CN113979426A - 一种磷酸接枝纳米洋葱碳及其制备方法和应用 - Google Patents

一种磷酸接枝纳米洋葱碳及其制备方法和应用 Download PDF

Info

Publication number
CN113979426A
CN113979426A CN202111387035.1A CN202111387035A CN113979426A CN 113979426 A CN113979426 A CN 113979426A CN 202111387035 A CN202111387035 A CN 202111387035A CN 113979426 A CN113979426 A CN 113979426A
Authority
CN
China
Prior art keywords
cnos
onion carbon
nano onion
preparation
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111387035.1A
Other languages
English (en)
Other versions
CN113979426B (zh
Inventor
陈守文
解立新
刘莉莉
杨筱
赵嘉徐
解一超
季云桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Jinrui Lifeng Hard Material Technology Co ltd
Original Assignee
Nanjing Jinrui Lifeng Hard Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Jinrui Lifeng Hard Material Technology Co ltd filed Critical Nanjing Jinrui Lifeng Hard Material Technology Co ltd
Priority to CN202111387035.1A priority Critical patent/CN113979426B/zh
Publication of CN113979426A publication Critical patent/CN113979426A/zh
Application granted granted Critical
Publication of CN113979426B publication Critical patent/CN113979426B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种磷酸接枝纳米洋葱碳及其制备方法和应用,以纳米金刚石高温退火得到的纳米洋葱碳为原料,采用硫酸与硝酸混合酸氧化反应生成羧酸化纳米洋葱碳;与植酸混合高温水热反应,得到磷酸接枝纳米洋葱碳。本发明制备工艺简单,得到的产物为由多个石墨层形成的准球形颗粒,平均尺寸为5nm,可用于离子交换材料,特别适用于质子交换膜中的纳米填料。

Description

一种磷酸接枝纳米洋葱碳及其制备方法和应用
技术领域
本发明属于环境功能材料技术领域,具体涉及一种磷酸接枝纳米洋葱碳及其制备方法和应用。
背景技术
纳米洋葱碳(也称为碳纳米洋葱,CNOs)是典型的零维纳米材料,近年来引起了人们的研究兴趣。由于其独特的结构特性,例如洋葱状结构的石墨层中存在大量孔隙和缺陷、超小尺寸、大比表面积和良好的化学稳定性,因此在电子、催化、传感器、能量储存和转换等许多领域都进行了研究。由于高比表面积和分子间作用力,表面功能化CNOs具有良好的分散性和可忽略的团聚。此外,功能化CNOs具有良好的化学和机械稳定性、高导电性和可调节的表面结构,这使其适用于超级电容器中的电极材料和环境修复中的吸附剂。然而,功能化CNOs作为填料在质子交换膜中的研究还较为少见。文献一(Journal of Membrane Science640(2021)119823)在合成CNOs的基础上,后经苯基化、磺化反应成功制备出高密度磺化CNOs,通过与聚芳醚砜复合,制备出一系列复合膜,该膜具有良好的化学稳定性和电池性能。但该方法由于CNOs表面接枝的是磺酸基团,其作为强酸在高温条件下易失去质子,在低湿度条件下保水性较差,不利于进一步提高质子交换膜的性能。因此,需开发一种新型的结构及合成方法,制备具有更高保水能力的改性无机纳米材料。
发明内容
本发明的目的在于提供一种磷酸接枝纳米洋葱碳及其制备方法和应用,用于质子交换膜中的无机填料,提高复合膜的综合性能。
CNOs采用热退火方法制备。首先,在氮气气氛下将一定量的纳米金刚石粉末(NDs,3-7nm)放入管式炉中,然后分别以一定升温速率将NDs加热到1650~1700℃。在此温度下保持1h后以5℃/min的冷却速度冷却至室温,然后在500℃的空气中处理0.5~1h,除去剩余的无定形碳。最后回收得到CNOs粉末。
以CNOs为原料,实现本发明目的的技术解决方案为:
(1)羧酸化纳米洋葱碳C-CNOs的制备:
反应容器中,加入质量浓度97-99%的浓H2SO4,在搅拌下加入纳米洋葱碳CNOs;室温搅拌24h;
将浓硫酸与浓硝酸的混合酸缓慢加入到反应容器中,加热搅拌;
反应结束后倒入冰水中,再过滤、冲洗、烘干,得到的C-CNOs;
(2)磷酸化纳米洋葱碳P-CNOs的制备:
将C-CNOs分散在纯水中,加入植酸,超声处理,溶液的颜色逐渐从浅棕色变为深棕色;将混合物加入至反应釜中,加热;
反应结束后,自然冷却至室温后,离心分离、清洗、冷冻干燥,得到P-CNOs。
具体的制备方法为:
步骤1,羧酸化纳米洋葱碳C-CNOs的制备
在装有磁力搅拌、恒压滴液漏斗的三口烧瓶中,加入一定量浓H2SO4(97-99%),在搅拌下加入一定量的CNOs。室温搅拌24h使CNOs和浓硫酸充分接触。量取一定量的浓硫酸与浓硝酸的混合酸于恒压分液漏斗中,逐滴滴加进三口烧瓶中。以3℃/min的升温速率将温度从30℃升温至80℃,在80℃的温度下搅拌反应1~2h。然后将溶液倒入200mL冰水中,过滤,用去离子水冲洗两次,再用乙醇溶液冲洗至流出液pH值为中性,在80℃的真空烘干12h,得到的C-CNOs产品。
步骤2,磷酸化纳米洋葱碳P-CNOs的制备
将一定量的C-CNOs分散在纯水中,加入定量的植酸,超声处理0.5~1h,此过程中溶液的颜色逐渐从浅棕色变为深棕色。然后将混合物加入至50mL聚四氟乙烯内衬高压反应釜中,并在180℃下保持12h。自然冷却至室温后,离心分离并用乙醇和水清洗各一次,冷冻干燥24h,得到P-CNOs产品。
进一步地,步骤1中所述混合酸中的浓硝酸与浓硫酸的体积比为1:2.5~3.0,浓硝酸与浓硫酸的质量浓度分别为68%和98%。
步骤2中所述的C-CNOs在水中的浓度为2.0~2.5mg/L,C-CNOs粉末与植酸的固液比为1:20~25g/mL。
按照上述方法制备出的P-CNOs的离子交换量为1.65~1.80mmol/g。
按照上述方法制备出的P-CNOs作为填料用于聚合物电解质膜中,组装的燃料电池在60%低相对湿度下(60%RH)的最大输出功率高出未改性聚合物电解质膜的85%~110%。
本发明与现有技术相比,其显著优点如下:
(1)本发明方法采用纳米金刚石为原料,制备得到的磷酸化纳米洋葱碳具有高比表面积和介孔结构,有利于提高膜的保水性和离子交换容量;
(2)纳米洋葱碳表面接枝了大量的磷酸基团,由于磷酸根为中强酸,同时含有质子供体和受体,且极易形成氢键,质子极化作用明显,掺杂到聚合物膜中有利于提高膜的吸水率和电导率,尤其提高聚合物电解质膜在低湿度条件下的电池性能;
(3)本发明中磷酸接枝纳米洋葱碳的改性材料为植酸,此原料来源广泛,并分布于农作物及农副产品中,有利于环境保护和人类健康。
附图说明
图1a为实施例1的CNOs的HRTEM图;
图1b为实施例1的P-CNOs的HRTEM图;
图2为实施例1的CNOs,C-CNOs和P-CNOs的红外谱图;
图3为实施例1的CNOs和P-CNOs的XPS谱图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细描述。
一种磷酸接枝纳米洋葱碳的制备方法,以NDs为原料,通过热退火的方法制备得到CNOs,然后与硫酸/硝酸混合酸反应生成C-CNOs;最后,与植酸混合并进行水热反应,经离心、洗涤、冷冻干燥后得到P-CNOs。制备得到的P-CNOs的离子交换容量为1.65~1.80mmol/g,将其加入到磺化聚芳醚砜聚合物中制备复合膜。在聚合物膜中,一方面由于引入的P-CNOs无机纳米粒子具有高比表面积和介孔结构,提高膜的亲水性和相容性;另一方面P-CNOs表面接枝了大量的磷酸基团可以与磺化聚芳醚砜的磺酸基团形成氢键相互作用,为质子传递提供更多的活性位点,并且由于磷酸根为中强酸,同时具有质子供体和受体、质子极化作用明显、水合能高等优点,使得复合膜表现出更加优异的综合性能。
实施例1
(1)纳米洋葱碳CNOs的制备
在氮气气氛下将2.0g的纳米金刚石粉末(NDs,3-7nm)放入管式炉中,然后分别以一定升温速率将NDs加热到1650~1700℃。在此温度下保持1h后以5℃/min的冷却速度冷却至室温,然后在500℃的空气中处理0.5~1h,除去剩余的无定形碳。最后回收得到1.62g的CNOs粉末。图1a为CNOs(a)的HRTEM图;图2包括了CNOs的红外谱图;图3包括了CNOs XPS谱图。
(2)羧酸化纳米洋葱碳C-CNOs的制备
在装有磁力搅拌、恒压滴液漏斗的三口烧瓶中,加入25mL浓H2SO4(97-99%),在搅拌下加入0.4g CNOs。室温搅拌24h使CNOs和浓硫酸充分接触。量取25mL的浓硫酸和20mL的浓硝酸于恒压分液漏斗中,逐滴滴加进三口烧瓶中。以3℃/min的升温速率将温度从30℃升温至80℃,在80℃的温度下搅拌反应1~2h。然后将溶液倒入200mL冰水中,过滤,用去离子水冲洗两次,再用乙醇溶液冲洗至流出液pH值为中性,在80℃的真空烘干12h,得到的0.36g的C-CNOs产品。
(3)磷酸化纳米洋葱碳P-CNOs的制备:
在C-CNOs的水分散液中(2.0mg/L,35mL)中,加入1.4mL植酸,超声处理0.5~1h,此过程中溶液的颜色逐渐从浅棕色变为深棕色。然后将混合物加入至50mL聚四氟乙烯内衬高压反应釜中,并在180℃下保持12h。自然冷却至室温后,离心分离并用乙醇和水清洗各一次,冷冻干燥24h,得到0.05gP-CNOs产品。
图1b为P-CNOs的HRTEM图;图2包括了C-CNOs和P-CNOs的红外谱图;图3包括了P-CNOs的XPS谱图。
实施例2
(1)与实施例1相同。
(2)羧酸化纳米洋葱碳C-CNOs的制备:
在装有磁力搅拌、恒压滴液漏斗的三口烧瓶中,加入26mL浓H2SO4(97-99%),在搅拌下加入0.4g CNOs。室温搅拌24h使CNOs和浓硫酸充分接触。量取30mL的浓硫酸和20mL的浓硝酸于恒压分液漏斗中,逐滴滴加进三口烧瓶中。以3℃/min的升温速率将温度从30℃升温至80℃,在80℃的温度下搅拌反应1~2h。然后将溶液倒入200mL冰水中,过滤,用去离子水冲洗两次,再用乙醇溶液冲洗至流出液pH值为中性,在80℃的真空烘干12h,得到的0.38g的C-CNOs产品。
(3)磷酸化纳米洋葱碳P-CNOs的制备:
在C-CNOs的水分散液中(2.0mg/L,30mL)中,加入1.4mL植酸,超声处理0.5~1h,此过程中溶液的颜色逐渐从浅棕色变为深棕色。然后将混合物加入至50mL聚四氟乙烯内衬高压反应釜中,并在180℃下保持12h。自然冷却至室温后,离心分离并用乙醇和水清洗各一次,冷冻干燥24h,得到0.06gP-CNOs产品。
实施例3
(1)与实施例1相同。
(2)羧酸化纳米洋葱碳C-CNOs的制备:
在装有磁力搅拌、恒压滴液漏斗的三口烧瓶中,加入20mL浓H2SO4(97-99%),在搅拌下加入0.4g的CNOs。室温搅拌24h使CNOs和浓硫酸充分接触。量取40mL的浓硫酸和20mL的浓硝酸于恒压分液漏斗中,逐滴滴加进三口烧瓶中。以3℃/min的升温速率将温度从30℃升温至80℃,在80℃的温度下搅拌反应1~2h。然后将溶液倒入200mL冰水中,过滤,用去离子水冲洗两次,再用乙醇溶液冲洗至流出液pH值为中性,在80℃的真空烘干12h,得到的0.38g的C-CNOs产品。
(3)磷酸化纳米洋葱碳P-CNOs的制备:
在C-CNOs的水分散液中(2.2mg/L,35mL)中,加入1.92mL植酸,超声处理0.5~1h,此过程中溶液的颜色逐渐从浅棕色变为深棕色。然后将混合物加入至50mL聚四氟乙烯内衬高压反应釜中,并在180℃下保持12h。自然冷却至室温后,离心分离并用乙醇和水清洗各一次,冷冻干燥24h,得到0.05gP-CNOs产品。
实施例4
P-CNOs掺杂电解质膜(SPAES-1wt%P-CNOs)的制备及燃料电池性能:
将0.8g的45%磺化度的磺化聚芳醚砜SPAES溶于13.5mL N,N-二甲基甲酰胺(DMAc)中,常温下搅拌24h得到混合溶液A,同时将80mg实施例1制备所得的的P-CNOs粉末溶于3.5mL的DMAc中,超声1h,常温下搅拌12h得到溶液B,将溶液A和B共混,常温下搅拌24h得到铸膜液。将铸膜液缓慢倒入超水平的浇膜盘中,浇膜烘箱升温程序为(60℃,4h→80℃,12h→100℃,2h)。复合膜取出后放入1mol/L盐酸溶液中浸泡72h后用去离子水清洗至中性,得到复合膜SPAES-1wt%P-CNOs。
对制备得到的复合膜进行性能测试:复合膜SPAES-1wt%P-CNOs的IEC达到1.52mmol/g,90℃在水中电导率达到160.8mS/cm。在H2/O2燃料电池测试中,80℃和60%RH条件下,电池的最大输出功率为370mW/cm,高出未掺杂SPAES膜的85%。

Claims (7)

1.一种磷酸接枝纳米洋葱碳的制备方法,其特征在于,包括以下几个步骤:
(1)羧酸化纳米洋葱碳C-CNOs的制备:
反应容器中,加入质量浓度97-99%的浓H2SO4,在搅拌下加入纳米洋葱碳CNOs;室温搅拌24h;
将浓硫酸与浓硝酸的混合酸缓慢加入到反应容器中,加热搅拌;
反应结束后倒入冰水中,再过滤、冲洗、烘干,得到的C-CNOs;
(2)磷酸化纳米洋葱碳P-CNOs的制备:
将C-CNOs分散在纯水中,加入植酸,超声处理,溶液的颜色逐渐从浅棕色变为深棕色;将混合物加入至反应釜中,加热;
反应结束后,自然冷却至室温后,离心分离、清洗、冷冻干燥,得到P-CNOs。
2.根据权利要求1所述的一种磷酸接枝纳米洋葱碳的制备方法,其特征在于,步骤(1)中所述的加热搅拌,以3℃/min的升温速率升温至80℃,在80℃的温度下继续搅拌反应1~2h。
3.根据权利要求1所述的一种磷酸接枝纳米洋葱碳的制备方法,其特征在于,步骤(2)超声处理0.5~1h;加热到180℃,反应12h。
4.根据权利要求1所述的一种磷酸接枝纳米洋葱碳的制备方法,其特征在于,步骤(1)中所述混合酸中的浓硝酸与浓硫酸的体积比为1:2.5~3.0,浓硝酸与浓硫酸的质量浓度分别为68%和98%。
5.根据权利要求1所述的一种磷酸接枝纳米洋葱碳的制备方法,其特征在于,步骤(2)所述的C-CNOs分散在纯水中,C-CNOs在水中的浓度为2.0~2.5mg/L;C-CNOs与植酸的固液比为1:20~25g/mL。
6.一种磷酸接枝纳米洋葱碳,其特征在于,根据权利要求1到5任一项所述的制备方法所得。
7.根据权利要求1所述的一种磷酸接枝纳米洋葱碳的应用,其特征在于,作为填料,用于制备聚合物电解质膜。
CN202111387035.1A 2021-11-22 2021-11-22 一种磷酸接枝纳米洋葱碳及其制备方法和应用 Active CN113979426B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111387035.1A CN113979426B (zh) 2021-11-22 2021-11-22 一种磷酸接枝纳米洋葱碳及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111387035.1A CN113979426B (zh) 2021-11-22 2021-11-22 一种磷酸接枝纳米洋葱碳及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113979426A true CN113979426A (zh) 2022-01-28
CN113979426B CN113979426B (zh) 2023-10-20

Family

ID=79749773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111387035.1A Active CN113979426B (zh) 2021-11-22 2021-11-22 一种磷酸接枝纳米洋葱碳及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113979426B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975698A (zh) * 2022-11-30 2023-04-18 潍柴动力股份有限公司 一种含化学表面修饰纳米洋葱碳材料的润滑油添加剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106660786A (zh) * 2014-09-16 2017-05-10 南洋理工大学 使碳纳米材料的表面官能化的方法
CN111115617A (zh) * 2019-12-24 2020-05-08 谢春艳 一种高纯中空碳纳米洋葱的规模化制备方法
CN113023727A (zh) * 2021-03-18 2021-06-25 青岛科技大学 一种纳米洋葱碳的制备方法
CN113604151A (zh) * 2021-08-27 2021-11-05 齐齐哈尔大学 磷化聚苯胺-二氧化硅接枝改性石墨烯/水性含环氧基硅树脂复合涂层的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106660786A (zh) * 2014-09-16 2017-05-10 南洋理工大学 使碳纳米材料的表面官能化的方法
CN111115617A (zh) * 2019-12-24 2020-05-08 谢春艳 一种高纯中空碳纳米洋葱的规模化制备方法
CN113023727A (zh) * 2021-03-18 2021-06-25 青岛科技大学 一种纳米洋葱碳的制备方法
CN113604151A (zh) * 2021-08-27 2021-11-05 齐齐哈尔大学 磷化聚苯胺-二氧化硅接枝改性石墨烯/水性含环氧基硅树脂复合涂层的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975698A (zh) * 2022-11-30 2023-04-18 潍柴动力股份有限公司 一种含化学表面修饰纳米洋葱碳材料的润滑油添加剂及其制备方法

Also Published As

Publication number Publication date
CN113979426B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
CN110492081B (zh) 一种硒化钴/硒化锌@氮掺杂多孔碳纳米管的制备方法及其应用
CN108232209B (zh) 中温碳化金属骨架化合物扩孔技术用于高活性铁氮碳催化剂制备
CN106252628B (zh) 一种氧化锰/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN109616671B (zh) 一种防止金属间化合物在高温中团聚和长大的方法及应用
CN106876759A (zh) 氨基功能化的棒状金属有机骨架改性的聚合物杂化质子交换膜及其制备方法
CN106046404B (zh) NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜及其制备方法
CN109569670B (zh) 一种BiOBr/黑磷烯异质结纳米复合材料的制备方法
CN106910894A (zh) 一种纳米介孔炭微球‑石墨烯夹层复合材料的制备方法
CN113942995A (zh) 杂原子掺杂多孔炭材料及其制备方法和应用
CN113979426B (zh) 一种磷酸接枝纳米洋葱碳及其制备方法和应用
CN113813975A (zh) 一种zif-8衍生的多级孔m-n-c催化剂及其制备方法
CN106299392A (zh) 一种具有锰缺陷的纳米Mn3O4及其制备方法及其在电催化氧还原反应中的应用
CN112086672A (zh) 一种燃料电池用复合型高温质子交换膜及其制备方法和应用
KR101419340B1 (ko) 그라파이트 산화물 및 그래핀 나노시트 제조 방법
CN103641101A (zh) 二维结构碳纳米材料及其制备方法
CN114373971B (zh) 一种全氟磺酸树脂与Ce-MOF共混的质子交换膜的制备方法
CN110407208A (zh) 一种介孔石墨烯基炭气凝胶的制备方法
CN114031870B (zh) 一种质子交换膜及其制备方法和应用
CN112079348B (zh) 一种石墨烯/mof衍生硫化物复合材料气凝胶的制备方法及应用
CN110127669B (zh) 一种还原氧化石墨烯和四氧化三锰纳米粒子杂化气凝胶的制备方法
CN113637131A (zh) 全氟烷基链修饰的共价有机框架、制备方法及其应用
CN114171740A (zh) 纳米磷酸铁锂正极材料的制备方法和锂离子电池
CN112086673A (zh) 一种燃料电池用复合型高温质子交换膜及其制备方法
CN112934011A (zh) 一种用于co2分离的膜材料及制备方法
CN113120955B (zh) 接枝磺化丁基二氧化钛纳米管的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant