CN113964240A - 一种n型双面太阳能电池的制备方法 - Google Patents

一种n型双面太阳能电池的制备方法 Download PDF

Info

Publication number
CN113964240A
CN113964240A CN202111215056.5A CN202111215056A CN113964240A CN 113964240 A CN113964240 A CN 113964240A CN 202111215056 A CN202111215056 A CN 202111215056A CN 113964240 A CN113964240 A CN 113964240A
Authority
CN
China
Prior art keywords
layer
silicon wafer
aluminum
plasma
aluminum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202111215056.5A
Other languages
English (en)
Inventor
徐文州
吴伟梁
周鹏宇
姚骞
邢国强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongwei Solar Meishan Co Ltd
Original Assignee
Tongwei Solar Meishan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongwei Solar Meishan Co Ltd filed Critical Tongwei Solar Meishan Co Ltd
Priority to CN202111215056.5A priority Critical patent/CN113964240A/zh
Publication of CN113964240A publication Critical patent/CN113964240A/zh
Priority to EP22882333.2A priority patent/EP4365964A4/en
Priority to AU2022369776A priority patent/AU2022369776A1/en
Priority to PCT/CN2022/101847 priority patent/WO2023065710A1/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请涉及一种N型双面太阳能电池的制备方法,属于N型双面太阳能电池技术领域。该制备方法包括依次在N型硅片的正面形成正面氧化铝钝化层和正面氮化硅减反射层。使用等离子体增强原子层沉积的方法制备正面氧化铝钝化层,其沉积条件为:选用40kHz‑400kHz频率范围内的任一频率为射频电源频率,在真空状态下,先向等离子体装置内通入气态铝源,使硅片表面吸附一层铝源分子,然后再通入气态氧源,使氧源被电离成等离子体并与铝源反应得到氧化铝。在等离子装置中氧源被电离成等离子体,等离子体具有较高的能量和活性,可以快速与吸附在N型硅片上的铝源分子结合,生成氧化铝膜,使N型双面太阳能电池的开路电压和转化效率提高。

Description

一种N型双面太阳能电池的制备方法
技术领域
本申请涉及N型双面太阳能电池技术领域,且特别涉及一种N型双面太阳能电池的制备方法。
背景技术
在晶体硅太阳能电池中,金属-半导体接触区域存在严重的复合,载流子复合严重,成为制约晶体硅太阳能电池效率发展的重要因素。在晶体硅太阳能电池中设置钝化层,可以使电池具有更高的效率极限,最接近晶体硅太阳能电池理论极限效率。由于氧化铝是具有约9eV宽能带间隙和大能带差位的绝缘材料,氧化铝的介电常数比氧化硅的高出两倍以上。因此,氧化铝可以用来在硅基材上形成介电层。
N型双面电池正面进行扩散含硼的化合物形成P型掺杂层,在N型双面电池的正面钝化选材中,氧化铝薄膜的固定电荷密度为约为10×1012-10×1013cm-2,可以使P型掺杂层处于累积状态,在靠近表面的位置产生电场,该电场可以排斥具有相同极性的载流子,氧化铝膜层中的负电荷与P型硅片中的少数载流子(电子)相互排斥,从而阻挡其与硅片表面的复合中心结合,降低了表面复合速率,实现场钝化。氧化铝钝化膜,利用场钝化和化学钝化对正表面实现了优异的钝化效果,提高了电池开路电压。
现有的氧化铝膜是可以通过热原子层沉积方法(ALD)进行制备,具体为:在真空状态、温度为200℃-450℃的条件下,先通入三甲基铝(Al(CH3)3)在硅片表面吸附三甲基铝分子,通过氮气吹扫,吹掉多余的原子,仅保留一层三甲基铝分子吸附在硅片表面,然后再通入水或臭氧,水或臭氧中的氧原子与吸附在硅片上的三甲基铝分子发生结合,形成氧化铝膜。通过上述方法制备得到的N型双面太阳能电池的开路电压不高,转化效率偏低。
发明内容
针对现有技术的不足,本申请实施例的目的包括提供一种N型双面太阳能电池的制备方法,可以增大N型双面太阳能电池的开路电压和转化效率。
本申请实施例提供了一种N型双面太阳能电池的制备方法,包括依次在N型硅片的正面形成正面氧化铝钝化层和正面氮化硅减反射层。使用等离子体增强原子层沉积的方法制备正面氧化铝钝化层,其沉积条件为:选用40kHz-400kHz频率范围内的任一频率为射频电源频率,在真空状态下,先向等离子体装置内通入气态铝源,使硅片表面吸附一层铝源分子,然后再通入气态氧源,使氧源被电离成等离子体并与铝源反应得到氧化铝。
现有技术中,等离子体增强原子层沉积方法(PEALD)是一种低温制备高质量超薄薄膜的方法,通常在射频电源频率为10MHz-10 GHz的条件下进行膜的制备。发明人研究发现,如果直接使用现有的等离子体增强原子层沉积方法的工艺进行正面氧化铝钝化层的制备,则氧化铝钝化层制备效果不好,得到的N型双面太阳能电池的开路电压和转化效率不高。所以,现有技术中,通常使用热原子层沉积方法进行正面氧化铝钝化层的制备,但得到的N型双面太阳能电池的开路电压和转化效率也不高。
发明人继续进行研究发现,并不是等离子体增强原子层沉积方法不适用于用来制备正面氧化铝钝化层,而是现有的射频电源频率的选择范围不合适。本申请中,将射频电源频率选择在40kHz-400kHz范围内,可以使氧源被电离成等离子体,等离子体具有较高的能量和活性,可以快速与吸附在N型硅片上的铝源分子结合,生成氧化铝膜,使N型双面太阳能电池的开路电压和转化效率提高。
在本申请的部分实施例中,气态铝源为三甲基铝、三乙基铝、氯化二甲基铝和乙醇铝中的一种;气态氧源为氧气、笑气、臭氧和水蒸气中的一种。该铝源的熔点低,容易以气态的方式存在,且其容易吸附在N型硅片的表面;该氧源在射频电源频率较低的条件下能够电离成等离子体,以便与三甲基铝反应得到氧化铝膜。
在本申请的部分实施例中,沉积温度范围为80℃-400℃。使用等离子体增强原子层沉积方法,在射频电源频率较低、温度较低的情况下,就能够形成致密的、纯度高的正面氧化铝钝化层,以提高电池的性能。
在本申请的部分实施例中,射频电源频率范围为40kHz-200kHz,沉积温度范围为80℃-200℃。在射频电源频率较低,温度较低的情况下,就能够得到成膜效果好的氧化铝膜。
在本申请的部分实施例中,选用40kHz-400kHz频率范围内的任一频率为射频电源频率、温度为80℃-400℃,在真空状态下,先向等离子体装置内通入三甲基铝,使硅片表面吸附三甲基铝分子,通入稀有气体进行吹扫,使硅片表面吸附一层三甲基铝分子,然后再通入氧气,使氧气被电离成等离子体并与三甲基铝反应得到氧化铝。通过上述方法得到的单层氧化铝层,其晶格常数为0.125nm。
在本申请的部分实施例中,正面氧化铝钝化层的厚度为2nm-20nm。使用前述的方法,经过多次循环可以精确制备厚度为2nm-20nm的正面氧化铝钝化层,厚度更加容易被控制。
在本申请的部分实施例中,N型双面太阳能电池的制备方法包括:先对N型硅片的表面进行双面制绒。在N型硅片的正面进行单面扩散形成正面P型掺杂层。在N型硅片的正面形成正面氧化铝钝化层和正面氮化硅减反射层。在N型硅片的背面依次形成隧穿氧化硅层和背面本征非晶硅层,并在背面本征非晶硅层上形成背面N型掺杂层。在N型硅片的背面形成背面氮化硅减反射层。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的N型双面太阳能电池的层结构示意图;
图2为本申请实施例提供的N型双面太阳能电池的制备方法的工艺流程图。
图标:110-正面氮化硅减反射层;120-正面氧化铝钝化层;130-正面P型掺杂层;140-N型硅片;150-背面隧穿氧化硅层;160-背面本征非晶硅层;170-背面N型掺杂层;180-背面氮化硅减反射层。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面对本申请的技术方案进行清楚、完整地描述。
图1为本申请实施例提供的N型双面太阳能电池的层结构示意图。请参阅图1,该N型双面太阳能电池从上到下依次包括正面氮化硅减反射层110、正面氧化铝钝化层120、正面P型掺杂层130、N型硅片140、背面隧穿氧化硅层150、背面本征非晶硅层160、背面N型掺杂层170和背面氮化硅减反射层180。
图2为本申请实施例提供的N型双面太阳能电池的制备方法的工艺流程图。请参阅图1和图2,该N型双面太阳能电池的制备方法包括如下步骤:
S110、先对N型硅片140的表面进行双面制绒。可选地,对N型硅片140进行清洗,通过碱液(例如:强碱,NaOH或KOH)进行制绒,形成金字塔绒面。其中,不限定硅片的几何尺寸和规格形状。
S120、在N型硅片140的正面进行单面扩散形成正面P型掺杂层130。可选地,对制绒后的N型硅片140的正面进行单面硼扩散。
例如:采用液态三溴化硼BBr3或气态的BCl3,在温度为900℃-1050的条件下扩散150min-200min。然后使用质量浓度为5%-15%的HF溶液作为刻蚀液,对N型硅片140背面和边缘进行化学刻蚀,得到正面P型掺杂层130。
S130、在N型硅片140的正面形成正面氧化铝钝化层120和正面氮化硅减反射层110。可选地,使用等离子体增强原子层沉积(PEALD)的方法制备正面氧化铝钝化层120,其沉积条件为:选用40kHz-400kHz频率范围内的任一频率为射频电源频率,在真空状态下,先向等离子体装置内通入气态铝源,使硅片表面吸附一层铝源分子,然后再通入气态氧源,使氧源被电离成等离子体并与铝源反应得到正面氧化铝钝化层120。
其中,其中,氧源是指电场作用下具有氧化特性的物质,可选地,气态铝源为三甲基铝、三乙基铝、氯化二甲基铝和乙醇铝中的一种;气态氧源为氧气、笑气、臭氧和水蒸气中的一种。其中,三甲基铝为有机铝源,容易吸附在N型硅片140的表面;氧气和笑气在射频电源频率较低的条件下能够电离成等离子体,以便与三甲基铝反应得到氧化铝膜。
本申请中,沉积温度范围为80℃-400℃。使用等离子体增强原子层沉积方法,在射频电源频率较低、温度较低的情况下,就能够形成致密的、纯度高的正面氧化铝钝化层120,以提高电池的性能。
可选地,射频电源频率范围为40kHz-200kHz,沉积温度范围为80℃-200℃。在射频电源频率较低,温度较低的情况下,就能够得到成膜效果好的氧化铝膜。
作为示例性地,使用等离子体增强原子层沉积法进行正面氧化铝钝化层120的制备时,等离子体装置的射频电源频率为40kHz、200kHz或400kHz;等离子体装置的沉积温度为80℃、100℃、120℃、150℃、200℃、300℃或400℃。
例如:选用40kHz-400kHz频率范围内的任一频率为射频电源频率、温度为80℃-400℃,在真空状态下,先向等离子体装置内通入三甲基铝,使硅片表面吸附三甲基铝分子,通入稀有气体进行吹扫,使硅片表面吸附一层三甲基铝分子,然后再通入氧气,使氧气被电离成等离子体并与三甲基铝反应得到氧化铝。通过上述方法得到的单层氧化铝层,其晶格常数为0.125nm,经过多次循环可以精确制备厚度为2nm-20nm的正面氧化铝钝化层120,厚度更加容易被控制。
需要说明的是:本申请中,不限定PEALD的设备形式何形状,如管式或者板式设备,也不限定于设备厂家和使用的环境条件。不限定硅片承载装置的材质和形状,比如石墨舟的形状和大小。
可选地,通过PECVD法在N型硅片140的正面形成正面氮化硅减反射层110。
S140、在N型硅片140的背面依次形成隧穿氧化硅层和背面本征非晶硅层160。可选地,将经过步骤S130后的N型硅片140置于PECVD设备的腔室中,向PECVD设备的腔室中通入臭氧气体进行氧化处理,使N型硅片140的背面形成背面隧穿氧化硅层150。然后通入H2与SiH4的混合气体,沉积得到背面本征非晶硅层160。
S150、背面本征非晶硅层160上形成背面N型掺杂层170。可选地,对经过步骤S140后的N型硅片140进行背面磷扩散。
例如:采用液态三氯氧磷POCl3,在温度为750℃-850℃的条件下扩散30min-60min。然后使用质量浓度为2%-3%的HF溶液作为刻蚀液,对N型硅片140边缘进行化学刻蚀,得到背面N型掺杂层170。且由于HF溶液的浓度较低,正面氮化硅减反射层110基本无损伤。
S160、在N型硅片140的背面形成背面氮化硅减反射层180。可选地,通过PECVD法在N型硅片140的背面形成背面氮化硅减反射层180。
S170、采用丝网印刷的方式在硅片正面和背面进行栅线印刷,并进行烧结,形成正面电极和背面电极。
现有技术中,等离子体增强原子层沉积方法(PEALD)是一种低温制备高质量超薄薄膜的方法,通常在射频电源频率为10MHz-10 GHz的条件下进行膜的制备。发明人研究发现,如果直接使用现有的等离子体增强原子层沉积方法的工艺条件进行正面氧化铝钝化层120的制备,则氧化铝钝化层制备效果不好,得到的N型双面太阳能电池的开路电压和转化效率不高。所以,现有技术中,通常使用热原子层沉积方法进行正面氧化铝钝化层120的制备,但得到的N型双面太阳能电池的开路电压和转化效率也不高。
发明人继续进行研究发现,并不是等离子体增强原子层沉积方法不适用于用来制备正面氧化铝钝化层120,而是现有的射频电源频率的选择范围不合适。本申请中,将射频电源频率选择在40kHz-400kHz范围内,温度不低于80℃,就可以使氧气或笑气被电离成等离子体,等离子体具有较高的能量和活性,可以快速与吸附在N型硅片140上的三甲基铝分子结合,生成氧化铝膜,使N型双面太阳能电池的开路电压和转化效率提高。
其中,射频电源频率选择在40kHz-400kHz范围内,电源属于中低频电源,信号变化慢,波形平滑,可以使膜层的均匀性更佳,并且能够制备单一组分的氧化铝膜,氧化铝膜的钝化性能更好。制备正面氧化铝钝化层120的温度在80℃-400℃范围内,范围广而且可低温生长,减少能源消耗。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例
本实施例提供一种N型双面太阳能电池的制备方法包括如下步骤:
(1)、对N型硅片进行清洗,通过NaOH进行制绒,形成金字塔绒面。
(2)、采用气态氯化硼BCl3在温度为950℃左右的条件下扩散200min。然后使用质量浓度为10%的HF溶液作为刻蚀液,对N型硅片背面和边缘进行化学刻蚀,得到正面P型掺杂层。
(3)、在真空状态下,先向等离子体装置内通入三甲基铝,使硅片表面吸附三甲基铝分子,通入稀有气体进行吹扫,使硅片表面吸附一层三甲基铝分子,然后再通入氧气,并控制等离子体装置的射频电源频率范围为40kHz-400kHz、温度为80℃-400℃,使氧气与三甲基铝反应得到正面氧化铝钝化层。
通过PECVD法在N型硅片的正面形成正面氮化硅减反射层。
(4)、将经过步骤(3)后的N型硅片置于PECVD设备的腔室中,向PECVD设备的腔室中通入臭氧气体进行氧化处理,使N型硅片的背面形成背面隧穿氧化硅层。然后通入H2与SiH4的混合气体,沉积得到背面本征非晶硅层。
(5)、采用液态三氯氧磷POCl3,在温度为800℃左右的条件下扩散40min。然后使用质量浓度为2%的HF溶液作为刻蚀液,对N型硅片边缘进行化学刻蚀,得到背面N型掺杂层。
(6)、通过PECVD法在N型硅片的背面形成背面氮化硅减反射层。
(7)、采用丝网印刷的方式在硅片正面和背面进行栅线印刷,并进行烧结,形成正面电极和背面电极。
其中,正面氧化铝钝化层的具体制备条件以及N型双面太阳能电池的性能如表1。
表1正面氧化铝钝化层的制备条件以及N型双面太阳能电池的性能
Figure BDA0003310459280000091
从表1可以看出,相较于实施例1-实施例12,对比例1中使用热原子层沉积方法进行正面氧化铝钝化层的制备,得到的N型双面太阳能电池的开路电压和转化效率偏低。
从实施例1-实施例12可以看出,本申请中,在射频电源频率范围为40kHz-200kHz,沉积温度范围为80℃-200℃,得到的电池的开路电压和转化效率更高,说明正面氧化铝钝化层的钝化性能较好。
以上所描述的实施例是本申请一部分实施例,而不是全部的实施例。本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

Claims (7)

1.一种N型双面太阳能电池的制备方法,包括依次在N型硅片的正面形成正面氧化铝钝化层和正面氮化硅减反射层,其特征在于,
使用等离子体增强原子层沉积的方法制备所述正面氧化铝钝化层,其沉积条件为:选用40kHz-400kHz频率范围内的任一频率为射频电源频率,在真空状态下,先向所述等离子体装置内通入气态铝源,使硅片表面吸附一层铝源分子,然后再通入气态氧源,使所述氧源被电离成等离子体并与所述铝源反应得到氧化铝。
2.根据权利要求1所述的制备方法,其特征在于,所述气态铝源为三甲基铝、三乙基铝、氯化二甲基铝和乙醇铝中的一种;所述气态氧源为氧气、笑气、臭氧和水蒸气中的一种。
3.根据权利要求1所述的制备方法,其特征在于,沉积温度范围为80℃-400℃。
4.根据权利要求3所述的制备方法,其特征在于,所述射频电源频率范围为40kHz-200kHz,沉积温度范围为80℃-200℃。
5.根据权利要求1-4任一项所述的制备方法,其特征在于,选用40kHz-400kHz频率范围内的任一频率为射频电源频率、温度为80℃-400℃,在真空状态下,先向等离子体装置内通入三甲基铝,使硅片表面吸附三甲基铝分子,通入稀有气体进行吹扫,使所述硅片表面吸附一层三甲基铝分子,然后再通入氧气,使所述氧气被电离成等离子体并与所述三甲基铝反应得到氧化铝。
6.根据权利要求5所述的制备方法,其特征在于,所述正面氧化铝钝化层的厚度为2nm-20nm。
7.根据权利要求5所述的制备方法,其特征在于,包括:
先对N型硅片的表面进行双面制绒;
在所述N型硅片的正面进行单面扩散形成正面P型掺杂层;
在所述N型硅片的正面形成所述正面氧化铝钝化层和所述正面氮化硅减反射层;
在所述N型硅片的背面依次形成隧穿氧化硅层和背面本征非晶硅层,并在所述背面本征非晶硅层上形成背面N型掺杂层;
在所述N型硅片的背面形成背面氮化硅减反射层。
CN202111215056.5A 2021-10-19 2021-10-19 一种n型双面太阳能电池的制备方法 Withdrawn CN113964240A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202111215056.5A CN113964240A (zh) 2021-10-19 2021-10-19 一种n型双面太阳能电池的制备方法
EP22882333.2A EP4365964A4 (en) 2021-10-19 2022-06-28 MANUFACTURING PROCESS FOR DOUBLE-SIDED N-SOLAR CELLS
AU2022369776A AU2022369776A1 (en) 2021-10-19 2022-06-28 N-type double-sided solar cell preparation method
PCT/CN2022/101847 WO2023065710A1 (zh) 2021-10-19 2022-06-28 一种n型双面太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111215056.5A CN113964240A (zh) 2021-10-19 2021-10-19 一种n型双面太阳能电池的制备方法

Publications (1)

Publication Number Publication Date
CN113964240A true CN113964240A (zh) 2022-01-21

Family

ID=79465151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111215056.5A Withdrawn CN113964240A (zh) 2021-10-19 2021-10-19 一种n型双面太阳能电池的制备方法

Country Status (4)

Country Link
EP (1) EP4365964A4 (zh)
CN (1) CN113964240A (zh)
AU (1) AU2022369776A1 (zh)
WO (1) WO2023065710A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551640A (zh) * 2022-01-27 2022-05-27 晶科能源(海宁)有限公司 太阳能电池制作方法及太阳能电池
WO2023065710A1 (zh) * 2021-10-19 2023-04-27 通威太阳能(眉山)有限公司 一种n型双面太阳能电池的制备方法
CN116072741A (zh) * 2023-03-06 2023-05-05 通威太阳能(眉山)有限公司 太阳电池及其制备方法、光伏组件、用电装置
WO2023216652A1 (zh) * 2022-05-11 2023-11-16 通威太阳能(眉山)有限公司 一种双面太阳能电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050181535A1 (en) * 2004-02-17 2005-08-18 Yun Sun J. Method of fabricating passivation layer for organic devices
CN101921994A (zh) * 2010-07-30 2010-12-22 北京印刷学院 一种原子层沉积超薄氧化铝薄膜的装置及方法
EP2484801A1 (en) * 2011-02-07 2012-08-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of deposition of Al2O3/SiO2 stacks, from TMA or TEA and silicon precursors
CN105870249A (zh) * 2016-03-24 2016-08-17 江苏微导纳米装备科技有限公司 一种晶硅太阳能电池的制造工艺
CN106409989A (zh) * 2016-12-16 2017-02-15 中利腾晖光伏科技有限公司 一种n型双面太阳电池及其制备方法
WO2017135560A1 (ko) * 2016-02-05 2017-08-10 인천대학교 산학협력단 박막 형성 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009026249B4 (de) * 2009-07-24 2012-11-15 Q-Cells Se Plasma unterstütztes Abscheideverfahren, Halbleitervorrichtung und Abscheidevorrichtung
JP5668294B2 (ja) * 2010-02-23 2015-02-12 凸版印刷株式会社 ガスバリアフィルムおよびその製造方法
CN108149224A (zh) * 2018-01-08 2018-06-12 上海硕余精密机械设备有限公司 一种等离子体辅助原子层沉积装置
CN108346716A (zh) * 2018-03-29 2018-07-31 江苏微导纳米装备科技有限公司 一种晶硅太阳能电池的制造工艺
CN110335901B (zh) * 2019-08-12 2024-04-16 无锡松煜科技有限公司 光伏电池表面钝化系统及钝化方法
CN112251733B (zh) * 2020-10-10 2022-05-20 浙江晶科能源有限公司 降低绕镀的原子层沉积制备方法及太阳能电池
CN113964240A (zh) * 2021-10-19 2022-01-21 通威太阳能(眉山)有限公司 一种n型双面太阳能电池的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050181535A1 (en) * 2004-02-17 2005-08-18 Yun Sun J. Method of fabricating passivation layer for organic devices
CN101921994A (zh) * 2010-07-30 2010-12-22 北京印刷学院 一种原子层沉积超薄氧化铝薄膜的装置及方法
EP2484801A1 (en) * 2011-02-07 2012-08-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of deposition of Al2O3/SiO2 stacks, from TMA or TEA and silicon precursors
WO2017135560A1 (ko) * 2016-02-05 2017-08-10 인천대학교 산학협력단 박막 형성 방법
CN105870249A (zh) * 2016-03-24 2016-08-17 江苏微导纳米装备科技有限公司 一种晶硅太阳能电池的制造工艺
CN106409989A (zh) * 2016-12-16 2017-02-15 中利腾晖光伏科技有限公司 一种n型双面太阳电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
于波等: ""PEALD制备的Al2O3薄膜在n-TOPCon太阳电池上的钝化性能"", 《半导体制备技术》, vol. 46, no. 5, pages 371 - 375 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023065710A1 (zh) * 2021-10-19 2023-04-27 通威太阳能(眉山)有限公司 一种n型双面太阳能电池的制备方法
CN114551640A (zh) * 2022-01-27 2022-05-27 晶科能源(海宁)有限公司 太阳能电池制作方法及太阳能电池
WO2023216652A1 (zh) * 2022-05-11 2023-11-16 通威太阳能(眉山)有限公司 一种双面太阳能电池及其制备方法
CN116072741A (zh) * 2023-03-06 2023-05-05 通威太阳能(眉山)有限公司 太阳电池及其制备方法、光伏组件、用电装置
CN116072741B (zh) * 2023-03-06 2023-08-15 通威太阳能(眉山)有限公司 太阳电池及其制备方法、光伏组件、用电装置

Also Published As

Publication number Publication date
EP4365964A1 (en) 2024-05-08
WO2023065710A1 (zh) 2023-04-27
EP4365964A4 (en) 2024-10-23
AU2022369776A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
AU2022331906B2 (en) TOPCon cell, method for manufacturing the same, and electrical device
CN113964240A (zh) 一种n型双面太阳能电池的制备方法
CN108963005B (zh) 一种新型复合结构全背面异质结太阳电池及制备方法
US20240145610A1 (en) Tunnel oxide layer, n-type bifacial crystalline silicon solar cell and method for manufacturing same
JP2010517271A (ja) 多接合太陽電池並びにそれを形成するための方法及び装置
US20090142878A1 (en) Plasma treatment between deposition processes
US20090130827A1 (en) Intrinsic amorphous silicon layer
CN112011788A (zh) 硅异质结太阳能电池本征非晶硅膜层的制备方法
CN112030143A (zh) 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法
CN111403492A (zh) 太阳能电池用钝化层的制备方法以及太阳能电池的制备方法
CN114606478B (zh) 一种管式pecvd制备超薄氧化硅层及钝化接触结构的方法、钝化接触结构
CN115632089A (zh) 异质结电池的制备方法、异质结电池结构、及其加工系统
CN115224159A (zh) 一种高效TOPCon太阳电池及其制备方法
CN113930748A (zh) 太阳能电池的制备方法、太阳能电池与光伏组件
CN112018217A (zh) 硅异质结太阳能电池的制备方法及其太阳能电池
CN116799091B (zh) 一种基于Poly finger的叠层p型钝化接触结构及其制备方法
CN217522020U (zh) 一种N-TOPCon光伏太阳能电池
CN114284374B (zh) 钛酸锌在晶硅太阳电池中的应用
CN117637900A (zh) 太阳能电池背膜的制备方法
CN118571992A (zh) 一种异质结电池的制备方法
CN117253926A (zh) 化学钝化与场效应钝化协同效应的晶硅异质结双面太阳电池及其制备方法
CN117153941A (zh) 选择性掺杂结构、太阳能电池的制备方法、太阳能电池
CN118800821A (zh) 一种含有透明导电氧化物层结构的晶硅异质结太阳能电池及其制备方法
CN118630097A (zh) 一种双面TOPCOn电池的退火工艺
CN116314453A (zh) 一种TOPCon太阳能电池的制备方法及电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20220121

WW01 Invention patent application withdrawn after publication