
Publication of CN113981417B publication Critical patent/CN113981417B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4407Cleaning of reactor or reactor parts by using wet or mechanical methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及石墨舟技术领域,尤其是涉及一种优化石墨舟饱和效果的方法,包括以下步骤:a、去除旧石墨舟上氮化硅;b、水洗;c、烘干;d、进饱和炉管预热;f、抽空除残酸和水蒸气;g、重复步骤d、f两次,将预热时间改为5min;h、氮化硅高密度沉积;i、残留氮化硅吸附;j、氮化硅均匀性层;k、碳氮化硅保护膜;l、氮化硅外层保护膜:m、抽真空;n、出舟。本发明提供的一种优化石墨舟饱和效果的方法,充分利用了石墨材料分子内空间较大性质;通过过量反应保证石墨舟有较好均匀性;增加石墨舟的膜厚均匀性;在里层增加了碳氮化硅在工艺射频时候充分保护了石墨舟,增加了石墨舟的使用寿命。

Description

优化石墨舟饱和效果的方法
技术领域
本发明涉及石墨舟技术领域,尤其是涉及一种优化石墨舟饱和效果的方法。
背景技术
PECVD:是借助微波或射频等使含有薄膜成分原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。为了使化学反应能在较低的温度下进行,利用了等离子体的活性来促进反应,因而这种CVD称为等离子体增强化学气相沉积。
现有技术中,石墨舟的饱和工艺采用氢氟酸洗、水洗、烘干6-7小时,在硅烷和氨气反应下饱和3小时,具有以下三种缺点:(a)、石墨舟从清洗到饱和工艺时间较长;(b)、石墨舟饱和不足,工艺前几轮颜色偏薄,饱和过多,工艺时间长,浪费氨气、硅烷等;(c)、石墨舟饱和均匀性较差,在工艺时候容易产生色差片。
发明内容
本发明要解决的技术问题是:为了克服现有技术中(a)、石墨舟从清洗到饱和工艺时间较长;(b)、石墨舟饱和不足,工艺前几轮颜色偏薄,饱和过多,工艺时间长,浪费氨气、硅烷等;(c)、石墨舟饱和均匀性较差,在工艺时候容易产生色差片的问题,提供一种优化石墨舟饱和效果的方法。
本发明解决其技术问题所采用的技术方案是:一种优化石墨舟饱和效果的方法,包括以下步骤:
a、去除旧石墨舟上氮化硅:使用15%-20%氢氟酸将石墨舟放进去清洗,清洗时间为4个小时;
b、水洗:使用纯水对石墨舟进行漂洗,主要为了洗除残留的酸,水洗时间为4个小时;
c、烘干:用烘箱对石墨舟进行烘干,温度为100-120℃,烘干时间为6H;
d、进饱和炉管预热:将烘干好的石墨舟放入PECVD炉管进行预热,将石墨舟温度预热到450±50℃,预热时间15min;
f、抽空除残酸和水蒸气:由于石墨材料空间结构,吸附效果较好,需要将PECVD炉管温度维持在450±50℃,对PECVD炉管抽真空,抽真空时间为2min,目的是将炉管内气体和石墨舟残留的水蒸气和残酸抽出,时间2min是将气体压力从1个大气压降低到80mtorr,气压单位80mtorr等于8帕斯卡;
g、重复步骤d 、f两次,将预热时间改为5min,重复两次有更好的效果,通过加热时充入氮气携带水分子,然后抽真空目的是将残留水蒸气抽的更干净,此时石墨舟上残留的水蒸气和酸较少量;
h、氮化硅高密度沉积:PECVD炉管内温度提升至480-500℃,通入硅烷SiH4与氨气NH3并开放射频,使石墨舟表面形成第一层氮化硅膜,所述步骤h中硅烷SiH4与氨气NH3的比例1:4,SiH4流量为1000±300sccm,NH3流量为5000±500sccm,射频功率为仪器最大的80%,即射频功率为8.5±1KW,射频打开和关闭时间比1: 13±3,射频开放次数60±10,压强维持在1900+300mtorr,第一层氮化硅膜镀膜时间为1000±100s,射频电源在功率8.5KW时能量足够将反应气体轰击成SiH 、SiH2和NH 、NH2等离子体基团,等离子有很高的能量反应生成氮化硅SIN4,此步骤开始饱和吸附,石墨结构吸附能力较强,所以通入较多的气体,增加离子反应速率,同时减慢炉管内抽速,目的让石墨舟有时间去吸附;
i、残留氮化硅吸附:PECVD炉管内温度在480-500℃,停止注入硅烷SiH4、氨气NH3以及射频,同时将通入氮气,让石墨舟吸附剩余的氮化硅,所述步骤i中氮气流量为20000sccm,氮气通入时间为30秒,使得PECVD炉管内压强维持在3000±300mtorr,让石墨舟吸附剩余的氮化硅,吸附剩余的氮化硅时间为1.5min;
j、氮化硅均匀性层;PECVD炉管内温度在480-500℃,通入硅烷SiH4与氨气NH3并开放射频,在第一层氮化硅膜表面形成第二层氮化硅膜,所述步骤j中硅烷SiH4与氨气NH3的比例1:3,SiH4流量为1200±300sccm,NH3流量为3600±500sccm,射频功率为仪器最大的80%,即射频功率为8.5±1KW,射频打开和关闭时间比1: 10±2,射频开放次数60±10,压强维持在1900±300mtorr第二层氮化硅膜镀膜时间为1000±100s,此时,可以将在反应的炉管气体状态视为流体,那石墨舟中间位置速率高于石墨舟变片的,所以为了均匀性较好,所以炉管内要气体为充分过量状态;
k、碳氮化硅保护膜: PECVD炉管内温度在480-500℃,通入硅烷SiH4、氨气NH3与甲烷CH4并开放射频,在第二层氮化硅膜表面形成第三层碳氮化硅膜,所述步骤k中SiH4流量为1000±300sccm,NH3流量为5000±500sccm,CH4流量为7000±500sccm,射频功率为8.5±1KW,射频开放次数60±10,压强维持在1800±300mtorr,第三层碳氮化硅膜镀膜时间为500±50s,碳氮化硅有很好的致密性和较高的抗高温性能,所以为了保护石墨舟,需要加一层碳氮化硅;
l、氮化硅外层保护膜:PECVD炉管内温度在480-500℃,通入硅烷SiH4与氨气NH3并开放射频,在第三层碳氮化硅膜表面形成第四层氮化硅膜,所述步骤l中SiH4流量为700±50sccm,NH3流量为7000±400sccm,射频开放次数60±10,压强维持在1600±300mtorr;第四层氮化硅膜镀膜时间为1000±100s,第四层氮化硅膜厚度为20±5纳米,氮化硅除了致密性好的物理性质外,还有一个优点是具有润滑性;
m、抽真空:镀膜完成后,PECVD炉管内温度在450±50℃,对炉内进行抽真空,抽真空的时间控制在1min 内,使炉内的压强为零;
n、出舟:PECVD炉管内温度在450±50℃,充氮气,使炉管内压力达到大气压等同,然后开炉门出舟。
本发明的有益效果是:本发明提供的一种优化石墨舟饱和效果的方法,充分利用了石墨材料分子内空间较大性质;
1、通过过量反应保证石墨舟有较好均匀性,过量反应为步骤h,过量是指气体比例较高能够生产较多的氮化硅,相对于步骤i的气体比例是1:10 ,步骤h的气体比例为1:4.25能够产生更多的等离子体,浓度更高;
2、增加石墨舟的膜厚均匀性,均匀性公式=(最大值-最小值)/(最大值+最小值)),通过增加吸附时间来以达到最大化利用反应物,通过氮气来增加压力来加快石墨舟吸附率,从而提高氮化硅的利用率;
3、在里层增加了碳氮化硅在工艺射频时候充分保护了石墨舟,增加了石墨舟的使用寿命,且能够增加成品率,碳氮化硅有润滑性,能够减少污染项;
4、保证氮化硅反应时间为60min,提高氮化硅膜的均匀性,保证饱和出来石墨舟做出硅片颜色正常。
实施方式
一种优化石墨舟饱和效果的方法,包括以下步骤:
a、去除旧石墨舟上氮化硅:使用15%-20%氢氟酸将石墨舟放进去清洗,清洗时间为4个小时;
b、水洗:使用纯水对石墨舟进行漂洗,主要为了洗除残留的酸,水洗时间为4个小时;
c、烘干:用烘箱对石墨舟进行烘干,温度为100-120℃,烘干时间为6H;
d、进饱和炉管预热:将烘干好的石墨舟放入PECVD炉管进行预热,将石墨舟温度预热到450±50℃,预热时间15min;
f、抽空除残酸和水蒸气:由于石墨材料空间结构,吸附效果较好,需要将PECVD炉管温度维持在450±50℃,对PECVD炉管抽真空,抽真空时间为2min,目的是将炉管内气体和石墨舟残留的水蒸气和残酸抽出,时间2min是将气体压力从1个大气压降低到80mtorr,气压单位80mtorr等于8帕斯卡;
g、重复步骤d 、f两次,将预热时间改为5min,重复两次有更好的效果,通过加热时充入氮气携带水分子,然后抽真空目的是将残留水蒸气抽的更干净,此时石墨舟上残留的水蒸气和酸较少量;
h、氮化硅高密度沉积:PECVD炉管内温度提升至480-500℃,通入硅烷SiH4与氨气NH3并开放射频,使石墨舟表面形成第一层氮化硅膜,所述步骤h中硅烷SiH4与氨气NH3的比例1:4,SiH4流量为1000±300sccm,NH3流量为5000±500sccm,射频功率为仪器最大的80%,即射频功率为8.5±1KW,射频打开和关闭时间比1: 13±3,射频开放次数60±10,压强维持在1900+300mtorr,第一层氮化硅膜镀膜时间为1000±100s,射频电源在功率8.5KW时能量足够将反应气体轰击成SiH 、SiH2和NH 、NH2等离子体基团,等离子有很高的能量反应生成氮化硅SIN4,此步骤开始饱和吸附,石墨结构吸附能力较强,所以通入较多的气体,增加离子碳氮化硅反应速率,同时减慢炉管内抽速,目的让石墨舟有时间去吸附;
i、残留氮化硅吸附:PECVD炉管内温度在480-500℃,停止注入硅烷SiH4、氨气NH3以及射频,同时将通入氮气,让石墨舟吸附剩余的氮化硅,所述步骤i中氮气流量为20000sccm,氮气通入时间为30秒,使得PECVD炉管内压强维持在3000±300mtorr,让石墨舟吸附剩余的氮化硅,吸附剩余的氮化硅时间为1.5min;
j、氮化硅均匀性层;PECVD炉管内温度在480-500℃,通入硅烷SiH4与氨气NH3并开放射频,在第一层氮化硅膜表面形成第二层氮化硅膜,所述步骤j中硅烷SiH4与氨气NH3的比例1:3,SiH4流量为1200±300sccm,NH3流量为3600±500sccm,射频功率为仪器最大的80%,即射频功率为8.5±1KW,射频打开和关闭时间比1: 10±2,射频开放次数60±10,压强维持在1900±300mtorr第二层氮化硅膜镀膜时间为1000±100s,此时,可以将在反应的炉管气体状态视为流体,那石墨舟中间位置速率高于石墨舟变片的,所以为了均匀性较好,所以炉管内要气体为充分过量状态;
k、碳氮化硅保护膜: PECVD炉管内温度在480-500℃,通入硅烷SiH4、氨气NH3与甲烷CH4并开放射频,在第二层氮化硅膜表面形成第三层碳氮化硅膜,所述步骤k中SiH4流量为1000±300sccm,NH3流量为5000±500sccm,CH4流量为7000±500sccm,射频功率为8.5±1KW,射频开放次数60±10,压强维持在1800±300mtorr;第三层碳氮化硅膜镀膜时间为500±50s,碳氮化硅有很好的致密性和较高的抗高温性能,所以为了保护石墨舟,需要加一层碳氮化硅;
l、氮化硅外层保护膜:PECVD炉管内温度在480-500℃,通入硅烷SiH4与氨气NH3并开放射频,在第三层碳氮化硅膜表面形成第四层氮化硅膜,所述步骤l中SiH4流量为700±50sccm,NH3流量为7000±400sccm,射频开放次数60±10,压强维持在1600±300mtorr;第四层氮化硅膜镀膜时间为1000±100s,第四层氮化硅膜厚度为20±5纳米,氮化硅除了致密性好的物理性质外,还有一个优点是具有润滑性;
m、抽真空:镀膜完成后,PECVD炉管内温度在450±50℃,对炉内进行抽真空,抽真空的时间控制在1min 内,使炉内的压强为零;
n、出舟:PECVD炉管内温度在450±50℃,充氮气,使炉管内压力达到大气压等同,然后开炉门出舟。
实施例:
步骤a中采用15%氢氟酸;步骤c中烘干温度为100℃;步骤d中将石墨舟温度预热到450℃;步骤f中PECVD炉管温度维持在450℃;步骤h中PECVD炉管内温度提升至480℃,硅烷SiH4与氨气NH3的比例1:4,SiH4流量为1000sccm,NH3流量为4000sccm,射频功率为8.5KW,射频打开和关闭时间比1: 13,射频开放次数60±1,压强维持在1900mtorr,第一层氮化硅膜镀膜时间为1000s;步骤i中PECVD炉管内温度在480℃,氮气流量为20000sccm,氮气通入时间为30秒,使得PECVD炉管内压强维持在3000mtorr;步骤j中480℃,硅烷SiH4与氨气NH3的比例1:3,SiH4流量为1200sccm,NH3流量为3600sccm,射频功率为仪器为8.5KW,射频打开和关闭时间比1: 10,射频开放次数60,压强维持在1900mtorr第二层氮化硅膜镀膜时间为1000s;步骤k中PECVD炉管内温度在480℃, SiH4流量为1000sccm,NH3流量为5000sccm,CH4流量为7000sccm,射频功率为8.5KW,射频开放次数60,压强维持在1800mtorr;第三层碳氮化硅膜镀膜时间为500s;步骤l中PECVD炉管内温度在480℃,SiH4流量为700sccm,NH3流量为7000sccm,射频开放次数60,压强维持在1600mtorr;第四层氮化硅膜镀膜时间为1000s,第四层氮化硅膜厚度为20纳米;步骤m中PECVD炉管内温度在450℃,对炉内进行抽真空,抽真空的时间控制在1min 内,使炉内的压强为零;步骤n中PECVD炉管内温度在450℃,得到新工艺饱和石墨舟。
原工艺:
1、进饱和炉管预热:将烘干好的石墨舟,放入炉管进行,进行预热,将石墨舟温度预热到450±50℃,预热时间15min;
2、抽空除残酸和水蒸气:由于石墨材料空间结构,吸附效果较好升到450±50℃,炉管有残留气体,需要抽到底压,需时间2min;
3、氮化硅第一次沉积:通入硅烷和氨气,生产氮化硅吸附在石墨舟上,进行饱和;
4、残留氮化硅吸附步骤:通入SiH4与NH3流,关闭射频电源让石墨舟吸附剩余的氮化硅;
5、氮化硅第二次沉积:继续通入硅烷和氨气进行反应对石墨舟进行饱和;
6、抽真空:镀膜完成后,对炉内进行抽真空,抽真空的时间控制在1min 内,使炉内的压强为零;
7、出舟:充氮气,使炉管内压力达到大气压等同,然后开炉门出舟,得到原工艺石墨舟。
同编号石墨舟,不同使用次数下,石墨舟饱和原工艺与新工艺各使用承载600片硅片的石墨舟进行测试产生色差片数量统计,如下表一所示:
从表一中结果可以看到,在一定使用次数中,新工艺饱和石墨舟产生的色差片数量低于原工艺饱和石墨舟,其导电性能稳定性较好,连续几轮的色差较少和稳定,新饱和工艺减少片内色差与返工数量,改善硅片表面外观,增加良率,色差是指外观颜色,观察可以看出来的。
石墨舟饱和原工艺与新工艺的石墨舟进行膜厚测试,数据如下表二所示:
从表二中结果可以看到,新工艺饱和石墨舟的膜厚均匀性更优。
不同编号石墨舟,同使用次数下,原饱和工艺的石墨舟与新工艺的石墨舟进行测试产生色差片优化差异,如下表三所示:
从表三结果中可以看到,不同的原饱和工艺的石墨舟产生的色差片数量均高于新饱和工艺的石墨舟产生的色差片数量,新饱和工艺下的石墨舟能改善色差片数量。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (6)

1.一种优化石墨舟饱和效果的方法,其特征是,包括以下步骤:
a、去除旧石墨舟上氮化硅:使用15%-20%氢氟酸将石墨舟放进去清洗,清洗时间为4个小时;
b、水洗:使用纯水对石墨舟进行漂洗,主要为了洗除残留的酸,水洗时间为4个小时;
c、烘干:用烘箱对石墨舟进行烘干,温度为100-120℃,烘干时间为6H;
d、进饱和炉管预热:将烘干好的石墨舟放入PECVD炉管进行预热,将石墨舟温度预热到450±50℃,预热时间15min;
f、抽空除残酸和水蒸气:PECVD炉管温度维持在450±50℃,对PECVD炉管抽真空;
g、重复步骤d 、f两次,将预热时间改为5min;
h、氮化硅高密度沉积:PECVD炉管内温度提升至480-500℃,通入硅烷SiH4与氨气NH3并开放射频,使石墨舟表面形成第一层氮化硅膜;
i、残留氮化硅吸附:PECVD炉管内温度在480-500℃,停止注入硅烷SiH4、氨气NH3以及射频,同时将通入氮气,让石墨舟吸附剩余的氮化硅;
j、氮化硅均匀性层;PECVD炉管内温度在480-500℃,通入硅烷SiH4与氨气NH3并开放射频,在第一层氮化硅膜表面形成第二层氮化硅膜;
k、碳氮化硅保护膜: PECVD炉管内温度在480-500℃,通入硅烷SiH4、氨气NH3与甲烷CH4并开放射频,SiH4流量为1000±300sccm,NH3流量为5000±500sccm,CH4流量为7000±500sccm,射频功率为8.5±1KW,射频开放次数60±10,压强维持在1800±300mtorr,第三层碳氮化硅膜镀膜时间为500±50s,在第二层氮化硅膜表面形成第三层碳氮化硅膜;
l、氮化硅外层保护膜:PECVD炉管内温度在480-500℃,通入硅烷SiH4与氨气NH3并开放射频,在第三层碳氮化硅膜表面形成第四层氮化硅膜;
m、抽真空:镀膜完成后,PECVD炉管内温度在450±50℃,对炉内进行抽真空,抽真空的时间控制在1min 内,使炉内的压强为零;
n、出舟:PECVD炉管内温度在450±50℃,充氮气,使炉管内压力达到大气压等同,然后开炉门出舟。
2.如权利要求1所述的优化石墨舟饱和效果的方法,其特征在于:所述步骤f的抽真空时间为2min。
3.如权利要求1所述的优化石墨舟饱和效果的方法,其特征在于:所述步骤h中SiH4流量为1000±300sccm,NH3流量为5000±500sccm,射频功率为仪器最大的80%,即射频功率为8.5±1KW,射频打开和关闭时间比1: 13±3,射频开放次数60±10,压强维持在1900+300mtorr;第一层氮化硅膜镀膜时间为1000±100s。
4.如权利要求1所述的优化石墨舟饱和效果的方法,其特征在于:所述步骤i中氮气流量为20000sccm,氮气通入时间为30秒,PECVD炉管内压强维持在3000±300mtorr,吸附剩余的氮化硅时间为1.5min。
5.如权利要求1所述的优化石墨舟饱和效果的方法,其特征在于:所述步骤j中SiH4流量为1200±300sccm,NH3流量为3600±500sccm,射频功率为仪器最大的80%,即射频功率为8.5±1KW,射频打开和关闭时间比1: 10±2,射频开放次数60±10,压强维持在1900±300mtorr第二层氮化硅膜镀膜时间为1000±100s。
6.如权利要求1所述的优化石墨舟饱和效果的方法,其特征在于:所述步骤l中SiH4流量为700±50sccm,NH3流量为7000±400sccm,射频开放次数60±10,压强维持在1600±300mtorr;第四层氮化硅膜镀膜时间为1000±100s,第四层氮化硅膜厚度为20±5纳米。
CN202111214807.1A 2021-10-19 2021-10-19 优化石墨舟饱和效果的方法 Active CN113981417B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111214807.1A CN113981417B (zh) 2021-10-19 2021-10-19 优化石墨舟饱和效果的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111214807.1A CN113981417B (zh) 2021-10-19 2021-10-19 优化石墨舟饱和效果的方法

Publications (2)

Publication Number Publication Date
CN113981417A CN113981417A (zh) 2022-01-28
CN113981417B true CN113981417B (zh) 2023-11-21

Family

ID=79739312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111214807.1A Active CN113981417B (zh) 2021-10-19 2021-10-19 优化石墨舟饱和效果的方法

Country Status (1)

Country Link
CN (1) CN113981417B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160803A (zh) * 2011-12-09 2013-06-19 浚鑫科技股份有限公司 石墨舟预处理方法
CN106024681A (zh) * 2016-07-27 2016-10-12 苏州阿特斯阳光电力科技有限公司 叠层膜、包含其的石墨舟及其制备方法、及石墨舟清洗方法
KR20180116819A (ko) * 2017-04-18 2018-10-26 마스 주식회사 태양광 플라스마 화학 증착 공정 중 그라파이트보트에 질화물을 증착하는 방법
CN109183000A (zh) * 2018-08-20 2019-01-11 常州亿晶光电科技有限公司 石墨舟饱和工艺
CN111118479A (zh) * 2019-12-27 2020-05-08 浙江爱旭太阳能科技有限公司 一种石墨舟饱和的工艺方法
CN111128815A (zh) * 2019-12-20 2020-05-08 浙江爱旭太阳能科技有限公司 一种perc太阳能电池用的石墨舟饱和工艺
CN112992744A (zh) * 2019-12-13 2021-06-18 东方日升(洛阳)新能源有限公司 一种pecvd石墨舟碳化硅饱和处理工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160803A (zh) * 2011-12-09 2013-06-19 浚鑫科技股份有限公司 石墨舟预处理方法
CN106024681A (zh) * 2016-07-27 2016-10-12 苏州阿特斯阳光电力科技有限公司 叠层膜、包含其的石墨舟及其制备方法、及石墨舟清洗方法
KR20180116819A (ko) * 2017-04-18 2018-10-26 마스 주식회사 태양광 플라스마 화학 증착 공정 중 그라파이트보트에 질화물을 증착하는 방법
CN109183000A (zh) * 2018-08-20 2019-01-11 常州亿晶光电科技有限公司 石墨舟饱和工艺
CN112992744A (zh) * 2019-12-13 2021-06-18 东方日升(洛阳)新能源有限公司 一种pecvd石墨舟碳化硅饱和处理工艺
CN111128815A (zh) * 2019-12-20 2020-05-08 浙江爱旭太阳能科技有限公司 一种perc太阳能电池用的石墨舟饱和工艺
CN111118479A (zh) * 2019-12-27 2020-05-08 浙江爱旭太阳能科技有限公司 一种石墨舟饱和的工艺方法

Also Published As

Publication number Publication date
CN113981417A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
CN109183000B (zh) 石墨舟饱和工艺
KR101323088B1 (ko) 반도체 장치의 제조 방법, 클리닝 방법 및 기판 처리 장치
US7381644B1 (en) Pulsed PECVD method for modulating hydrogen content in hard mask
US8647722B2 (en) Method of forming insulation film using plasma treatment cycles
CN103476965B (zh) 由铝和硅前体沉积Al2O3/SiO2叠层的方法
CN101316945B (zh) 低介电常数薄膜的灰化/湿法蚀刻损伤的抵抗性以及整体稳定性的改进方法
CN102864439B (zh) 一种制备具有抗pid效应的减反射膜的方法
CN106299025B (zh) 一种管式pecvd沉积氮化硅的工艺
KR20150077357A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
CN108603287A (zh) 用于沉积含硅膜的组合物及使用其的方法
JP2015138913A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
KR20070102764A (ko) Pecvd 법에 기반한 다층 박막 구조의 제조방법
CN113322451B (zh) 一种perc电池的氧化铝钝化膜及其沉积方法和应用
CN101450995B (zh) 低介电常数的等离子聚合薄膜及其制造方法
CN112267105A (zh) 一种用于硅异质结太阳电池生产的单腔pecvd沉积工艺
CN105296955A (zh) 一种等离子体增强原子层沉积铜薄膜的方法
CN110684966A (zh) 一种pecvd方式生长致密薄膜的方法
CN113981417B (zh) 优化石墨舟饱和效果的方法
US20090288708A1 (en) Method for passivating a substrate surface
CN117230428A (zh) 一种ald氧化铝均匀性改善工艺
CN113930748B (zh) 太阳能电池的制备方法、太阳能电池与光伏组件
CN114107955A (zh) 一种改善二合一设备背面钝化均匀性的石墨舟预处理工艺
KR100997110B1 (ko) Pecvd 법에 기반한 박막 구조의 제조방법
US20240162036A1 (en) Selective deposition of material comprising silicon and nitrogen
Whang et al. Conformality of Chemical-Vapor-Deposited Tungsten on TiN Prepared by Metal-organic Chemical Vapor Deposition via Cyclic Plasma Treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant