CN103545197A - 一种管式pecvd双层氮化硅膜的制备工艺 - Google Patents

一种管式pecvd双层氮化硅膜的制备工艺 Download PDF

Info

Publication number
CN103545197A
CN103545197A CN201310505894.5A CN201310505894A CN103545197A CN 103545197 A CN103545197 A CN 103545197A CN 201310505894 A CN201310505894 A CN 201310505894A CN 103545197 A CN103545197 A CN 103545197A
Authority
CN
China
Prior art keywords
silicon nitride
nitride film
layer
preparation process
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310505894.5A
Other languages
English (en)
Inventor
张小盼
范志东
赵学玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yingli Energy China Co Ltd
Original Assignee
Yingli Energy China Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yingli Energy China Co Ltd filed Critical Yingli Energy China Co Ltd
Priority to CN201310505894.5A priority Critical patent/CN103545197A/zh
Publication of CN103545197A publication Critical patent/CN103545197A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种管式PECVD双层氮化硅膜的制备工艺,属于多晶硅的制备领域。本发明的具体步骤为:首先,石英炉管升温;接着,镀第一层氮化硅膜、镀第二层氮化硅膜,最后出舟。本发明的制备工艺与现有的制备工艺相比省去了镀膜前钝化工艺,节约了整个工艺的持续时间,提高了管式PECVD的产量,降低了制备成本,同时避免了氮化硅膜沉积之前的高频操作对硅片表面的损伤;本发明还升高了氮化硅双层膜的制备温度,两种改进相结合最终使得制备的太阳能电池的短路电流和开路电压得到了提高,将太阳能电池的转换效率提高了约0.1%,使得转换效率得到了实质性的提高。

Description

一种管式PECVD双层氮化硅膜的制备工艺
技术领域
本发明属于多晶硅制备领域。 
背景技术
多晶硅电池的生产主要流程为:制绒、扩散、湿法刻蚀、PECVD(等离子增强型化学气相沉积,Plasma Enhanced Chemical Vapor Deposition)氮化硅薄膜、丝网印刷和烧结。在多晶硅太阳电池的生产过程中,需要对扩散后的硅表面沉积一层减反射膜层以减少太阳光在表面发生反射。氮化硅薄膜具有高的化学稳定性、高电阻率、绝缘性好、硬度高、光学性能良好等特性,在太阳能电池上得到广泛的应用。作为减反射膜,氮化硅薄膜具有良好的光学性能(其折射率在2.0左右,比传统的二氧化硅减反射膜具有更好的减反射效果)。同时,氮化硅薄膜还具有良好的钝化效果,对质量较差的硅片能起到表面和体内的钝化作用。目前,平板式PECVD和管式PECVD在工业生产中得到了广泛应用。相对平板式PECVD,管式PECVD有着更好的钝化效果对太阳电池转换效率有着更好的作用。如何优化PECVD工艺参数获得更好的太阳电池转换效率成了工艺人员追求的目标。 
目前,工业生产中多采用双层氮化硅膜工艺,分别采用不同厚度和折射率的氮化硅膜组合成太阳电池的钝化、减反射膜。其中第一层膜厚度一般在10-20nm,折射率在2.2-2.3,主要起到钝化的作用,而第二层膜厚度一般在60-80nm,折射率在2.05-2.15,主要起到减反射的作用。 
通常双层氮化硅膜的制备工艺过程及参数如下: 
1、在N2的保护下,将石英炉管升温至氮化硅膜沉积的温度400-460℃。
2、在压强为1400-1700mTorr,NH3流量为2.0-3.0L,射频功率为4500-5500W,进行预沉积200-300s。(镀膜前钝化步骤) 
3、在同一温度下(400-460℃),在压强为1400-1600mTorr,SiH4:NH3流量比为1:3-1:5,射频功率为6100-6800W,沉积时间为120-200s,进行第一层氮化硅膜的沉积。
4、在同一温度下(400-460℃),在压强为1400-1600mTorr,SiH4:NH3流量比为1:6-1:14,射频功率为6100-6800W,沉积时间为600-800s,进行第二层氮化硅膜的沉积。 
5、完成氮化硅膜的沉积工艺,在400-460℃下出舟。 
由上述可知,双层氮化硅膜的两层膜一般在相同的工艺参数下沉积,只是沉积时间上略有不同,不同的工艺过程对沉积的氮化硅膜有着重要的影响,进而影响太阳电池的电学参数,如何优化工艺过程及工艺参数,对提高这两层氮化硅膜的质量起到更好的钝化和减反射效果对太阳电池的转换效率有着重要的影响。 
发明内容
本发明要解决的技术问题是提供一种管式PECVD双层氮化硅膜的制备工艺,该工艺略去了现有工艺中的前钝化步骤,简化了工艺步骤,同时调整了氮化硅双层膜的制备温度,使得制备的太阳能电池的转化效率得到了实质性的提高。 
为解决上述技术问题,本发明采用的技术方案为:一种管式PECVD双层氮化硅膜的制备工艺,包括如下步骤: 
S1、在N2的保护下,将石英炉管升温至氮化硅膜沉积的温度405-470℃;
S2、在温度为405-470℃时,进行第一层氮化硅膜的沉积,沉积时间为120-200s;
S3、在温度为405-470℃时,进行第二层氮化硅膜的沉积,沉积时间为700-900s; 
S4、完成氮化硅膜的沉积工艺,在405-440℃下出舟。
所述步骤S2中具体参数为:压强为1400-1600mTorr,SiH4:NH3的流量比为1:3-1:5,射频功率为6100-6500W,氮化硅膜层的沉积厚度约为15nm,折射率为2.2。 
所述步骤S3中具体参数为:压强为1400-1600mTorr,SiH4:NH3的流量比为1:6-1:14,射频功率为5300-6000W,氮化硅膜层的沉积厚度为60nm,折射率约为2.04。 
采用上述技术方案取得的技术进步为:本发明的制备工艺与现有的制备工艺相比省去了镀膜前钝化工艺,节约了整个工艺的持续时间,提高了管式PECVD的产量,降低了制备成本,同时避免了氮化硅膜沉积之前的高频操作对硅片表面的损伤;本发明还升高了氮化硅双层膜的制备温度,两种改进相结合最终使得制备的太阳能电池的短路电流和开路电压得到了提高,将太阳能电池的转换效率提高了约0.1%,使得转换效率得到了实质性的提高。 
具体实施方式
实施例1 
一种管式PECVD双层氮化硅膜的制备工艺,包括如下步骤:
S1、在N2的保护下,将石英炉管升温至氮化硅膜沉积的温度405℃;
S2、在温度为405℃,进行第一层氮化硅膜的沉积,沉积时间为120s;
S3、在温度为405℃,进行第二层氮化硅膜的沉积,沉积时间为700s; 
S4、完成氮化硅膜的沉积工艺,在405℃下出舟。
所述步骤S2中具体参数为:压强为1400mTorr,SiH4:NH3流量比为1:3,射频功率为6100W,氮化硅膜层的沉积厚度约为15nm,折射率为2.2。 
所述步骤S3中具体参数为:压强为1400mTorr,SiH4:NH3流量比为1:6,射频功率为5300W,氮化硅膜层的沉积厚度为60nm,折射率约为2.04。 
本发明的制备方法与现有的制备工艺相比,最明显的区别在于略去了制备氮化硅双层膜之前的前钝化步骤并提高了两次镀膜时所需的温度。 
在现有工艺中,在沉积氮化硅膜之前都会有一个钝化的过程,工艺开始5-10min,只通NH3在高频下放电从而得到H原子,从而对硅片中的缺陷以及晶界等进行钝化处理。前钝化工艺时间较长,占氮化硅膜沉积工艺所用时间的1/3-1/2,严重影响着管式PECVD的产量;另外前钝化过程中需要开启高频,这会对硅片表面引起一定的损伤。前钝化的最终结果会降低太阳能电池的短路电流和开路电压,从而降低太阳能电池的转换效率。 
但是本发明略去了前钝化的步骤,这样既节省了钝化步骤所需的NH3,又节省了前钝化所需的时间,大大缩短了整个工艺所用的时间,提高了PECVD的产出率。与此同时,本发明还将氮化硅膜的沉积温度相应的提升了5-15℃。这样做的目的是有效降低管式PECVD在硅片四周氮化硅不均匀引起的色差,从而提高PECVD工序的成品率。 
实施例2 
一种管式PECVD双层氮化硅膜的制备工艺,包括如下步骤:
S1、在N2的保护下,将石英炉管升温至氮化硅膜沉积的温度461℃;
S2、在温度为430℃,进行第一层氮化硅膜的沉积,沉积时间为150s;
S3、在温度为461℃,进行第二层氮化硅膜的沉积,沉积时间为650s; 
S4、完成氮化硅膜的沉积工艺,在430℃下出舟。
所述步骤S2中具体参数为:压强为1500mTorr,SiH4:NH3流量比为1:4,射频功率为6300W,沉积厚度约为18nm,折射率为2.3的氮化硅膜层,从而起到更好的钝化作用; 
所述步骤S3中具体参数为:压强为1500mTorr,SiH4:NH3流量比为1:10,射频功率为5500W,沉积厚度为65nm,折射率约为2.06的氮化硅膜主要起到减反射的作用。
与实施例1相比,本实施例中,沉积氮化硅膜的温度、持续时间、步骤S2和S3中的压强、SiH4:NH3流量比以及射频功率等参数有了些许变化。 
实施例3 
一种管式PECVD双层氮化硅膜的制备工艺,包括如下步骤:
S1、在N2的保护下,将石英炉管升温至氮化硅膜沉积的温度470℃;
S2、在温度为470℃,进行第一层氮化硅膜的沉积,沉积时间为200s;
S3、在温度为465℃,进行第二层氮化硅膜的沉积,沉积时间为800s; 
S4、完成氮化硅膜的沉积工艺,在440℃下出舟。
所述步骤S2中具体参数为:压强为1600mTorr,SiH4:NH3流量比为1:5,射频功率为6800W,沉积厚度约为20nm,折射率为2.4的氮化硅膜层,从而起到更好的钝化作用。 
所述步骤S3中具体参数为:压强为1500mTorr,SiH4:NH3流量比为1:14,射频功率为6000W,沉积厚度为70nm,折射率约为2.08的氮化硅膜主要起到减反射的作用。 
表1所示为含有前钝化过程和略去前钝化过程两种制备工艺制成的太阳能电池的各种参数比较。 
表1 
Figure 2013105058945100002DEST_PATH_IMAGE001
过程1和过程2、过程3和过程4、过程5和过程6在工艺上区别仅仅是前钝化步骤和沉积温度,其他参数都相同。以开路电压Uoc为例,过程1的Uoc为0.624V,过程2的却为0.625V,两者相差了0.001V,过程3和过程4、过程5和过程6的差值也都为0.001V;在短路电流Isc上,两种不同过程的差值约为0.14-0.026A;而填充FF在两种不同过程的差值约为0.05-0.24%。从上述结果中,可以很明显的发现,通过去除“前钝化”步骤更加有利于提高太阳电池的电学参数。
本发明在节省原料和时间的同时,还将开路电压Uoc提高了1%,提高了太阳电池转换效率,同时太阳电池转换效率的提高对电池的成本的下降起到了推动作用,一举两得,这就是本发明最大的创造性所在。 

Claims (3)

1.一种管式PECVD双层氮化硅膜的制备工艺,其特征在于包括如下步骤:
S1、在N2的保护下,将石英炉管升温至氮化硅膜沉积的温度405-470℃;
S2、在温度为405-470℃时,进行第一层氮化硅膜的沉积,沉积时间为120-200s;
S3、在温度为405-470℃时,进行第二层氮化硅膜的沉积,沉积时间为700-900s; 
S4、完成氮化硅膜的沉积工艺,在405-440℃下出舟。
2.根据权利要求1所述的一种管式PECVD双层氮化硅膜的制备工艺,其特征在于所述步骤S2中具体参数为:压强为1400-1600mTorr,SiH4:NH3的流量比为1:3-1:5,射频功率为6100-6500W,氮化硅膜层的沉积厚度约为15-20nm,折射率为2.2-2.4。
3.根据权利要求1或2所述的一种管式PECVD双层氮化硅膜的制备工艺,其特征在于所述步骤S3中具体参数为:压强为1400-1600mTorr,SiH4:NH3的流量比为1:6-1:14,射频功率为5300-6000W,氮化硅膜层的沉积厚度为60-70nm,折射率为2.04-2.08。
CN201310505894.5A 2013-10-24 2013-10-24 一种管式pecvd双层氮化硅膜的制备工艺 Pending CN103545197A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310505894.5A CN103545197A (zh) 2013-10-24 2013-10-24 一种管式pecvd双层氮化硅膜的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310505894.5A CN103545197A (zh) 2013-10-24 2013-10-24 一种管式pecvd双层氮化硅膜的制备工艺

Publications (1)

Publication Number Publication Date
CN103545197A true CN103545197A (zh) 2014-01-29

Family

ID=49968548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310505894.5A Pending CN103545197A (zh) 2013-10-24 2013-10-24 一种管式pecvd双层氮化硅膜的制备工艺

Country Status (1)

Country Link
CN (1) CN103545197A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576082A (zh) * 2016-03-02 2016-05-11 江西展宇新能源股份有限公司 一种提高多晶硅电池pecvd工序产能的方法
CN105714267A (zh) * 2016-03-02 2016-06-29 江西展宇新能源股份有限公司 一种管式pecvd节省成本的双层膜工艺
CN108183149A (zh) * 2017-12-27 2018-06-19 安徽银欣新能源科技有限公司 一种太阳能电池片的生产方法
CN110629202A (zh) * 2019-09-27 2019-12-31 四川英发太阳能科技有限公司 一种改善电池片发灰的镀膜工艺
CN111223945A (zh) * 2020-03-24 2020-06-02 浙江爱旭太阳能科技有限公司 一种具有新型正面结构的perc电池
CN113782639A (zh) * 2021-09-10 2021-12-10 平煤隆基新能源科技有限公司 一种降低晶硅太阳能电池el绕镀脏污的pecvd工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062934A1 (en) * 2006-11-20 2008-05-29 Lg Electronics Inc. Solar cell and method for manufacturing the same
CN102222733A (zh) * 2011-07-01 2011-10-19 宁波尤利卡太阳能科技发展有限公司 双层氮化硅减反射膜制备方法
CN202502996U (zh) * 2012-03-29 2012-10-24 包头市山晟新能源有限责任公司 双层减反射膜冶金多晶硅太阳能电池片及太阳能电池板
CN102817011A (zh) * 2012-09-06 2012-12-12 英利能源(中国)有限公司 氮化硅膜沉积设备和沉积方法
CN202830165U (zh) * 2012-09-06 2013-03-27 英利能源(中国)有限公司 氮化硅膜沉积设备
CN103066132A (zh) * 2011-10-20 2013-04-24 上海超日太阳能科技股份有限公司 一种用于太阳能电池的双层氮化硅减反射膜及其制备方法
CN103094366A (zh) * 2013-01-25 2013-05-08 中山大学 一种太阳电池钝化减反射膜及其制备工艺方法
CN103117310A (zh) * 2013-02-27 2013-05-22 上海艾力克新能源有限公司 双层氮化硅减反射膜及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062934A1 (en) * 2006-11-20 2008-05-29 Lg Electronics Inc. Solar cell and method for manufacturing the same
CN101563785A (zh) * 2006-11-20 2009-10-21 Lg电子株式会社 太阳能电池及其制造方法
CN102222733A (zh) * 2011-07-01 2011-10-19 宁波尤利卡太阳能科技发展有限公司 双层氮化硅减反射膜制备方法
CN103066132A (zh) * 2011-10-20 2013-04-24 上海超日太阳能科技股份有限公司 一种用于太阳能电池的双层氮化硅减反射膜及其制备方法
CN202502996U (zh) * 2012-03-29 2012-10-24 包头市山晟新能源有限责任公司 双层减反射膜冶金多晶硅太阳能电池片及太阳能电池板
CN102817011A (zh) * 2012-09-06 2012-12-12 英利能源(中国)有限公司 氮化硅膜沉积设备和沉积方法
CN202830165U (zh) * 2012-09-06 2013-03-27 英利能源(中国)有限公司 氮化硅膜沉积设备
CN103094366A (zh) * 2013-01-25 2013-05-08 中山大学 一种太阳电池钝化减反射膜及其制备工艺方法
CN103117310A (zh) * 2013-02-27 2013-05-22 上海艾力克新能源有限公司 双层氮化硅减反射膜及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576082A (zh) * 2016-03-02 2016-05-11 江西展宇新能源股份有限公司 一种提高多晶硅电池pecvd工序产能的方法
CN105714267A (zh) * 2016-03-02 2016-06-29 江西展宇新能源股份有限公司 一种管式pecvd节省成本的双层膜工艺
CN108183149A (zh) * 2017-12-27 2018-06-19 安徽银欣新能源科技有限公司 一种太阳能电池片的生产方法
CN110629202A (zh) * 2019-09-27 2019-12-31 四川英发太阳能科技有限公司 一种改善电池片发灰的镀膜工艺
CN111223945A (zh) * 2020-03-24 2020-06-02 浙江爱旭太阳能科技有限公司 一种具有新型正面结构的perc电池
CN113782639A (zh) * 2021-09-10 2021-12-10 平煤隆基新能源科技有限公司 一种降低晶硅太阳能电池el绕镀脏污的pecvd工艺

Similar Documents

Publication Publication Date Title
CN103545197A (zh) 一种管式pecvd双层氮化硅膜的制备工艺
CN102339872B (zh) 一种晶体硅太阳能电池多层氮化硅减反射膜及其制备方法
WO2020057264A1 (zh) 太阳能电池及其制备方法
CN106299025B (zh) 一种管式pecvd沉积氮化硅的工艺
CN103094366A (zh) 一种太阳电池钝化减反射膜及其制备工艺方法
CN102856174A (zh) 氮化硅的膜制备方法、具有氮化硅膜的太阳能电池片及其制备方法
CN110106493B (zh) 利用管式pecvd设备制备背面钝化膜的方法
CN101834225A (zh) 晶体硅太阳能电池各色氮化硅膜制备方法
CN102222733A (zh) 双层氮化硅减反射膜制备方法
CN107154437A (zh) 太阳能电池减反射膜的制备方法
CN102199760A (zh) 一种双层氮化硅减反膜的制作方法
CN113097346A (zh) 一种适用于硅电池背面叠层膜钝化结构
CN103746005B (zh) 双层氮化硅减反射膜
CN102969390B (zh) 一种太阳能晶硅电池的开窗工艺
CN105489700A (zh) 一种带集成二极管的太阳电池的制备方法
CN104091839B (zh) 一种用于太阳能电池片的减反射膜的制造方法
CN111139448B (zh) 一种pecvd镀膜工艺
CN109360866B (zh) 一种三层氮化硅薄膜的制备方法
CN107863415B (zh) 一种热氧化结合pecvd提升太阳能电池片转化效率的方法
CN103606599A (zh) 一种高折射率氮化硅减反射膜的制作方法
CN203871352U (zh) 一种太阳能电池石墨舟
CN202217668U (zh) 一种晶体硅太阳能电池多层氮化硅减反射膜
CN103840032A (zh) 一种硅太阳能单晶电池片双层减反膜的制备工艺
CN103035777A (zh) 一种改良的多晶硅太阳电池三层SiN减反膜的制备方法
CN103594536A (zh) 多结多叠层硅基薄膜太阳能电池及其制造工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140129