CN106299025B - 一种管式pecvd沉积氮化硅的工艺 - Google Patents

一种管式pecvd沉积氮化硅的工艺 Download PDF

Info

Publication number
CN106299025B
CN106299025B CN201610748278.6A CN201610748278A CN106299025B CN 106299025 B CN106299025 B CN 106299025B CN 201610748278 A CN201610748278 A CN 201610748278A CN 106299025 B CN106299025 B CN 106299025B
Authority
CN
China
Prior art keywords
tunic
plating
film
temperature
tubular type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610748278.6A
Other languages
English (en)
Other versions
CN106299025A (zh
Inventor
陈文浩
王冕
奚彬
刘仁中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Fujie Technology Co., Ltd
Original Assignee
Altusvia Energy Taicang Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altusvia Energy Taicang Co Ltd filed Critical Altusvia Energy Taicang Co Ltd
Priority to CN201610748278.6A priority Critical patent/CN106299025B/zh
Publication of CN106299025A publication Critical patent/CN106299025A/zh
Application granted granted Critical
Publication of CN106299025B publication Critical patent/CN106299025B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种管式PECVD沉积氮化硅的工艺,使用两步镀膜,镀第一层膜时使用的温度低于镀第二层膜时使用的温度。本发明提供的沉积工艺提高管式PECVD沉积氮化硅薄膜对晶硅太阳电池的钝化减反射效果以及降低工艺时间。

Description

一种管式PECVD沉积氮化硅的工艺
技术领域
本发明属于光伏技术领域,尤其涉及一种管式PECVD沉积氮化硅的工艺。
背景技术
SiNx薄膜具有钝化硅片表面和减反射的作用,在晶体硅太阳电池的传统制备工艺中,使用等离子增强化学气相沉积(PECVD)的方法在发射极表面沉积一层SiNx薄膜是其中非常重要一步。
PECVD是借助微波或射频等使含有薄膜组成原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。为了使化学反应能在较低的温度下进行,利用了等离子体的活性来促进反应,因而这种CVD称为等离子体增强化学气相沉积(PECVD)。在目前实际生产中常用的管式低频直接法PECVD采用电阻式加热将整个腔体加热到所需的温度,在腔体中放置具有很多夹板的石墨舟,夹板的两侧放置硅片,利用两片硅片之间形成电势差与反应气体完成辉光放电进行镀膜,这种方法具有钝化效果好,同时成膜致密性高等优点。
然而,使用这种方法制备SiNx膜,当温度较低时,薄膜中存在大量的未分解完全的亚稳态的SiHx,这种分子会影响到表面的钝化特性;而在400℃沉积时这部分Si-H被充分分解,钝化水平提高。而当温度升高至450℃以上时,会有较多的氢分子从薄膜中释放出来,导致氢钝化效果变差。镀膜温度较低时则会导致镀膜时间较长,同时对二十一片石墨舟进行镀膜过程中石墨舟易受热不均匀导致出现色差片。
本专利是针对管式PECVD沉积氮化硅提出的兼顾镀膜时间以及镀膜良品率的一种有效提高电池效率的新型镀膜工艺。
发明内容
鉴于现有技术中存在的问题,本发明的目的在于提供一种管式PECVD沉积氮化硅的工艺。本发明提供的沉积工艺提高管式PECVD沉积氮化硅薄膜对晶硅太阳电池的钝化减反射效果以及降低工艺时间。
为达此目的,本发明采用以下技术方案:
一种管式PECVD沉积氮化硅的工艺,使用两步镀膜,两层膜采用不同的镀膜工艺条件,尤其是沉积温度上,镀第一层膜时使用的温度低于镀第二层膜时使用的温度,可在保证生产效率的同时有效提高电池光电转换效率。
作为优选,镀第一层膜时的温度为400~450℃,例如为405℃、412℃、419℃、425℃、431℃、438℃、444℃、448℃等,时间为150~200s,例如为155s、164s、171s、178s、185s、192s、199s等;镀第二层膜时的温度为460~500℃,例如为465℃、472℃、479℃、485℃、491℃、498℃等,时间为300~400s,例如为305s、314s、321s、328s、335s、342s、349s、355s、364s、371s、380s、386s、397s等。第一层膜作用起钝化效果,镀第一层膜的最佳温度是400~450℃,温度过高会导致钝化效果变差。而第二层主要承担提高光吸收的作用,镀第二层膜的最佳温度是460~500℃,适当提高温度可以提高沉积速率同时使膜结构更加疏松利于降低薄膜对光的自吸收。
氮化硅薄膜的折射率为:
需要取得最低反射率,当在折射率为n0和n2的两层介质膜之间插入折射率为n1的介质膜时,折射率之间满足其中,n0是硅的折射率,n2是第二层膜折射率;或者n0为第一层膜折射率,n2为玻璃(玻璃是指封装电池的组件端玻璃)的折射率。同时SiNx薄膜存在自吸收现象,折射率越高,自吸收现象越明显,故第一层膜的厚度不宜过厚,可通过反应气体比例调整适当的折射率。
作为优选,镀第一层膜时使用的氨气与硅烷的气体流量比低于镀第二层膜时使用的氨气与硅烷的气体流量比。
优选地,镀第一层膜时的氨气与硅烷的气体流量比(NH3/SiH4)为3.5~4.5,例如为3.7、3.9、4.1、4.4等,镀第一层膜时的氨气与硅烷的气体流量比为8.5~9.5,例如为8.7、8.9、9.1、9.4等。
本发明所使用的镀膜工艺使用两步镀膜工艺,第一层膜和第二层膜采用不同的工艺条件进行沉积。第一层膜主要起钝化效果,可以使用较高的硅烷和氨气气体流量比,以获得较高的氮化硅薄膜硅氮比例,同时使用较低的镀膜沉积温度。第二层膜选用较低的硅氮比,同时提高镀膜沉积温度。
作为优选,镀膜时的压力为1650~1705torr,例如为1655torr、1674torr、1680torr、1689torr、1695torr、1700torr等。镀第一层膜和第二层膜的压力可相同或不同。
作为优选,镀第一层膜时的射频功率为6000~6300W,例如为6010W、6040W、6080W、6120W、6180W、6240W、6290W等,镀第二层膜时的射频功率为7000~7300W,例如为7010W、7040W、7080W、7120W、7180W、7240W、7290W等。
作为优选,镀第一层膜时的脉冲开关比为1/9~1/11,镀第二层膜时的脉冲开关比为1/7~1/9。
相较于传统的双层膜技术,本发明的工艺除在两层膜的折射率上存在不同,同时第一层膜温度较低,使用较低的RF功率和较低的脉冲开关比,使得第一次膜沉积速度慢,成膜质量好,同时温度低,氢钝化效果好。而第二层膜使用高温沉积,有效整体降低镀膜工艺总时间,同时RF功率和脉冲比较高导致成膜致密度较差,降低了薄膜的自吸收现象,可以有效提高光电流。
本发明通过在使用双层膜镀膜工艺,两层膜采用合适的硅氮比,同时第一层膜使用降低温度沉积条件保证薄膜钝化效果,第二层使用高温沉积的条件下,降低工艺时间,同时使第二层膜成膜疏松,有效降低了薄膜的自吸收现象。
附图说明
图1是双层膜的结构示意图。
下面对本发明进一步详细说明。但下述的实例仅仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明的保护范围以权利要求书为准。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
实施例1
使用如下表1中工艺参数进行镀膜实验。
表1
实施例2
使用如下表2中工艺参数进行镀膜实验。
表2
实施例3
使用如下表3中工艺参数进行镀膜实验。
表3
图1是双层膜的结构示意图。
对比例1
使用如下表4中的常规双层膜工艺进行镀膜。
表4
结果测试
分别使用这两种工艺进行镀膜实验后,得到的总膜厚基本一致,最终镀膜工艺时间降低了40s,同时这两种工艺所得膜的电学性能的对比如下表5中所示。
表5
Eta(%) Isc(A) Uoc(V) FF(%) Rs(mΩ) Rsh(Ω)
实施例1 18.29 8.87 0.634 79.14 1.51 675.01
实施例2 18.27 8.89 0.635 78.63 1.57 600.95
实施例3 18.26 8.88 0.633 79.06 1.46 731.08
对比例1 18.24 8.86 0.634 78.96 1.53 567.49
由电学性能可见,本发明所使用工艺有效提高了电池光电转化效率,主要体现在短路电流有所增大,并联电阻则明显提升,这得益于氮化硅薄膜氢钝化效果的提升。
本发明并不仅限于实施例,其他本领域人员根据本发明所做的相关非本质改变,同样应是本发明所保护的范围。
申请人声明,本发明通过上述实施例来说明本发明的详细结构特征,但本发明并不局限于上述详细结构特征,即不意味着本发明必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (3)

1.一种管式PECVD沉积氮化硅的工艺,使用两步镀膜,其特征在于,镀第一层膜时使用的温度低于镀第二层膜时使用的温度;镀第一层膜时的氨气与硅烷的气体流量比为4.1~4.5,镀第一层膜时的氨气与硅烷的气体流量比为8.5~9.5;
而且,镀第一层膜时的射频功率为6000~6300 W,镀第二层膜时的射频功率为7000~7300 W;
镀第一层膜时的脉冲开关比为1/9~1/11,镀第二层膜时的脉冲开关比为1/7~1/9。
2. 根据权利要求1所述的工艺,其特征在于,镀第一层膜时的温度为400~450℃,时间为150~200 s;镀第二层膜时的温度为460~500℃,时间为300~400 s。
3. 根据权利要求1或2所述的工艺,其特征在于,镀膜时的压力为1650~1705 torr。
CN201610748278.6A 2016-08-29 2016-08-29 一种管式pecvd沉积氮化硅的工艺 Expired - Fee Related CN106299025B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610748278.6A CN106299025B (zh) 2016-08-29 2016-08-29 一种管式pecvd沉积氮化硅的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610748278.6A CN106299025B (zh) 2016-08-29 2016-08-29 一种管式pecvd沉积氮化硅的工艺

Publications (2)

Publication Number Publication Date
CN106299025A CN106299025A (zh) 2017-01-04
CN106299025B true CN106299025B (zh) 2018-09-14

Family

ID=57677932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610748278.6A Expired - Fee Related CN106299025B (zh) 2016-08-29 2016-08-29 一种管式pecvd沉积氮化硅的工艺

Country Status (1)

Country Link
CN (1) CN106299025B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107502874B (zh) * 2017-09-19 2019-04-30 常州亿晶光电科技有限公司 改善perc高效电池片翘曲的背镀工艺
CN108048821A (zh) * 2017-12-14 2018-05-18 尚德太阳能电力有限公司 提升管式pecvd工艺产能的方法及其应用
CN110120343B (zh) * 2018-02-06 2021-10-01 中芯国际集成电路制造(天津)有限公司 氮化硅膜和半导体器件的制造方法
CN109360866B (zh) * 2018-09-25 2021-07-20 韩华新能源(启东)有限公司 一种三层氮化硅薄膜的制备方法
CN110429020A (zh) * 2019-06-28 2019-11-08 湖南红太阳光电科技有限公司 一种管式pecvd设备制备非晶硅薄膜的方法
CN110629202A (zh) * 2019-09-27 2019-12-31 四川英发太阳能科技有限公司 一种改善电池片发灰的镀膜工艺
CN114134482A (zh) * 2021-11-25 2022-03-04 横店集团东磁股份有限公司 一种晶硅太阳能电池pecvd背膜优化工艺
CN114284368A (zh) * 2021-12-17 2022-04-05 通合新能源(金堂)有限公司 太阳能电池片的镀膜工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060130891A1 (en) * 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
CN103413868A (zh) * 2013-08-26 2013-11-27 山东力诺太阳能电力股份有限公司 一种晶硅太阳能电池多层膜制备工艺
CN103556125B (zh) * 2013-10-29 2016-03-02 宁夏银星能源股份有限公司 一种冶金级单晶硅太阳能电池双层减反膜镀膜工艺

Also Published As

Publication number Publication date
CN106299025A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN106299025B (zh) 一种管式pecvd沉积氮化硅的工艺
CN105112888B (zh) 一种石墨舟的饱和方法
CN109183000B (zh) 石墨舟饱和工艺
CN102864439B (zh) 一种制备具有抗pid效应的减反射膜的方法
CN103094366A (zh) 一种太阳电池钝化减反射膜及其制备工艺方法
CN101436616B (zh) 硅太阳能电池双层减反射薄膜及其制备方法
CN102185012A (zh) 镀氮化硅减反射膜的方法
CN102856174B (zh) 氮化硅的膜制备方法、具有氮化硅膜的太阳能电池片及其制备方法
CN103160803A (zh) 石墨舟预处理方法
CN102185006A (zh) 多晶硅太阳电池减反射膜制备方法及多晶硅太阳电池
CN104465879B (zh) 一种太阳能电池的双面钝化方法
CN109461777A (zh) 一种perc电池背面钝化结构及其制备方法
CN106449782A (zh) 晶体硅太阳能电池氮化硅减反射膜结构及其制备方法
CN101834225A (zh) 晶体硅太阳能电池各色氮化硅膜制备方法
CN109950363A (zh) 一种perc太阳能电池的背面钝化工艺
CN112820783A (zh) 一种氮氧化硅perc电池背钝化结构、其制备方法及包括其的perc电池
CN102903785A (zh) 一种采用增氢钝化提高太阳能电池片转换效率的方法
CN109742195B (zh) 一种改善多晶rie黑硅电池边缘发白石墨舟饱和工艺
CN101956180B (zh) 一种减反射薄膜SiNx:H表面原位NH3等离子体处理方法
CN101707225B (zh) 改善单晶硅太阳能电池减反射膜特性的方法
CN103545197A (zh) 一种管式pecvd双层氮化硅膜的制备工艺
CN104835881A (zh) 一种太阳能电池减反射膜的制作方法以及太阳能电池
CN202695460U (zh) 氮化硅膜及含有氮化硅膜的硅片和太阳能电池
CN116613244A (zh) 太阳能电池钝化层的制备方法和太阳能电池
CN117199186A (zh) 一种N-TOPCon电池的制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200407

Address after: No. 839, west section of Chengguan Road, hi tech Zone, Chengdu, Sichuan 610000

Patentee after: Chengdu Fujie Technology Co., Ltd

Address before: 215434 No. 88, Taicang Port Development Zone, Suzhou, Jiangsu, Pingjiang Road

Patentee before: ALTUSVIA ENERGY (TAICANG) Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180914

Termination date: 20200829

CF01 Termination of patent right due to non-payment of annual fee