CN113948115B - 存储器单元布置 - Google Patents

存储器单元布置 Download PDF

Info

Publication number
CN113948115B
CN113948115B CN202110796013.4A CN202110796013A CN113948115B CN 113948115 B CN113948115 B CN 113948115B CN 202110796013 A CN202110796013 A CN 202110796013A CN 113948115 B CN113948115 B CN 113948115B
Authority
CN
China
Prior art keywords
memory
memory cell
control line
electrode
polarizable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110796013.4A
Other languages
English (en)
Other versions
CN113948115A (zh
Inventor
M·门内加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferroelectric Memory Co ltd
Original Assignee
Ferroelectric Memory Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferroelectric Memory Co ltd filed Critical Ferroelectric Memory Co ltd
Publication of CN113948115A publication Critical patent/CN113948115A/zh
Application granted granted Critical
Publication of CN113948115B publication Critical patent/CN113948115B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
    • H01L27/016Thin-film circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/02Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using ferroelectric record carriers; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/06Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using record carriers having variable electrical capacitance; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/221Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using ferroelectric capacitors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2259Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/20Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明提供一种存储器单元布置。根据各个方面,所述存储器单元布置包含:第一控制线和第二控制线;多个存储器结构,其设置在该第一控制线与该第二控制线之间,其中,所述多个存储器结构中的每个存储器结构包括第三控制线、第一存储器单元和第二存储器单元;其中,对于所述多个存储器结构中的每个存储器结构,所述第一存储器单元和所述第二存储器单元通过所述第三控制线彼此耦合;其中,对于所述多个存储器结构中的每个存储器结构,所述第一存储器单元耦合至所述第一控制线,并且所述第二存储器单元耦合至所述第二控制线。

Description

存储器单元布置
技术领域
各个方面涉及存储器单元布置及其方法,例如,用于形成存储器单元布置的方法。
背景技术
一般来说,已经在半导体工业中开发了各种计算机存储技术。计算机存储器的基本构建块可以称为存储器单元。存储器单元可以是被配置为存储至少一个信息(例如,逐位)的电子电路。作为实例,存储器单元可以具有至少两种存储器状态,例如,表示逻辑“1”和逻辑“0”。一般来说,信息可以被维持(存储)在存储器单元中,直到存储器单元的存储器状态例如,以受控的方式被修改。可以通过判定存储器单元处在哪个存储器状态中来获得存储在存储器单元中的信息。目前,可以使用各种类型的存储器单元来存储数据。典型地,大量存储器单元可以在存储器单元阵列中实施,其中存储器单元中的每一个或存储器单元的预定组可以是可单独寻址的。在这种情况下,可以通过相应地寻址存储器单元来读出信息。此外,已经在半导体工业中开发了各种驱动器电路来控制存储器件的一个或多个存储器单元的操作。存储器单元可以以每个单个存储器单元或至少各种存储器单元组是明确可寻址的方式实施,例如,用于写入(例如,编程和/或擦除)和/或读取相应的存储器单元或存储器单元组。
附图说明
在附图中,相同的附图标记贯穿不同的视图通常指相同的部分。附图不一定按比例绘制,相反总体上将重点放在展示本发明的原理上。在以下描述中,参考以下附图描述了本发明的各个方面,其中:
图1示意性地示出根据各个方面的存储器单元布置;
图4至图8和图10分别示意性地示出根据各个方面的存储器单元布置,例如,基于图1的存储器单元布置;
图2和图3分别示意性地示出根据各个方面的存储器结构,例如存在于图1、图4至图8和图10之一的存储器单元布置中;
图9示意性地示出根据各个方面的用于形成存储器单元布置的方法,例如,图1、图4至图8和图10之一的存储器单元布置;
图11A示出了根据各个方面的示例性存储器单元布置的透视图;并且
图11B示意性示出了根据各个方面的示例性存储器单元布置。
具体实施方式
以下详细说明参考了附图,所述附图通过说明的方式示出了可以实践本发明的具体细节和方面。这些方面被足够详细地描述以使得本领域技术人员能够实践本发明。可以利用其它方面并且可以在不脱离本发明的范围的情况下做出结构改变、逻辑改变和电气改变。各个方面不一定是相互排他的,因为某些方面可以与一个或多个其它方面组合形成新的方面。结合方法来描述各个方面,并且结合器件(例如,布置)来描述各个方面。然而,可以理解,结合方法描述的各方面可以类似地应用于器件,反之亦然。
术语“至少一个”和“一个或多个”可以理解为包含大于或等于1的任何整数,即1、2、3、4、[…]等。术语“多个”可以理解为包含大于或等于2的任何整数,即2、3、4、5、[…]等。
对于一组元素,短语“至少一个”在本文可以用来意指由这些元素组成的组中的至少一个元素。例如,对于一组元素,短语“至少一个”在本文可以用来意指选择:所列举的元素之一、多个所列举的元素之一、多个单独的所列举的元素或多个所列举的元素的倍数。
元素或一组元素“包含”另一个元素或另一组元素的短语在本文可以用来意指其它元素或其它组元件可以是该元素或该组元素的一部分,或该元素或该组元素可以被配置或形成为该其它元素或该其它组元素(例如,该元素可以是其它元素)。
短语“明确分配”在本文中可以用来意指一对一的分配(例如,分配,例如,对应)或双射分配。作为实例,被明确分配至第二元素的第一元素可以包含明确分配至第一元素的第二元素。作为另一个实例,被明确分配至第二组元素的第一组元素可以包含第一组元素中的每个元素被明确分配至第二组元素的对应的元素,并且第二组元素的对应的元素被明确分配至第一组元素的元素。
术语“耦合”在本文可以相对于节点、集成电路元件等使用,以意指例如,直接或间接的连接和/或交互。例如,若干元件可以沿着交互链(例如,导电路径)耦合在一起,交互(例如,电荷)可以沿着该交互链传输。例如,耦合在一起的两个元件可以彼此交换交互,例如,电交互(例如,电流)。
术语“已连接”或“连接”在本文中可以相对于节点、集成电路元件等使用,以意指电连接,该电连接可以包含直接连接或间接连接,其中间接连接可以仅包含电流路径中不影响所描述的电路或器件的实质性的功能的附加结构。术语“导电连接”在本文中用来描述一个或多个端、节点、区、触点等之间的电连接,可以理解为具有例如,欧姆行为的导电连接,例如,由电流路径中不存在p-n结时的金属或退化半导体提供。术语“导电连接”也可以称为“电连接”。
术语“电压”在本文可以相对于一个或多个电路元件使用,如一个或多个无源电路元件和/或一个或多个有源电路元件。无源电路元件的实例可以包含:导电线,例如,位线、字线、控制线、节点或端。用于无源电路元件的实例可以包含:存储器单元、开关(例如,晶体管)等。例如,施加至导电线的电压可以表示导电线的电势(也称为线的电压)。例如,施加至有源电路元件的电压可以指供应给有源电路元件的电势,例如,其输入。电路元件的电压降可以指电路元件的输入/输出之间的电压差。
作为实例,术语“基极电压(base voltage)”在本文中可以用来表示用于电路的参考电压和/或参考电势。相对于电路,基极电压也可以称为接地电压、接地电势、虚拟接地电压或零伏特(0V)。可以由用于操作电子电路的电源来定义电路的基极电压。作为另一个实例,术语“控制线电压”在本文中可以用来表示提供给控制线的电压(例如,“字线电压”可以提供给“字线”,“位线电压”可以提供给位线)。
举例来说,根据包含节点或端的电路的预期操作,提供给线、节点或端的电压可以采取任何合适的值。例如,位线电压(称为VBL)可以根据存储器单元布置的预期操作而变化。类似地,字线电压(称为VWL)可以根据存储器单元布置的预期操作而变化。可以由相对于电路的基极电压(称为VB)施加给所述节点或端的相应电势来定义提供给节点或端的电压。此外,可以由施加在两个节点或端处的相应电压/电势来定义与电路的两个不同节点或端相关联的电压降。作为实例,可以由施加在对应的存储器单元(例如,存储器单元的电极)处的相应电压/电势来定义与存储器单元相关联的电压降。
在一些方面,例如,两个电压可以通过如“更大”、“更高”、“更低”、“更小”或“相等”等相对术语来彼此比较。应当理解,在一些方面,比较可以包含电压值的符号(正或负),或在其它方面,绝对电压值(也称为幅度,或如电压脉冲的幅值)被考虑为用于比较。
为了便于理解,参考关于存储器单元的术语“顶部”和“底部”,例如,而不论存储器单元的实际方向如何,例如它们的架构和/或包含存储器单元的架构。例如,一对存储器单元可以包含“顶部存储器单元”和“底部存储器单元”。更通常地说,本文所使用的术语“顶部”和“底部”可以但不需要指示存储器单元的实际空间定向。关于衬底,术语“底部”可以指示距衬底的距离小于术语“顶部”。例如,衬底可以比衬底上方的任何其它层厚。
根据各个方面,存储器单元可以是可寻址的,例如,通过明确地分配给地址。可以由连接至存储器单元的控制线的架构来提供可寻址能力。存储器单元的地址可以表示连接至存储器单元的控制线的身份。例如,存储器单元的地址可以由对应的写入控制电路存储,例如,使用查找表等。例如,控制线的架构可以被配置为使得仅存在从写入控制电路到存储器单元并且返回写入控制电路的一个传导路径。写入控制电路可以被配置为访问存储器单元,例如,向存储器单元写入和/或从该存储器单元读取。因此,写入控制电路可以被配置为生成和/或控制供应给存储器单元的相应电压值、电压降和/或电压/电势。
根据各个方面,存储器单元可以提供与其相关联的至少两个不同状态(也称为存储器状态),例如具有两个不同的导电率,其可以被确定以评估存储器单元处在至少两个不同状态中的哪一个。存储器单元通常可以包含相变或基于相变的存储器单元、铁电或基于铁电的存储器单元、剩余-可极化存储器单元、电容器或基于电容器的存储器单元和/或铁电-电容器或基于铁电-电容器的存储器单元(“FeCAP”)。存储器单元可以处于第一存储器状态或第二存储器状态。在一些方面,存储器单元所处的存储器状态可以影响存储器单元读出期间的电流特性和/或电压特性。第一存储器状态可以例如,与逻辑“1”相关联,并且第二存储器状态可以例如,与逻辑“0”相关联,反之亦然。存储器状态的定义和/或逻辑“0”和逻辑“1”的定义可以任意选择。存储器单元根据存储器状态改变其状态(例如,化学相、导电性、磁相和/或极化、电相和/或极化等)的部分也可以称为存储器单元的有源部分。存储器单元的有源部分(也称为存储器部分或存储器材料部分)可以是电介质。
例如,相变存储器单元可以包含相变部分作为有源部分。相变部分可以用于(例如在存储器单元中)实施存储功能。相变部分可以包含第一相位状态和第二相位状态。例如,相变存储器单元可以在施加电信号时从第一相位状态改变至第二相位状态,反之亦然,并且可以保持在相应的相位状态至少一些时间(称为保留时间)。
根据各个方面,剩余-可极化存储器单元可以包含剩余的-可极化部分(也称为剩余-可极化部分)作为有源部分。剩余-可极化部分可以用于(例如在存储器单元中)实施存储功能。因此,根据各个方面,存储器单元可以被实施为电容器结构,例如,剩余-可极化电容器(也称为铁电电容器-“FeCaP”)。一般来说,在材料(也称为有源材料)在所施加的电场E减小至零时可以保持极化的情况下,材料部分(例如,材料层)中可以存在剩余极化(也称为保磁性或剩磁);因此,可以检测到用于材料部分的电极化的某个值,P。举例来说,当电场减小到零时,材料中剩余的极化可以被称为剩余极化或残留极化。因此,在所施加的电场被移除的情况下,材料的剩磁可以是材料中残留极化的量度。一般来说,铁电性和反-铁电性可能是描述材料剩余极化的概念,类似于用于描述磁性材料剩余磁化的铁磁性和反-铁磁性。
剩余-可极化部分可以包含剩余-可极化材料或由剩余-可极化材料形成。剩余-可极化材料可以包含自发极化,例如,参考超过介电极化的材料的极化能力。材料的矫顽性可以是移除剩余极化所需的反向极化电场强度的量度。根据各个方面,矫顽电场(也称为矫顽场)可以是或表示对剩余-可极化层去极化所需的电场。剩余极化可以经由分析一个或多个滞后测量(例如,滞后曲线)来评估,例如,在极化(P)对电场(E)的曲线图中(其中材料被极化至相反的方向)。材料的极化能力(介电极化、自发极化和剩余极化)可以使用电容光谱学(capacity spectroscopy)来分析,例如,经由静态(C-V)和/或时间解析测量,或通过极化-电压(P-V)或正-上-负-下(PUND)测量。
剩余-可极化部分的极化状态可以凭借电容器结构来切换。剩余-可极化部分的极化状态可以通过电容器结构读出。剩余-可极化部分的极化状态可以定义例如,存储器单元的存储器状态。作为实例,剩余-可极化部分的极化状态可以影响电容器结构的一个或多个电特性,例如,对电容器结构充电期间的充电电流和/或对电容器结构放电期间的放电电流。
在电容器结构中,存储在其中的电荷量可以用于感测存储器状态。例如,存储在电容器结构中的第一电荷量可以表示第一存储器状态,存储在电容器结构中的第二电荷量可以表示第二存储器状态。
在一些方面,存储器单元布置(例如,包含多个存储器单元的阵列)可以基于一个或多个写入操作(例如,编程操作和/或擦除操作)和/或一个或多个读出操作来操作。根据各个方面,写入操作可以包含写入存储器单元(即执行存储器单元的写入操作)。写入操作可以包含将存储器单元所处的存储器状态从(例如,第一)存储器状态修改为另一(例如,第二)存储器状态的操作或过程。根据各个方面,写入存储器单元可以包含对存储器单元进行编程(例如,执行存储器单元的编程操作),其中存储器单元在编程之后所处的存储器状态可以被称为“编程状态”,例如,对剩余-可极化存储器单元进行编程可以将剩余-可极化存储器单元的极化状态从第一极化状态修改为第二极化状态(例如,与第一极化状态相反)。根据各个方面,写入存储器单元可以包含擦除存储器单元(例如,执行存储器单元的擦除操作),其中在擦除之后存储器单元所处的存储器状态可以被称为“已擦除状态”,例如,对剩余-可极化存储器单元进行擦除可以将剩余-可极化存储器单元的极化状态从第二极化状态修改为第一极化状态。例如,已编程状态可以与逻辑“1”相关联,并且已擦除状态可以与逻辑“0”相关联。然而,已编程状态和已擦除状态的定义可以任意选择。
例如,在写入操作期间,可以向控制线(也称为驱动器-线)提供预定电压,其中控制线可以连接至存储器单元的相应节点(例如,相应电极),以允许期望的操作。控制线可以被称为例如,位线或字线。可以由至少小于编程电压的电压降来提供所有不打算被写入的存储器单元。可以由存储器单元的类型和/或设计来定义编程电压。在一些方面,编程电压可以在从约1V至约10V的范围内。可以通过一个或多个电测量结果来确定编程电压。可以使用各种定时来提供相应的电压,例如,提供期望的写入电压和/或期望的读出电压。可以施加编程电压来编程、擦除和/或读出相应的存储器单元。编程电压可以经由电压降来供应。可以通过向存储器单元的第一电极(顶电极或底电极)供应第一电压并向存储器单元的第二电极(底电极或顶电极)供应第二电压来供应电压降。电压降可以定义为第一电压与第二电压之间的差。
术语“切换”在与存储器单元相关的上下文中可以用于描述存储器单元所处的存储器状态的修改(即存储器状态的改变)。例如,在存储器单元处在第一存储器状态的情况下,可以切换存储器单元所处的存储器状态,使得在切换之后,存储器单元可以处于不同于第一存储器状态的第二存储器状态。因此,术语“切换”可以在本文中用于描述存储器单元所处的存储器状态从第一存储器状态到第二存储器状态的修改。术语“切换”在本文也可以用来描述极化的修改,例如剩余-可极化部分。例如,可以切换剩余-可极化部分的极化,使得极化的符号从正变到负或从负变到正,而极化的绝对值在某些方面可以保持基本不变。
根据各个方面,基于铁电电容器的存储器单元(“FeCAP”)可以包含电容器结构,该电容器结构包含提供剩余-可极化部分的铁电材料(例如,铁电电容器)。例如,术语“铁电”在本文可以用来描述示出滞后充电电压关系(Q-V)的材料。铁电材料可以是或可以包含铁电HfO2。铁电HfO2可以包含任何形式的可以表现出铁电性能的氧化铪。这可以包含,例如,HfO2、ZrO2、HfO2和ZrO2的固溶体(例如,但不限于1:1的混合物)或掺杂或被一种或多种以下元素取代的HfO2(非-穷举列表):硅、铝、钆、钇、镧、锶、锆、稀土元素中的任何稀土元素或任何其它适合在氧化铪中提供或维持铁电性的掺杂物(也称为掺杂剂)。根据各个方面,铁电材料可以是用于剩余-可极化部分的材料的实例。根据各个方面,铁电部分可以是剩余-可极化部分的实例。
在半导体行业中,非-易失性存储器技术的集成可能对微控制器(MCU)等的片-上-系统(SoC)产品有用。根据各个方面,非-易失性存储器可以集成在处理器的处理器核旁边。作为另一个实例,一个或多个非-易失性存储器可以用作大容量存储器件的一部分。在一些方面,非-易失性存储器技术可以基于如下所描述的存储器单元布置。存储器单元布置可以包含FeCAP存储器单元。由于包含在FeCAP存储器单元中的铁电材料可以具有至少两种稳定的极化状态,铁电电容器可以用作非-易失性存储器单元。因此,FeCAP存储器单元凭借电容器结构的至少第一电极与第二电极之间的铁电材料来存储数据。根据各个方面,基于非-易失性场-效应晶体管的存储器结构或存储器单元可以在从数小时(例如,多于5小时)到几十年(例如,10年、20年等)的时间段内存储数据,而易失性存储器单元可以在从纳秒到数小时(例如,少于5小时)的时间段内存储数据。
与其它新兴的存储器技术相比,剩余-可极化存储器单元(如基于FeCAP的存储器单元可以集成在前-端-线(FEoL)和/或后-端-线(BEoL)工艺流程中,因为它可以实施为电容-型存储器。因此,基于FeCAP的存储器单元的集成可以符合标准FEoL和/或BEoL互补金属-氧化物-半导体(CMOS)工艺流程。因此,各种集成方案可以用于在不同的工艺技术中集成基于FeCAP的存储器单元。
一般来说,存储器单元布置可以包含多个(例如,易失性或非-易失性)存储器单元,这些存储器单元可以经由对应的寻址方案被单独访问或成组地访问。矩阵架构可以例如,被称为“NOR”或“NAND”架构,这取决于相邻存储器单元彼此连接的方式,即取决于相邻存储器单元的端被共享的方式,但不限于这两种类型(另一种类型例如“AND”架构)。例如,在NAND架构中,存储器单元可以被组织在存储器单元的扇区(也称为块)中,其中存储器单元串联成串连接(例如,源极区和漏极区由相邻的晶体管共享),并且该串连接至第一控制线和第二控制线。例如,NAND架构中的存储器单元组可以彼此串联连接。在NOR结构中,存储器单元可以彼此并联。因此,NAND架构可能更适合串行访问存储在存储器单元中的数据,而NOR架构可能更适合随机访问存储在存储器单元中的数据。
各个方面涉及包含一个或多个存储器单元的存储器单元布置。该一个或多个存储器单元可以是,例如,一个或多个FeCAP存储器单元。在一些方面,写入控制电路可以被配置为执行和/或指示与存储器单元布置的一个或多个存储器单元的写入相关联的一个或多个写入操作。在一些方面,写入控制电路可以用于控制存储器单元布置的单个存储器单元的写入(举例来说,打算被写入的存储器单元)。根据各个方面,写入存储器单元可以包含将存储器单元从至少两种存储器状态之一带入至存储器单元的所述至少两种存储器状态中的另一种。
根据各个方面,存储器单元布置可以包含存储器单元组中的一个或多个(也称为存储器单元的组)。多个存储器单元组中的每个存储器单元组可以包含多个存储器单元。
本文,术语“存储器结构”是指包含一对或多对存储器单元和一个控制线的组件。每对存储器单元可以包含第一存储器单元组中的一个存储器单元(也称为第一存储器单元)和第二存储器单元组中的一个存储器单元(也称为第二存储器单元)。每对存储器单元的存储器单元可以设置在彼此上方(也称为堆叠),例如关于衬底。存储器结构中的每个存储器单元每个存储器单元可以连接(例如,欧姆连接,例如,通过直接接触)至存储器结构的控制线(也称为字线),从而共享相同的字线。例如,存储器结构中的每个存储器单元可以物理接触存储器结构的字线。换句话说,存储器结构的存储器单元可以通过存储器结构的字线彼此连接(类似于星形拓扑)。因此,存储器结构的存储器单元可以至少由字线的电压供电。
作为实例,衬底的竖直延伸可以大于存储器结构的竖直延伸。另外或可选地,衬底可以由相同的材料制成,例如,半导体材料。
电容器结构的每个电极可以连接至相应的控制线。可以理解,电极可以例如至少部分集成至控制线中,或可以例如与控制线分离。集成至控制线中的电极可以例如,由控制线材料的一部分提供。例如,集成至控制线中的电极可以由与控制线相同的层和/或材料形成。与控制线分离的电极可以例如,由不同于控制线的另一种材料或层提供。
本文,术语“之间”可以相对于元件的空间位置来使用。设置在两个第二元件之间的第一元件可以理解为第一元件的至少一部分设置在两个第二元件之间。例如,第一元件可以在第二元件之间的空间中延伸(例如,在空间内,进入或穿过)。例如,连接两个第二元件的线性路径可以接触第一元件或延伸穿过第一元件。
在下文中,详细描述了含有架构的存储器单元的各个方面,例如,提供存储器结构和存储器单元布置。根据各个方面的架构促进了制造工艺,例如,对于制造工艺结果的预定目标规格。举例来说,可以有助于提供高密度的存储器单元。另外或可选地,可以有助于提供低信噪比(也称为S/N比)。举例来说,存储器单元的密度和S/N比是抵消规格的。一般地,增加存储器单元的密度需要更小的存储器单元,这导致每存储器单元的输出更小,并且因此降低S/N比。传统上,此抵消通过更复杂的制造工艺来减少,因此增加了制造工艺的工作量和成本。
根据各个方面的架构以低制造工作量降低了此抵消,使得在存储器单元的恒定密度下可以获得更高的S/N比,和/或在恒定的S/N比下可以获得更高的存储器单元密度。例如,已简化的光刻降低了工作量和/或已降低的每存储器单元的可变性增加了S/N比。例如,每控制层的存储器单元的数量可以增加,这节省了空间,并且因此增加了存储器单元的密度。另外或可选地,每存储器单元的有源区增加,这增加了S/N比,和/或,对于给定的S/N比允许更小的存储器单元。
根据各个方面的架构包含由铁电氧化铪制成的层的堆叠,其可以但不一定需要结构化。铁电氧化铪可以设置在(举例来说,夹在中间)非有源的(例如,非铁电)介电材料(例如,SiO2)和嵌入其中的结构化顶电极与底电极的栅格之间。氧化铪的每一层可以散布有两个(例如,金属的)互连层。每个互连层可以包含多个平面内平行的(例如,金属的)控制线,其中连续互连层的控制线相对于彼此旋转90°。每个控制线可以连接至设置在互连层上方或互连层中的一个或多个底电极和设置在互连层下方或互连层中的一个或多个顶电极,其中电极接触(例如,电接触和/或物理接触)氧化铪。
任选地,氧化铪可以沉积在一个或多个与控制线电接触的凹槽(举例来说提供腔)中,例如,通过相应的电极,这增加了顶电极与底电极之间的电有源区,同时竖直投影区最小化。
氧化铪可以被理解为示例性的有源材料。针对氧化铪另外或可选地,可以使用一种或多种其它类型的有源材料。参考氧化铪作为有源材料可以类似地应用于一种或多种其它类型的有源材料。
类似地,金属可以被理解为示例性导电材料(例如,具有大于104西门子/米或大于106西门子/米的导电率)。针对金属另外或可选地,可以使用一种或多种其它类型的导电材料,例如,金属氮化物。参考金属作为导电材料可以类似地应用于一种或多种其它类型的导电材料,例如,铜、金属化合物、氮化钛或石墨烯。
类似地,氧化物(例如,SiO2)可以被理解为示例性的介电材料(例如,具有小于10-4西门子/米或小于10-6西门子/米的导电率)。对于氧化物(例如,SiO2)作为介电材料的参考可以类似地应用于一种或多种其它类型的介电材料,例如,氮化硅、氧化铝、氧化铪。
图1在示意性侧视图或截面图中示出了根据各个方面的存储器单元布置100。存储器单元布置100包含第一控制线102(也称为顶部位线)和第二控制线112(也称为底部位线),以及设置在第一控制线102与第二控制线108之间的多个存储器结构(该多个存储器结构在图1中用附图标记110表示)。例如,多个存储器结构可以包含两个存储器结构200或更多,例如三个存储器结构200或更多。一般地,多个的存储器结构200的存储器结构200的数量可以是2个或更多个,例如,三个或更多个,例如,五个或更多个,例如,十个或更多个,例如,20个或更多个,例如,40个或更多个,例如,50个或更多个,例如,100个或更多个,例如,1000个或更多个。
为了便于理解,参考多个存储器结构中的一个存储器结构200作为存储器结构200中的每一个的典型。可以理解,对存储器结构200的参考可以类似地应用于多个存储器结构中的每个存储器结构200。存储器结构200可以包含一对或多对存储器单元104a、104b(也称为双单元),其中描绘了第一双单元104。
每个双单元104可以包含第一存储器单元104a(也称为顶部存储器单元104a)和第二存储器单元104b(也称为底部存储器单元104b)。换句话说,多个存储器结构中的每个存储器结构可以包含一个或多个顶部存储器单元104a和一个或多个底部存储器单元104a。
为了便于理解,参考存储器结构200的一个双单元104作为其它双单元104的典型。可以理解,对双单元104的参考可以类似地应用于存储器结构200的每个双单元104。
存储器结构200可以包含将顶部存储器单元104a与底部存储器单元104b耦合的第三控制线106(也称为字线106)。进一步,顶部存储器单元104a(例如,其顶电极)可以耦合至顶部位线102。第二存储器单元104b(例如,其底电极)可以耦合至底部位线112。
任选地,存储器单元布置100可以包含衬底151,控制线112、106、102在该衬底上方彼此堆叠(沿着方向105)。方向105可以指向远离衬底151。
存储器结构200的顶部存储器单元104a可以是第一组存储器单元104a(也称为第一存储器单元组104a)的一部分,并且存储器结构200的底部存储器单元104b可以是第二组存储器单元104b(也称为第二存储器单元组104b)的一部分。第二组存储器单元104b可以设置在衬底151与第一组存储器单元104a之间。
图2在示意性侧视图或截面图中展示了根据各个方面的存储器结构200,例如存储器单元布置100中所含有的存储器结构。
存储器结构200包含第一顶电极202a和第一底电极212a。存储器结构200还包含设置在第一顶电极202a与第一底电极212a之间的第一有源(例如,铁电)部分204a。第一顶电极202a、第一底电极212a和第一有源部分204a可以提供第一电容器结构作为顶部存储器单元104a的一部分。
存储器结构200包含第二顶电极202b和第二底电极212b。存储器结构200还包含设置在第二顶电极202b与第二底电极212b之间的第二有源(例如,铁电)部分204b。第二顶电极202b、第二底电极212b和第二有源部分204b可以提供第二电容器结构作为底部存储器单元104b的一部分。
第一底电极212a和第二顶电极202b设置在第一有源部分204a与第二有源部分204b之间,并且通过字线部分,即通过字线106的一部分彼此耦合。如上文所概述的,第一底电极212a和第二顶电极202b可以至少部分地集成在字线106中或与字线106分离。
图3在示意性侧视图或截面图中示出了根据各个方面300的存储器结构200,例如上文所概述的进行配置。存储器结构200可以包含多个双单元104。每个双单元104可以包含第一存储器单元104a和第二存储器单元104b。存储器结构200的每个第一存储器单元104a和存储器结构200的每个第二存储器单元104b可以各自耦合至存储器结构200的字线106。
例如,存储器结构200可以包含两个或更多个双单元104,例如,三个或更多个双单元104。一般地,每存储器结构200的双单元104的数量可以是两个或更多个,例如,三个或更多个,例如,五个或更多个,例如,十个或更多个,例如,20个或更多个,例如,40个或更多个,例如,50个或更多个,例如,100个或更多个,例如,1000个或更多个。
存储器结构200的双单元104可以例如成行布置,例如,沿着字线106的延伸。
图4在示意性侧视图或截面图中示出了根据各个方面400的存储器单元布置。存储器单元布置100包含多个第一控制线102、302、402,例如,包含顶部位线102和一个或多个另外的顶部位线302、402(也称为顶部控制线或第一控制线)。多个第一控制线102、302、402的顶部位线可以根据它们所连接的存储器结构200的顶部存储器单元104a而彼此不同。另外或可选地,存储器结构200的顶部存储器单元104a彼此不同点可以在于它们所连接的顶部位线。
存储器单元布置100包含多个第二控制线112、312、412,例如包含底部位线112和一个或多个另外的底部位线312、412(也称为底部控制线或第二控制线)。多个第二控制线112、312、412的底部位线可以根据它们所连接的存储器结构200的底部存储器单元104b而彼此不同。另外或可选地,存储器结构200的底部存储器单元104b彼此不同点可以在于它们所连接的底部位线。
换句话说,第二控制线112、312、412和第一控制线102、302、402中的每个控制线单独地接触存储器结构200的一个存储器单元104a、104b。因此,存储器结构200的每个存储器单元104a、104b可以单独地连接至多个第一控制线102、302、402或多个第二控制线112、312、412中的一个位线。这实现了存储器结构200的每个存储器单元104a、104b是单独可寻址的。
存储器结构200可以设置在多个第一控制线102、302、402与多个第二控制线112、312、412之间。另外或可选地,多个第二控制线112、312、412可以设置在多个第一控制线102、302、402与衬底151之间。
图5在朝向衬底151的示意性截面图中展示了根据各个方面500的存储器单元布置。存储器单元布置可以包含第一组存储器单元,该第一组存储器单元包含多个顶部存储器单元104a。每个存储器结构200可以包含第一组存储器单元的一个或多个顶部存储器单元104a。
每个存储器结构200可以包含连接至第一底部位线112和/或第一顶部位线102的第一双单元104(包含第一顶部存储器单元104a和第一底部存储器单元104b)。每个存储器结构200可以包含连接至第二底部位线312和/或第二顶部位线302的一个第二双单元104(包含第二顶部存储器单元和第二底部存储器单元)。任选地,每个存储器结构200可以包含连接至第三底部位线412和/或第三顶部位线402的一个第三双单元104(包含第三顶部存储器单元和第三底部存储器单元)。
图6在示意性透视图中示出了根据各个方面600的存储器单元布置100。每个顶部位线102、302、402和/或每个底部位线112、312、412延伸至第一方向101。每个存储器结构200的第三控制线延伸至第二方向103。第一方向101和第二方向103可以彼此不同。例如,第一方向101和第二方向103可以涵盖从约10°到约90°,从约45°到约90°范围的角度。例如,第一方向101和第二方向103可以基本上彼此垂直(即,角度约为90°)。
例如,第一方向101和第二方向103可以在平面101、103内。平面101、103和方向105可以涵盖从约10°到约90°,从约45°到约90°范围的角度。例如,平面101、103可以垂直于方向105。
一般地,存储器单元布置100可以通过将一个层堆叠在另一个上方形成,例如,在衬底151上。例如,形成一个或多个底部线和/或顶部线102、302、402可以包含形成第一层(例如,包含导电材料,例如金属,或由该导电材料形成)并且结构化第一层(也称为第一互连层)。例如,形成一个或多个底部位线112、312、412可以包含在第一层上方形成第二层(例如,包含导电材料,例如金属,或由该导电材料形成),并且结构化第二层(也称为第二互连层)。例如,形成一个或多个字线106可以包含在第二层与第一层之间形成第三层(例如,包含导电材料,例如金属,或由该导电材料形成),并且结构化第三层(也称为第三互连层)。
例如,形成一个或多个底部存储器单元104b可以包含在第一互连层与第三互连层之间形成一个或多个第一有源层(例如,包含有源材料或由该有源材料形成),并且任选地结构化一个或多个第一有源层。例如,形成一个或多个顶部存储器单元104a可以包含在第三互连层与第一互连层之间形成一个或多个第二有源层(例如,包含有源材料或由该有源材料形成),并且任选地结构化一个或多个第二有源层。例如,有源材料可以包含铁电材料或由该铁电材料形成(例如,可以由铁电材料组成)。
如上文所概述的,形成每个存储器单元104a、104b可以任选地包含形成一个或多个电极,例如,通过形成和结构化一个或多个附加层(也称为电极层)和/或通过结构化相应的互连层。一个或多个相应的电极层可以包含导电材料或由该导电材料形成,例如,包含金属和/或氮化物或由该金属和/或氮化物形成。一个或多个相应的电极层可以在材料和/或导电率的至少一个方面不同于第一层、第二层和/或第三层。
图7在示意性电路图中示出了根据各个方面700的存储器单元布置100。字线被称为PL0、PL1、PL2。底部位线(底部BL)被称为BL0、BL1、BL2。顶部位线(顶部BL)被称为BL3、BL4、BL5。每个第一存储器单元104a和每个第二存储器单元104b由电容器表示,即,它们提供电容(例如,电荷存储)。
操作存储器单元布置100可以包含将相应的电压(也称为操作电压)施加至控制线中的每一个(一起也称为控制栅格),例如字线PL0、PL1、PL2中的每一个、底部位线BL0、BL1、BL2中的每一个和顶部位线BL3、BL4、BL5中的每一个。单独的操作电压的时间依赖性可以由写入控制电路控制。写入控制电路可以被配置为选择存储器单元布置100的存储器单元之一(也称为所选存储器单元),在图7中用虚线圆指示。可以以一定时间周期(也称为访问周期)选择存储器单元。在访问周期期满之后,可以选择另一个存储器单元。这样,可以一个接一个(顺序地)选择多个存储器单元。例如,每访问周期仅选择一个存储器单元。
存储器单元布置100的每个存储器单元104a、104b可以是单独可寻址的。寻址可以包含在不访问存储器单元布置100的另一个(例如,不访问任何其它)存储器单元的情况下可以访问(例如,写入或读取)所选的存储器单元。换句话说,所选的存储器单元的地址可以是唯一的,并且对于写入控制电路是已知的。在下文中,出于说明性目的,参考包含写入存储器单元的写入操作作为实例。对写入操作的参考可以类似地应用于读取操作。
写入控制电路可以被配置为确定所选的存储器单元的地址,并且改变施加至多个控制线的一个或多个(例如,施加至字线中的一个或多个、底部位线中的一个或多个和/或顶部位线中的一个或多个)操作电压。一个或多个操作电压的改变可以是所选的存储器单元的地址的函数。
例如,所选的存储器单元(由虚线环绕)可以是第一存储器结构200的第一双单元104的顶部存储器单元104a。第一存储器结构200可以包含第一字线PL0。第一存储器结构200的存储器单元可以连接至第一字线PL0。所选的存储器单元可以耦合在第一字线PL0与第一顶部位线BL3之间。如此,元组{PL0;BL3}代表所选的存储器单元的地址(举例来说,对于所选的存储器单元是唯一的)。
写入所选的存储器单元可以包含向所选的存储器单元施加电压降(也称为写入电压)。例如,写入所选的存储器单元可以包含向所选的存储器单元的第一电极(顶电极或底电极)供应第一电压,并且向所选的存储器单元的第二电极(底电极或顶电极)供应第二电压。写入电压可以在写入电压范围内。第一电压与第二电压之间的差的绝对值可以被称为编程电压。写入电压范围可以是从存储器单元的存储器状态被切换的电压(也称为编程电压或切换电压)到存储器单元的最大操作电压的范围。低于编程电压,存储器单元将维持当前的存储器状态。
在此,取决于存储器状态是第一存储器状态还是第二存储器状态,写入电压可以是2·Vp或-2·Vp。例如,第一存储器状态可以表示逻辑“0”,并且第二存储器状态可以表示逻辑“1”,反之亦然。Vp可以在此处用作示例性电压(也称为电源电压),该示例性电压小于编程电压并且大于编程电压的一半。例如,可以向写入控制电路供应电源电压Vp。
向所选的存储器单元施加写入电压可以包含向第一顶部位线BL3施加第一电压VB(也称为位电压)、向第一底部位线BL0施加第二电压V0(也称为抑制电压),向第一字线PL0施加第三电压VW(也称为字电压)。向所选的存储器单元施加写入电压可以包含向所选的存储器单元提供高于编程电压的电压降。换句话说,施加至所选的存储器单元的位电压VB与字电压VW之间的差可能大于编程电压。
例如,由电压降提供的写入电压可以是|VB-VW|=2·Vp。例如,将2·Vp的写入电压施加至所选的存储器单元可以包含设置VW=0·Vp(例如,0伏特可以是基极电压)和VB=2·Vp。例如,向第一底部存储器施加-2·Vp的写入电压可以包含施加VW=2·Vp并且VB=0·Vp。
施加至存储器单元布置100的所有其它(未选择的)存储器单元的电压降(也称为子写入电压)可以小于编程电压(也称为子写入电压范围),例如,小于2·Vp,例如基本上1Vp。施加子写入电压可以包含将抑制电压V0施加至与第一存储器结构200连接的所有其它位线和/或字线。
抑制电压V0可以是字电压VW和位电压VB的平均值,即V0=0,5(VB+VW),但也可以是另一个值。例如,抑制电压V0可以基本上为1Vp。这实现了抑制电压V0与位电压VB之间的差和抑制电压V0与字电压VW的差两者均在子写入电压范围内,例如,基本上为1Vp。换句话说,施加至所有未选择的存储器单元的最大电压降不超过子写入电压范围,例如,不超过1Vp。这防止未选择的存储器单元中的一个或多个的非预期写入操作。
对另一个存储器单元执行写入操作可以是类似的。例如,当所选的存储器单元是第一双单元的底部存储器单元104b时,向所选的存储器单元施加写入电压可以包含向第一底部位线BL0施加位电压VB,向第一顶部位线BL3施加抑制电压V0,以及向第一字线PL0施加字电压VW。更通常地说,将写入电压施加至所选的存储器单元可以包含将位电压VB和字电压VW施加至所选的存储器单元所连接的控制线,并将抑制电压V0施加至存储器单元布置100的所有其它控制线。
读取所选的存储器单元可以类似于写入所选的存储器单元。读取所选的存储器可以包含针对所选的存储器单元执行写入操作(例如,写入逻辑“0”),并且响应于写入操作感测所选的存储器单元的电流(也称为切换电流)。写入操作可以包含向所选的存储器单元施加写入电压。写入电压可以被分配给参考存储器状态(例如,被分配给逻辑“0”)。参考存储器状态可以是第一存储器状态或第二存储器状态。
响应于存储器状态的切换,由存储器单元输出切换电流。因此,当感测到切换电流时,存储器单元切换至参考存储器状态,并且因此之前已经处于另一存储器状态。当没有感测到切换电流时,存储器单元维持存储器状态,并且因此之前已经处于参考存储器状态。因此,感测切换电流允许确定在所选的存储器被读取的时间点的存储器状态。
图8在示意性透视图中示出了根据各个方面800的存储器单元布置100。存储器单元布置100,例如,存储器结构200中的每一个,可以包含彼此堆叠的两组或更多组存储器单元,例如,第一组存储器单元104a、第二组存储器单元104b,以及任选的第三组存储器单元104c。在存在第三组存储器单元104c的情况下,每个存储器结构200可以包含两个字线106、116,例如,第一字线106和第二字线116。第二组存储器单元104b和第三组存储器单元104c可以设置在两个字线106、116之间。顶部位线102、302、402可以设置在第二组存储器单元104b与第三组存储器单元104c之间。
存储器单元布置100可以包含多个有源层802(也称为存储层或存储材料层)。有源层802中的每一个可以提供一组存储器单元。该或每个有源层802可以包含有源材料或由有源材料形成。有源材料可以理解为能够切换的材料,例如,双稳态材料。切换有源材料可以使得能够在第一存储器状态与第二存储器状态之间切换。例如,有源材料可以包含铁电材料或由该铁电材料形成。
例如,第一有源层802可以设置在第一组存储器单元104a的每个存储器单元104a的顶电极与底电极之间。第二有源层802可以设置在第二组存储器单元104b的每个存储器单元104b的顶电极与底电极之间。第三有源层802可以设置在第三组存储器单元104c的每个存储器单元104c的顶电极与底电极之间。
与传统架构相比,根据各个方面的存储器单元布置100包含每字线层更多的有源层802(即提供字线的结构化层),并且因此提供了更高密度的存储器单元。
存储器单元布置100的操作可以与以上所描述的类似。将写入电压施加至所选的存储器单元可以包含将位电压VB和字电压VW施加至所选的存储器单元所连接的控制线,并将抑制电压V0施加至存储器单元布置100的所有其它控制线。
可以理解,可以使用多于三组的存储器单元,例如,通过在第二字线116上堆叠一组或多组存储器单元,并且在该组存储器单元中的每一个上堆叠另外的控制线层。
图9在示意性截面图901和903中示出了根据各个方面的用于形成存储器单元布置100的方法900。截面图901可以沿着横截面801(例如,沿着103、105平面)。截面图903可以沿着横截面803(例如,沿着101、105平面)。
在下文中,参考了各种材料或层,例如,有源材料/层、介电材料/层和导电材料/层。可以理解,有源材料/层的有源程度高于其它材料/层的有源程度(如果存在的话),例如,介电材料/层和导电材料/层。换句话说,介电材料/层和/或导电材料/层可以具有比有源材料/层更低的有源程度(也称为非有源)。作为实例,有源程度可以由材料/层的剩磁(例如,剩余极化)或极化率来表示。例如,较低的有源程度可以由较低的剩磁表示。因此,非有源材料/层可以是非铁电的。
进一步,关于层,可以参考术语“以上”。在彼此之上形成的两个层可以理解为一个或多个任选层可以形成在两个层之间和/或两个层可以彼此物理接触,即,两个层可以在另一个层之上形成。
方法900可以包含,在911中,形成多个第一控制线112、312(例如,包含由导电材料形成的)。例如,多个第一控制线112、312可以嵌入第一非有源(例如,非铁电)介电层902(例如,包含由氧化硅形成的介电层)中。在这种情况下,形成多个第一控制线112、312可以包含在第一介电层902中形成多个沟槽,并且用导电材料填充多个沟槽。例如,导电材料可以包含氮化钛或由该氮化钛形成。
任选地,方法900可以包含,在911中,形成多个第一电极(也称为第二底电极212b),例如,在多个第一控制线112、312的每个控制线112、312上方或从其开始形成多个第一电极。多个第一电极可以通过控制线112、312彼此电连接。
方法900可以包含,在913中,在多个第一控制线112、312上方并且在第二底电极212b(如果存在的话)上方形成第一有源层802(例如,包含氧化铪或由氧化铪形成)。第一有源层802,例如,其氧化铪,可以任选地被掺杂和/或退火。这增强了第一有源层802的特性。
形成第一有源层802可以任选地包含图案化第一有源层802。图案化第一有源层802可以包含从第一有源层802移除一个或多个部分,例如,有源层802的周边部分。另外或可选地,图案化第一有源层802可以暴露第一介电层902的一个或多个部分。
方法900可以包含,在915中,在第一有源层802上方形成多个字线106(例如,包含由导电材料形成的字线)。例如,多个字线102可以嵌入第二非有源(例如,非铁电)介电层912(例如,包含由氧化硅形成的介电层)中。在这种情况下,形成多个字线106可以包含在第一有源层802上方形成第二介电层912。如果第一有源层802被图案化,则第二介电层912也可以覆盖第一有源层802的侧面,例如,第一有源层802的周边,和/或与第一介电层902物理接触。形成多个字线106可以还包含在第二介电层912中形成多个沟槽,并且用导电材料填充多个沟槽。导电材料可以包含氮化钛或由该氮化钛形成。
任选地,方法900可以包含,在911中,在多个字线106的每个字线之下或自该多个字线的每个字线和/或在第一有源层802上形成多个第二电极(也称为第二顶电极202b)。多个第二顶电极202b可以通过字线106彼此电连接。
任选地,方法900可以包含,在911中,在多个字线106的每个字线上方或自该多个字线的每个字线形成多个第三电极212a(也称为第一底电极212a)。多个第一底电极212a可以通过字线106彼此电连接。
方法900可以包含,在917中,在多个字线106上方并且在多个第一底电极212a(如果存在的话)上方形成第二有源层802(例如,包含氧化铪或由该氧化铪形成),例如,类似于形成第一有源层802。第二有源层802,例如其氧化铪,可以任选地被掺杂和/或退火。这增强了第二有源层802的特性。
方法900可以包含,在917中,形成多个第二控制线102、302(例如,包含由导电材料形成的)。例如,多个第二控制线102、302可以嵌入第三非有源(例如,非铁电)介电层922(例如,包含由氧化硅形成的介电层)中。在这种情况下,形成多个第二控制线102、302可以包含在第三介电层922中形成多个沟槽,并且用导电材料填充多个沟槽。导电材料可以包含氮化钛或由该氮化钛形成。
任选地,第三有源层802和另外的字线106可以形成在第三介电层922上方。类似地,另外的字线106可以嵌入第四非有源(例如,非铁电)介电层932中。
如以上所详述的形成每个电极可以包含设置和/或移除材料。例如,形成每个电极可以包含在暴露的控制线中嵌入非有源(例如,非铁电)介电材料,例如,通过使每个控制线凹陷并用非有源(例如,非铁电)介电材料填充凹槽。另外或可选地,形成每个电极可以包含在每个控制线上添加导电材料。
图10在示意性截面视图901中(例如与方法900相关)示出了根据各个方面1000的存储器单元布置100。
存储器结构200的一个或多个存储器单元104a、104b可以包含已凹陷的电极(即,电极包含第一凹槽)和/或已凹陷的有源部分204a、204b(即,有源部分包含第二凹槽)。这增加了切换电流(举例来说,由于更大的接触面积和/或容量),并且因此降低了存储器单元布置100的信噪比。每个凹槽(例如,第一凹槽和/或第二凹槽)可以分别提供延伸至已凹陷物体(例如,电极或有源部分)中的腔。
例如,存储器结构200的一个或多个第一底电极212a和/或一个或多个第二底电极212b可以是凹陷的(即,可以包含第一凹槽)。例如,第一凹槽可以被已凹陷的底电极的侧壁包围。该或每个存储器单元104a、104b的有源材料可以延伸至已凹陷的底电极中(例如,延伸至第一凹槽中),例如,在已凹陷的底电极上加衬。例如,有源材料可以遵循第一凹槽的轮廓。
任选地,在已凹陷的底电极上方设置有源材料可以包含形成有源层802。有源层802可以但不需要被图案化以将有源部分彼此分开。当有源层802没有被图案化以将有源部分彼此分开时,存储器单元的有源部分可以通过有源材料彼此连接。
例如,存储器结构200的一个或多个第一有源部分204a和/或一个或多个第二有源部分204b可以是凹陷的(即,可以包含第二凹槽)。例如,已凹陷的有源部分的第二凹槽可以被已凹陷的有源部分的侧壁包围。接触相应的存储器单元104a、104b的有源部分的顶电极可以延伸至已凹陷的有源部分中(例如,至第二凹槽中),例如,加衬或填充已凹陷的有源部分。
图11A示出了根据各个方面的示例性存储器单元布置1100的透视图。图11B示意性地示出了根据各个方面的示例性存储器单元布置1100的示意性电路布局。
存储器单元布置1100可以至少包含第一存储器单元104(1,1,1)、第二存储器单元104(1,2,1)、第三存储器单元104(2,1,1)、第四存储器单元104(2,2,1)、第五存储器单元104(2,1,2)、第六存储器单元104(2,2,2)、第七存储器单元104(3,1,2)和第八存储器单元104(3,2,2)。
存储器单元布置1100可以包含第一公共位线1102(1)。第一公共位线1102(1)可以被分配给第一存储器单元104(1,1,1)和第二存储器单元104(1,2,1)。存储器单元布置1100可以包含第二公共位线1102(2)。第二公共位线1102(2)可以被分配给第三存储器单元104(2,1,1)、第四存储器单元104(2,2,1)、第五存储器单元104(2,1,2)和第六存储器单元104(2,2,2)。存储器单元布置1100可以包含第三公共位线1102(3)。第三公共位线1102(3)可以被分配给第七存储器单元104(3,1,2)和第八存储器单元104(3,2,2)。
存储器单元布置1100可以包含第一字线1104(1)。第一字线1104(1)可以被分配给第一存储器单元104(1,1,1)、第三存储器单元104(2,1,1)、第五存储器单元104(2,1,2)和第七存储器单元104(3,1,2)。存储器单元布置1100可以包含第二字线1104(2)。第二字线1104(2)可以被分配给第二存储器单元104(1,2,1)、第四存储器单元104(2,2,1)、第六存储器单元104(2,2,2)和第八存储器单元104(3,2,2)。
存储器单元布置1100可以包含第一板线106(1)。第一板线106(1)可以被分配给第一存储器单元104(1,1,1)、第二存储器单元104(1,2,1)、第三存储器单元104(2,1,1)和第四存储器单元104(2,2,1)。存储器单元布置1100可以包含第二板线106(2)。第二板线106(2)可以被分配给第五存储器单元104(2,1,2)、第六存储器单元104(2,2,2)、第七存储器单元104(3,1,2)和第八存储器单元104(3,2,2)。第一板线106(1)和第二板线106(2)中的每一个可以被配置为第三控制线106。
根据各个方面,第一板线106(1)可以连接(例如,导电连接)至第一存储器单元104(1,1,1)、第二存储器单元104(1,2,1)、第三存储器单元104(2,1,1)和第四存储器单元104(2,2,1)。第二板线106(2)可以连接(例如,导电连接)至第五存储器单元104(2,1,2)、第六存储器单元104(2,2,2)、第七存储器单元104(3,1,2)和第八存储器单元104(3,2,2)。
两个或更多个存储器单元(第一存储器单元104(1,1,1)、第二存储器单元104(1,2,1)、第三存储器单元104(2,1,1)、第四存储器单元104(2,2,1)、第五存储器单元104(2,1,2)、第六存储器单元104(2,2,2)、第七存储器单元104(3,1,2)和/或第八存储器单元104(3,2,2))可以被配置为相应的存储器结构200或该相应的存储器结构的一部分。例如,第一存储器单元104(1,1,1)和第三存储器单元104(2,1,1)可以形成存储器单元对。例如,第二存储器单元104(1,2,1)和第四存储器单元104(2,2,1)可以形成存储器单元对。例如,第五存储器单元104(2,1,2)和第七存储器单元104(3,1,2)可以形成存储器单元对。例如,第六存储器单元104(2,2,2)和第八存储器单元104(3,2,2)可以形成存储器单元对。
存储器单元布置1100可以包含第一存取器件110(1,1)。第一存取器件110(1,1)可以被配置为将该第一公共位线1102(1)连接至第一存储器单元104(1,1,1),其由施加在该第一字线1104(1)处的电压控制。存储器单元布置1100可以包含第二存取器件110(1,2)。第二存取器件110(1,2)可以被配置为将该第一公共位线1102(1)连接至第二存储器单元104(1,2,1),其由施加在该第二字线1104(2)处的电压控制。存储器单元布置1100可以包含第三存取器件110(2,1)。第三存取器件110(2,1)可以被配置为将该第二公共位线1102(2)连接至第三存储器单元104(2,1,1)和第五存储器单元104(2,1,2),该第三存储器单元104(2,1,1)和第五存储器单元104(2,1,2)由施加在该第一字线1104(1)处的电压控制。存储器单元布置1100可以包含第四存取器件110(2,2)。第四存取器件110(2,2)可以被配置为将该第二公共位线1102(2)连接至第五存储器单元104(2,1,2)和第六存储器单元104(2,2,2),该第五存储器单元104(2,1,2)和第六存储器单元104(2,2,2)由施加在该第二字线1104(2)处的电压控制。存储器单元布置1100可以包含第五存取器件110(3,1)。第五存取器件110(3,1)可以被配置为将该第三公共位线1102(3)连接至第七存储器单元104(3,1,2),其由施加在该第一字线1104(1)处的电压控制。存储器单元布置1100可以包含第六存取器件110(3,2)。第六存取器件110(3,2)可以被配置为将该第三公共位线1102(3)连接至第八存储器单元104(3,2,2),其由施加在该第二字线1104(2)处的电压控制。
根据各个方面,可以经由对应的存取器件来寻址存储器单元。每个存取器件(第一存取器件、第二存取器件、第三存取器件、第四存取器件、第五存取器件和/或第六存取器件)可以包含或可以是例如,场效应晶体管(FET),诸如n-型或p-型场-效应晶体管,传输门,诸如基于n-型或基于p-型的传输门等。每个存取器件(AD)可以具有与之相关联的阈值电压。存取器件(例如,场-效应晶体管)的阈值电压可以由存取器件(例如,场-效应晶体管)的特性来定义,例如,一个或多个材料、一个或多个掺杂等,因此它可以是存取器件的(例如,固有的)属性。
存储器单元布置1100可以包含第一源线102。第一源线102可以将第一存储器单元104(1,1,1)与第一存取器件110(1,1)连接(例如,导电连接)。根据各个方面,第一源线102可以被配置为多个第一控制线102、302、402中的第一控制线102。
存储器单元布置1100可以包含第二源线302。第二源线302可以将第二存储器单元104(1,2,1)与第二存取器件110(1,2)连接。根据各个方面,第二源线302可以被配置为多个第一控制线302、302、402中的第一控制线102。
存储器单元布置1100可以包含第三源线112。第三源线112可以将第三存储器单元104(2,1,1)和第五存储器单元104(2,1,2)与第三存取器件110(2,1)连接。根据各个方面,第三源线112可以被配置为多个第二控制线112、312、412中的第二控制线112。
存储器单元布置1100可以包含第四源线312。第四源线312可以将第五存储器单元104(2,1,2)和第六存储器单元104(2,2,2)与第四存取器件110(2,2)连接。根据各个方面,第四源线312可以被配置为多个第二控制线312、312、412中的第二控制线112。
存储器单元布置1100可以包含第五源线122。第五源线122可以将第七存储器单元104(3,1,2)与第五存取器件110(3,1)连接。根据各个方面,第五源线122可以基本上对应于多个第一控制线102、302、402中的第一控制线和/或多个第二控制线112、312、412中的第二控制线。
存储器单元布置1100可以包含第六源线322。第六源线322可以将第八存储器单元104(3,2,2)与第六存取器件110(3,2)连接。根据各个方面,第六源线322可以基本上对应于多个第一控制线102、302、402中的第一控制线和/或多个第二控制线112、312、412中的第二控制线。
应注意,以上使用的术语“位线”、“字线”、“板线”和“源线”用于将线彼此区分,并且每个位线、字线、板线和/或源线也可以是任何其它种类的控制线。
在下文中,提供了各种实例,这些实例可以包含上文参考存储器单元布置100、存储器结构200、存储器单元布置1100和方法900描述的一个或多个方面。可以预期,关于存储器布置100、存储器1100和/或存储器结构200描述的方面也可以应用于方法900,反之亦然。
实例1是存储器单元布置,包含:第一控制线和第二控制线;设置在该第一控制线与该第二控制线之间的多个存储器结构,其中,该多个存储器结构中的每个存储器结构包含第三控制线、第一存储器单元和第二存储器单元;其中,对于该多个存储器结构中的每个存储器结构,该第一存储器单元和该第二存储器单元通过该第三控制线彼此耦合;其中,对于该多个存储器结构中的每个存储器结构,该第一存储器单元耦合至该第一控制线,并且该第二存储器单元耦合至该第二控制线。
实例2是根据实例1所述的存储器单元布置,其中,对于该多个存储器结构的每个存储器结构,该第一存储器单元和该第二存储器单元形成第一对存储器单元,其中,该多个存储器结构中的每个存储器结构包含一个或多个第二对存储器单元,其中,每个第二对存储器单元包含第一存储器单元和第二存储器单元。
实例3是根据实例2所述的存储器单元布置,其中,对于该多个存储器结构中的每个存储器结构,存储器单元的每个第二对的第一存储器单元和第二存储器单元通过该存储器结构的第三控制线彼此耦合。
实例4是根据实例2或3所述的存储器单元布置,其中,对于多个存储器结构中的每个存储器结构,每个第二对存储器单元的第一存储器单元耦合至另外的第一控制线,并且每个第二对存储器单元的第二存储器单元耦合至另外的第二控制线。
实例5是根据实例4所述的存储器单元布置,其中,多个存储器结构设置在该另外的第一控制线与该另外的第二控制线之间。
实例6是根据实例1或5所述的存储器单元布置,还包含:衬底;其中,该第二控制线设置在该第一控制线与该衬底之间,并且/或,其中,该第二控制线设置在该多个存储器结构与该衬底之间;并且/或,其中,该第二存储器单元设置在该第一存储器单元与该衬底之间。
实例7是根据实例6所述的存储器单元布置,其中,该第一控制线和/或该第二控制线平行于该衬底表面延伸,并且/或,其中,对于该多个存储器结构中的每个存储器结构,该第三控制线平行于该衬底的该表面延伸。
实例8是根据实例1或7所述的存储器单元布置,其中,该第一控制线和/或该第二控制线延伸至第一方向中,并且/或,其中,对于该多个存储器结构中的每个存储器结构,该第三控制线延伸至与该第一方向不同的第二方向(例如,垂直于第一方向)。
实例9是根据实例1至8之一所述的存储器单元布置,还包含层堆叠件;其中,该层堆叠件的第一层被结构化以提供该第一控制线;其中,该层堆叠件的第二结构化层被结构化以提供该第二控制线;并且其中,该层堆叠件的第三结构化层被结构化以提供该多个存储器结构中的每个存储器结构的该第三控制线;其中,该第三层设置在该第一层与该第二层之间。
实例10是根据实例1至9之一所述的存储器单元布置,其中,对于该多个存储器结构中的每个存储器结构:该第一存储器单元包含第一电极(例如,耦合至该第一控制线或由该第一控制线的一部分提供)和第二电极(例如,耦合至第三控制线或由该第三控制线的一部分提供);和/或,该第二存储器单元包含第一电极(例如,耦合至第三控制线或由该第三控制线的一部分提供)和第二电极(例如,耦合至第二控制线或由该第二控制线的一部分提供)。
实例11是根据实例10所述的存储器单元布置,其中,有源部分设置在该第一电极与该第二电极(例如,第一存储器单元和/或第二存储器单元的)之间;并且/或,其中,该有源部分延伸(例如,突出)至该第一电极和/或该第二电极(例如,第一存储器单元和/或第二存储器单元的)的凹槽中。
实例12是根据实例10至11之一所述的存储器单元布置,其中,该第一电极延伸(例如,突出)至该第二电极(例如,该第一存储器单元和/或该第二存储器单元的第二电极)的凹槽和/或该有源部分的凹槽中;或其中,该第二电极延伸(例如,突出)至该第一电极(例如,该第一存储器单元和/或该第二存储器单元的第一电极)的凹槽和/或该有源部分的凹槽中。
实例13是根据实例1至12之一所述的存储器单元布置,其中,该多个存储器结构中的每个存储器结构包含耦合至该第三控制线(例如,通过该第三控制线彼此耦合)的四个或更多个存储器单元。
实例14是根据实例1至13之一所述的存储器单元布置,还包含:写入控制电路,其被配置为控制该第一控制线处的第一电压、该第二控制线处的第二电压和/或该第三控制线处的第三电压。
实例15是根据实例14所述的存储器单元布置,其中,该写入控制电路被配置为选择该多个存储器结构中的存储器结构,并且通过控制该第一电压、该第二电压和/或该第三电压来执行该所选的存储器结构的写入操作,其中,任选地,该写入操作改变该所选的存储器结构的至少一个存储器状态。
实例16是根据实例15所述的存储器单元布置,其中,该所选的存储器结构的该写入操作包含写入(例如,编程和/或擦除)该所选的存储器结构的该第一存储器单元或该所选的存储器结构的该第二存储器单元,其中,任选地,写入该第一存储器单元改变该第一存储器单元的存储器状态和/或写入该第二存储器单元改变该第二存储器单元的存储器状态。
实例17是根据实例16所述的存储器单元布置,其中,写入该第一存储器单元包含该第三电压与该第一电压的差大于该第三电压与该第二电压的差,其中,例如,该第三电压与该第一电压之间的差大于该第一存储器单元的编程电压;其中,例如,该第三电压与该第二电压之间的差小于该第一存储器单元的该编程电压。
实例18是根据实例16或17所述的存储器单元布置,其中,写入该第二存储器单元包含该第三电压与该第二电压的差大于该第三电压与该第一电压的差,其中,例如,该第三电压与该第二电压之间的差大于该第二存储器单元的编程电压;其中,例如,该第三电压与该第一电压之间的差小于该第二存储器单元的该编程电压。
示例19是根据实例1至18之一所述的存储器单元布置,其中,当该编程电压或更大电压被施加至该存储器单元时,该多个存储器结构中的一个或多个存储器结构中的每个存储器单元(例如,该第一存储器单元和/或该第二存储器单元)被配置为在第一存储器状态与第二存储器状态之间切换。
实例20是存储器结构(例如,提供根据实例1至19之一所述的存储器单元布置的一个或多个存储器结构),包含:第一顶电极、第一底电极和设置在第一顶电极与该第一底电极之间的第一有源(例如,铁电)部分;第二顶电极、第二底电极和设置在第二顶电极与该第二底电极之间的第二有源(例如,铁电)部分;其中,该第一底电极和该第二顶电极设置在该第一有源部分与该第二有源部分之间,并且通过控制线部分彼此耦合;其中,任选地,该第二有源部分设置在该第一有源部分与承载该存储器结构的衬底之间。
实例21是根据实例20所述的存储器结构,其中,该第一有源部分延伸(例如,突出)至该第一顶电极的凹槽和/或该第一底电极的凹槽中;并且/或,其中,该第二有源部分延伸(例如,突出)至该第二顶电极的凹槽和/或该第二底电极的凹槽中。
实例22是根据实例20或21所述的存储器结构,其中,该第一顶电极延伸(例如,突出)至该第一底电极的凹槽和/或该第一有源部分的凹槽中;并且/或,其中,该第二底电极延伸(例如,突出)至该第二顶电极的凹槽和/或该第二有源部分的凹槽中。
实例23是根据实例20至22之一所述的存储器结构,其中,该第二顶电极延伸(例如,突出)至该第二底电极的凹槽和/或该第二有源部分的凹槽中;并且/或,其中,该第二底电极延伸(例如,突出)至该第二顶电极的凹槽和/或该第二有源部分的凹槽中。
实例24是根据实例20至23之一所述的存储器结构,其中,该第一底电极和/或该第一有源部分是已凹陷的;并且/或,其中,该第二底电极和/或该第二有源部分是已凹陷的。
实例25是根据实例24所述的存储器结构,其中,该第一顶电极延伸至该已凹陷的第一底电极和/或该已凹陷的第一有源部分中;并且/或,其中,该第二顶电极延伸至该已凹陷的第二底电极和/或该已凹陷的第二有源部分中。
实例26是存储器单元布置,包含:一组第一控制线(例如,由第一结构化层提供)和一组第二控制线(例如,由第二结构化层提供);设置在该组第一控制线与该组第二控制线之间的第三控制线(例如,由第三结构化层提供);第一组存储器单元,其中,该第一组存储器单元的每个存储器单元可以由该组第一控制线和第三控制线寻址;第二组存储器单元,其中,该第二组存储器单元的每个存储器单元可以由该组第二控制线和第三控制线寻址;衬底,其中,该第二组存储器单元设置在该第一组存储器单元与该衬底之间。
实例27是根据实例26所述的存储器单元布置,其中,该第一组存储器单元设置在该第三控制线与该组第一控制线之间;其中,该第二组存储器单元设置在该第三控制线与该组第二控制线之间。
实例28是存储器单元(例如,提供实例1至27之一所述的一个或多个存储器单元),包含:两个电极,以及设置在该两个电极之间的有源(例如,铁电)部分;其中,该两个电极的电极(例如,顶电极或底电极)包含凹槽;其中,该两个电极中的另一个电极和/或有源部分突出至该凹槽中。
在实例29中,根据实例1至28之一所述的每个存储器单元(例如,该第一存储器单元和/或该第二存储器单元)是非易失性铁电存储器单元(例如,铁电随机存取存储器(FeRAM)单元)。
在实例30中,根据实例1至29之一所述的每个存储器单元(例如,该第一存储器单元和/或该第二存储器单元)连接至一个位线(例如,由第一控制线或第二控制线提供)和一个字线(例如,由第三控制线提供)。
在实例31中,根据实例1至30之一所述的每个第一控制线由设置在每个存储器单元(例如,该第一存储器单元和/或该第二存储器单元)上方的第一结构化层提供。
在实例32中,根据实例1至31之一所述的每个第二控制线由设置在每个存储器单元(例如,该第一存储器单元和/或该第二存储器单元)下方和/或衬底与每个存储器单元之间的第二结构化层提供。
在实例33中,根据实例1至32之一所述的每个第三控制线由设置在该一个或多个第一存储器单元与该一个或多个第二存储器单元之间的第三结构化层提供。
在实例34中,根据实例1至33之一所述的每个存储器单元(例如,该第一存储器单元和/或该第二存储器单元)包含铁电电容器。
在实例35中,根据实例1至34之一所述的一对存储器单元(例如,包含该第一存储器单元和该第二存储器单元)共享设置在该对存储器单元之间的第三控制线。
在实例36中,根据实例1至35之一所述的每个存储器单元(例如,该第一存储器单元和/或该第二存储器单元)包含耦合至该第一控制线或该第二控制线的电极和耦合至该第三控制线的另一个电极。
在实例37中,根据实例1至36之一所述的每个存储器单元的有源部分(例如,铁电部分)包含铁电材料或由该铁电材料形成。
在实例37a中,根据实例1至36之一所述的每个存储器单元的有源部分(例如,反铁电部分)包含反铁电材料或由该反铁电材料形成。
在实例38中,根据实例37所述的铁电材料包含铁电氧化铪或由该铁电氧化铪形成。
在实例39中,根据实例37或38所述的有源部分为剩余-可极化材料或包含剩余-可极化材料,任选地,该剩余-可极化材料包含具有第一剩余极化的第一极化状态(例如,提供第一存储器状态)和具有第二剩余极化的第二极化状态(例如,提供第二存储器状态)。
在实例39a中,根据实例37、38或37a所述的有源部分为自发可极化材料或包含自发可极化材料,任选地,该自发可极化材料包含具有第一自发极化的第一极化状态(例如,提供第一存储器状态)和具有第二自发极化的第二极化状态(例如,提供第二存储器状态)。
在实例39b中,根据实例37a所述的有源部分为不示出显著剩磁的自发可极化材料或包含不示出显著剩磁的自发可极化材料,任选地,该自发可极化材料包含具有第一自发极化的第一极化状态(例如,提供第一存储器状态)和具有第二自发极化的第二极化状态(例如,提供第二存储器状态)。
在实例39c中,根据实例37或38所述的有源部分为不示出显著剩磁的自发可极化材或包含不示出显著剩磁的自发可极化材料,任选地,该自发可极化材料包含具有第一剩余极化的第一极化状态(例如,提供第一存储器状态)和具有第二剩余极化的第二极化状态(例如,提供第二存储器状态)。
在实例40中,根据实例39所述的剩余-可极化材料具有与该第一极化状态相关联的第一剩余极化的绝对值,该绝对值基本上等于与该第二极化状态相关联的第二剩余极化的绝对值。
在实例41中,根据实例1至40之一所述的每个存储器单元连接至被配置为写入(例如,编程和/或擦除)一个或多个存储器单元的写入控制电路。
实例42是存储器单元布置,可以包含:第一存储器单元、第二存储器单元、第三存储器单元、第四存储器单元、第五存储器单元、第六存储器单元、第七存储器单元和第八存储器单元;分配给该第一存储器单元和该第二存储器单元的第一公共位线;分配给该第三存储器单元、该第四存储器单元、该第五存储器单元和该第六存储器单元的第二公共位线;分配给该第七存储器单元和该第八存储器单元的第三公共位线;分配给该第一存储器单元、该第三存储器单元、该第五存储器单元和该第七存储器单元的第一字线;分配给该第二存储器单元、该第四存储器单元、该第六存储器单元和该第八存储器单元的第二字线;分配给该第一存储器单元、该第二存储器单元、该第三存储器单元和该器第四存储器单元的第一板线;分配给该第五存储器单元、该第六存储器单元、该第七存储器单元和该第八存储器单元的第二板线。
在实例43中,实例42的存储器单元布置可以任选地还包含:第一存取器件,被配置为将该第一公共位线连接至由施加在该第一字线处的电压控制的该第一存储器单元;第二存取器件,被配置为将该第一公共位线连接至由施加在该第二字线处的电压控制的该第二存储器单元;第三存取器件,被配置为将该第二公共位线连接至由施加在该第一字线处的电压控制的该第三存储器单元和该第五存储器单元;第四存取器件,被配置为将该第二公共位线连接至由施加在该第二字线处的电压控制的该第五存储器单元和该第六存储器单元;第五存取器件,被配置为将该第三公共位线连接至由施加在该第一字线处的电压控制的第七存储器单元;以及第六存取器件,被配置为将该第三公共位线连接至由施加在该第二字线处的电压控制的第八存储器单元。
在实例44中,根据实例43所述的存储器单元布置可以任选地还包含:第一源线,连接该第一存储器单元和该第一存取器件;第二源线,连接该第二存储器单元和该第二存取器件;第三源线,将该第三存储器单元和该第五存储器单元与该第三存取器件连接;第四源线,将该第五存储器单元和该第六存储器单元与该第四存取器件连接;第五源线,连接该第七存储器单元和该第五存取器件;以及第六源线,连接该第八存储器单元和该第六存取器件。
实例45是存储器单元布置,可以包含:第一控制线和第二控制线;多个存储器结构,其中,该多个存储器结构中的每个存储器结构包含第三控制线和设置在该第一控制线与该第二控制线之间的一对存储器单元;其中,对于该多个存储器结构中的每个存储器结构,相应的一对存储器单元的第一存储器单元和相应的一对存储器单元的第二存储器单元通过相应的第三控制线彼此耦合,该第一存储器单元耦合至该第一控制线,该第二存储器单元耦合至该第二控制线,该第一存储器单元包含第一自发-可极化(例如,剩余-可极化)部分,并且该第二存储器单元包含第二自发-可极化(例如,剩余-可极化)部分。
在实例46中,根据实例45所述的存储器单元布置可以任选地还包含:该多个存储器结构中的每个存储器结构包含一个或多个第二对存储器单元,其中,每个第二对存储器单元包含第三存储器单元和第四存储器单元;并且该第三存储器单元包含第三自发-可极化(例如,剩余-可极化)部分,并且第四存储器单元包含第四自发-可极化(例如,剩余-可极化)部分。
在实例47中,根据实例46所述的存储器单元布置可以任选地还包含:对于该多个存储器结构中的每个存储器结构,该第一存储器单元、该第二存储器单元、该第三存储器单元和该第四存储器单元通过该存储器结构的该相应的第三控制线彼此耦合。
在实例48中,根据实例46或47所述的存储器单元布置可以任选地还包含:对于该多个存储器结构中的每个存储器结构,该第三存储器单元耦合至另外的第一控制线,并且所述第四存储器单元耦合至另外的第二控制线。
在实例49中,根据实例48的存储器单元布置可以任选地还包含:该相应的第二对存储器单元设置在该另外的第一控制线与该另外的第二控制线之间。
在实例50中,根据实例45至49中任一项所述的存储器单元布置可以任选地还包含:一个或多个第一控制线和/或一个或多个第二控制线延伸至第一方向;并且对于该多个存储器结构中的每个存储器结构,该相应的第三控制线延伸至不同于该第一方向的第二方向。
在实例51中,根据实例45至50中任一项所述的存储器单元布置可以任选地还包含,对于该多个存储器结构中的每个存储器结构:该第一存储器单元包含耦合至该第一控制线或由该第一控制线的一部分提供的第一电极,以及耦合至该相应的第三控制线或由该相应的第三控制线的一部分提供的第二电极;并且该第二存储器单元包含耦合至该相应的第三控制线或由该相应的第三控制线的一部分提供的第一电极,以及耦合至该第二控制线或由该第二控制线的一部分提供的第二电极;和/或,对于该多个存储器结构中的每个存储器结构:该第三存储器单元包含耦合至该另外的第一控制线或由该另外的第一控制线的一部分提供的第一电极,以及耦合至该相应的第三控制线或由该相应的第三控制线的一部分提供的第二电极;并且该第四存储器单元包含耦合至该相应的第三控制线或由该相应的第三控制线的一部分提供的第一电极,以及耦合至该另外的第二控制线或由该另外的第二控制线的一部分提供的第二电极。
在实例52中,根据实例45至51中任一项所述的存储器单元布置可以任选地还包含:第四控制线;另外的多个存储器结构,其中,该另外的多个存储器结构中的每个存储器结构包含第五控制线和设置在该第二控制线与该第四控制线之间的一对存储器单元;其中,对于该多个存储器结构中的每个存储器结构:相应的另外一对存储器单元的第五存储器单元和该相应的另外一对存储器单元的第六存储器单元通过相应的第五控制线彼此耦合,该第五存储器单元耦合至该第二控制线,该第六存储器单元耦合至该第四控制线,该第五存储器单元包含第五自发-可极化(例如,剩余-可极化)部分,并且该第六存储器单元包含第六自发-可极化(例如,剩余-可极化)部分。
在实例53中,根据实例52所述的存储器单元布置可以任选地还包含:该多个存储器结构中的每个存储器结构包含一个或多个另外的第二对存储器单元,其中,每个另外的第二对存储器单元包含第七存储器单元和第八存储器单元;并且其中,该第七存储器单元包含第七自发-可极化(例如,剩余-可极化)部分,并且该第八存储器单元包含第八自发-可极化(例如,剩余-可极化)部分。
在实例54中,根据实例53所述的存储器单元布置可以任选地还包含:对于该多个存储器结构中的每个存储器结构,该第五存储器单元、该第六存储器单元、该第七存储器单元和该第八存储器单元通过该存储器结构的该相应的第五控制线彼此耦合。
在实例55中,根据实例53或54所述的存储器单元布置可以任选地还包含:对于该另外的多个存储器结构中的每个存储器结构,该第七存储器单元耦合至另外的第二控制线,并且所述第八存储器单元耦合至另外的第四控制线。
在实例56中,根据实例55所述的存储器单元布置可以任选地还包含:相应的另外的第二对存储器单元设置在该另外的第二控制线与该另外的第四控制线之间。
在实例57中,根据实例52至56中任一项所述的存储器单元布置可以任选地还包含:该一个或多个第四控制线延伸至第一方向;并且对于该另外的多个存储器结构中的每个存储器结构,该相应的第五控制线延伸至不同于该第一方向的第二方向。
在实例58中,根据实例52至57中任一项所述的存储器单元布置可以任选地还包含,对于该另外的多个存储器结构中的每个存储器结构:该第五存储器单元包含耦合至该第二控制线或由该第二控制线的一部分提供的第一电极,以及耦合至该相应的第五控制线或由该相应的第五控制线的一部分提供的第二电极;并且,该第六存储器单元包含耦合至该相应的第五控制线或由该相应的第五控制线的一部分提供的第一电极,以及耦合至该第四控制线或由该第四控制线的一部分提供的第二电极;和/或对于该另外的多个存储器结构中的每个存储器结构:该第七存储器单元包含耦合至该另外的第二控制线或由该另外的第二控制线的一部分提供的第一电极,以及耦合至该第五控制线或由该第五控制线的一部分提供的第二电极;并且,该第八存储器单元包含耦合至该相应的第五控制线或由该相应的第五控制线的一部分提供的第一电极,以及耦合至该另外的第四控制线或由该另外的第四控制线的一部分提供的第二电极。
在实例59中,根据实例52至58中任一项所述的存储器单元布置可以任选地还包含:第一位线;第二位线;第三位线;字线;第一存取器件,被配置为将该第一位线连接至由施加在该字线处的电压控制的该第一控制线;第二存取器件,被配置为将该第二位线连接至由施加在该字线处的电压控制的该第二控制线;第三存取器件,被配置为将该第三位线连接至由施加在该字线处的电压控制的该第四控制线。
实例60是存储器结构,可以包含:第一顶电极、第一底电极和设置在该第一顶电极以该第一底电极之间的第一自发-可极化(例如,剩余-可极化)部分;第二顶电极、第二底电极和设置在该第二顶电极与该第二底电极之间的第二-自发可极化(例如,剩余-可极化)部分;其中,该第一底电极和该第二顶电极设置在第一自发-可极化(例如,剩余-可极化)部分和第二自发-可极化(例如,剩余-可极化)部分之间,并且通过控制线部分彼此耦合。
在实例61中,根据实例60所述的存储器结构可以任选地还包含:该第一自发-可极化(例如,剩余-可极化)部分突出至该第一底电极或第一顶电极的凹槽中;并且/或,其中,该第二自发-可极化(例如,剩余-可极化)部分突出至该第二底电极或第二顶电极的凹槽中。
在一些方面,包含在存储器结构或存储器单元布置中的存储器单元(例如,如以上参考实例1至61所描述的)可以被配置为三维存储器单元。例如,至少存储器单元的自发-可极化(例如,剩余-可极化)部分可以具有弯曲形状或成角度的形状。举例来说,至少存储器单元的自发-可极化(例如,剩余-可极化)部分可以具有凹或凸的形状。在一些方面,电极(例如,存储器单元的底部电机和/或顶电极)可以(例如,共形地)覆盖弯曲或成角度的自发-可极化(例如,剩余-可极化)部分的两个相对表面。在一些方面,电极可以具有与自发-可极化(例如,剩余-可极化)部分相似或相同的形状。在一些方面,存储器单元的自发-可极化(例如,剩余-可极化)部分可以是U形或V形。在一些方面,存储器单元的顶电极和/或底电极可以是U形或V形。
在一些方面,包含在存储器单元布置中的存储器单元(例如,如以上参考实例1至61所描述的)可以被配置为使得两个或更多个存储器单元共享公共自发-可极化(例如,剩余-可极化)层,该层提供两个或更多个存储器单元的两个或更多个自发-可极化(例如,剩余-可极化)部分。在一些方面,由一个或多个第一控制线和对应的第三控制线寻址的所有存储器单元可以共享公共自发-可极化(例如,剩余-可极化)层(例如,第一自发-可极化(例如,剩余-可极化)层),该层提供存储器单元的相应剩余-可极化部分。在一些方面,由一个或多个第二控制线和对应的第三控制线寻址的所有存储器单元可以共享公共自发-可极化(例如,剩余-可极化)层(例如,第二自发-可极化(例如,剩余-可极化)层),该层提供存储器单元的相应的自发-可极化(剩余-可极化)部分。
根据各个方面,存储器单元的功能层可以包含或可以由可极化材料制成,例如,自发可极化材料(诸如,反铁电和/或铁电材料作为例子)。然而,在反铁电材料上没有电压降的情况下,反铁电材料可以在(电压相关的)极化中示出滞后而没有剩余极化。然而,在铁电材料上没有电压降的情况下,铁电材料可以在(电压相关的)极化中示出滞后而剩余极化保留。自发极化(例如,剩余或非剩余自发极化)可以经由分析一个或多个滞后测量结果(例如,滞后曲线)来评估,例如,在极化(P)对电场(E)的曲线图中,其中,材料被极化至相反的方向中。材料的极化能力(介电极化、自发极化和极化的剩磁特性)可以使用电容光谱学来分析,例如,经由静态(C V)和/或时间解析测量结果,或通过极化电压(P V)或正-上-负-下(PUND)测量结果。
术语“自发地可极化材料”或“自发可极化材料”在本文中可以用于指除了其介电极化能力之外还具有极化能力的材料。自发可极化材料可以是示出剩磁的自发地可极化材料或可以包含示出剩磁的自发地可极化材料,例如,铁电材料,和/或不示出剩磁的自发地可极化材料,例如,反铁电材料。
作为实例,参考层、部分、结构、存储器单元的术语“剩余地可极化”或“剩余-可极化”可以被理解为表现出剩余极化能力(例如,除了介电极化能力和/或非剩余极化能力之外)的层。在一些方面,剩余-可极化层、剩余-可极化结构、剩余-可极化存储器单元、剩余-可极化部分(仅作为实例)可以包含剩余地可极化的材料(即,示出自发极化的剩磁),例如铁电材料。在其它方面,剩余-可极化层、剩余-可极化结构、剩余-可极化存储器单元、剩余-可极化部分(仅作为实例)在一些方面可以包含自发地可极化且不示出剩磁的材料(例如,在附加条件下的反铁电材料),其被实施以在反铁电材料内生成内部电场。反铁电材料内的内部电场可以由各种方面引起(例如,作为实例,施加、生成、维持),例如,通过实施可以被充电至不同于零伏特的电压的浮动节点,例如,通过实施电荷存储层,例如,通过使用掺杂层,例如,通过使用适应电子功函数以生成内部电场的电极层,仅作为实例。
虽然通过参考具体方面已经具体地示出和描述了本发明,但本领域的技术人员应当理解的是,在不脱离由所附权利要求定义的本发明的精神和范围的情况下,可以在其中做出不同的在形式和细节上的各种改变。因此,本发明的范围由所附权利要求书和在权利要求书的等效物的意义和范围内的所有改变都因此旨在被包含在其中。

Claims (20)

1.一种存储器单元布置,包括:
第一控制线和第二控制线;
连续第一存储层和连续第二存储层;
多个存储器结构,其中,所述多个存储器结构中的每个存储器结构包括第三控制线和设置在所述第一控制线与所述第二控制线之间的一对存储器单元;
其中,对于所述多个存储器结构中的每个存储器结构:
相应的一对存储器单元中的第一存储器单元和所述相应的一对存储器单元中的第二存储器单元通过相应的第三控制线彼此耦合,
所述第一存储器单元耦合至所述第一控制线,
所述第二存储器单元耦合至所述第二控制线,
所述第一存储器单元包括第一剩余-可极化部分,并且
所述第二存储器单元包括第二剩余-可极化部分;
其中所述多个存储器结构共享所述连续第一存储层和所述连续第二存储层,所述连续第一存储层和所述连续第二存储层提供所述多个存储器结构中的相应的第一剩余-可极化部分和第二剩余-可极化部分。
2.根据权利要求1所述的存储器单元布置,
其中,所述一对存储器单元是第一对存储器单元;
其中,所述多个存储器结构中的每个存储器结构包括一个或多个第二对存储器单元,其中每个第二对存储器单元包括第三存储器单元和第四存储器单元;并且
其中,所述第三存储器单元包括第三剩余-可极化部分,并且所述第四存储器单元包括第四剩余-可极化部分。
3.根据权利要求2所述的存储器单元布置,
其中,对于所述多个存储器结构中的每个存储器结构,所述第一存储器单元、所述第二存储器单元、所述第三存储器单元和所述第四存储器单元通过所述存储器结构的所述相应的第三控制线彼此耦合。
4.根据权利要求2所述的存储器单元布置,
其中,对于所述多个存储器结构中的每个存储器结构,所述第三存储器单元耦合至另外的第一控制线,并且其中,所述第四存储器单元耦合至另外的第二控制线,并且其中,相应的第二对存储器单元设置在所述另外的第一控制线与所述另外的第二控制线之间。
5.根据权利要求2所述的存储器单元布置,
其中,所述第一剩余-可极化部分和所述第三剩余-可极化部分是公共的第一剩余-可极化层的部分;并且
其中,所述第二剩余-可极化部分和所述第四剩余-可极化部分是公共的第一剩余-可极化层的部分。
6.根据权利要求1所述的存储器单元布置,
其中,所述第一控制线和/或所述第二控制线延伸至第一方向;并且
其中,对于所述多个存储器结构中的每个存储器结构,所述相应的第三控制线延伸至不同于所述第一方向的第二方向。
7.根据权利要求4所述的存储器单元布置,
其中,对于所述多个存储器结构中的每个存储器结构:
所述第一存储器单元包括耦合至所述第一控制线或由所述第一控制线的部分提供的第一电极,以及耦合至所述相应的第三控制线或由所述相应的第三控制线的部分提供的第二电极;并且
所述第二存储器单元包括耦合至所述相应的第三控制线或由所述相应的第三控制线的部分提供的第一电极,以及耦合至所述第二控制线或由所述第二控制线的部分提供的第二电极;和/或
其中,对于所述多个存储器结构中的每个存储器结构:
所述第三存储器单元包括耦合至所述另外的第一控制线或由所述另外的第一控制线的部分提供的第一电极,以及耦合至所述相应的第三控制线或由所述相应的第三控制线的部分提供的第二电极;并且
所述第四存储器单元包括耦合至所述相应的第三控制线或由所述相应的第三控制线的部分提供的第一电极,以及耦合至所述另外的第二控制线或由所述另外的第二控制线的部分提供的第二电极。
8.根据权利要求7所述的存储器单元布置,还包括:
第四控制线;
另外的多个存储器结构,其中,所述另外的多个存储器结构中的每个存储器结构包括第五控制线和设置在所述第二控制线与所述第四控制线之间的另外一对存储器单元;
其中,对于所述另外的多个存储器结构中的每个存储器结构:
相应的另外一对存储器单元中的第五存储器单元和所述相应的另外一对存储器单元中的第六存储器单元通过相应的第五控制线彼此耦合,
所述第五存储器单元耦合至所述第二控制线,
所述第六存储器单元耦合至所述第四控制线,
所述第五存储器单元包括第五剩余-可极化部分,并且
所述第六存储器单元包括第六剩余-可极化部分。
9.根据权利要求8所述的存储器单元布置,
其中,所述一对存储器单元是第一对存储器单元;
其中,所述多个存储器结构中的每个存储器结构包括一个或多个第二对存储器单元,其中,每个第二对存储器单元包括第三存储器单元和第四存储器单元;
其中,所述另外的多个存储器结构中的每个存储器结构包括一个或多个另外的第二对存储器单元,其中每个另外的第二对存储器单元包括第七存储器单元和第八存储器单元;并且
其中,所述第七存储器单元包括第七剩余-可极化部分,并且所述第八存储器单元包括第八剩余-可极化部分。
10.根据权利要求9所述的存储器单元布置,
其中,对于所述多个存储器结构中的每个存储器结构,所述第五存储器单元、所述第六存储器单元、所述第七存储器单元和所述第八存储器单元通过所述存储器结构的所述相应的第五控制线彼此耦合。
11.根据权利要求9所述的存储器单元布置,
其中,对于所述另外的多个存储器结构中的每个存储器结构,所述第七存储器单元耦合至所述另外的第二控制线,并且其中,所述第八存储器单元耦合至另外的第四控制线。
12.根据权利要求11所述的存储器单元布置,
其中,相应的另外的第二对存储器单元设置在所述另外的第二控制线与所述另外的第四控制线之间。
13.根据权利要求8所述的存储器单元布置,
其中,所述第四控制线延伸至第一方向;并且
其中,对于所述另外的多个存储器结构中的每个存储器结构,所述相应的第五控制线延伸至不同于所述第一方向的第二方向。
14.根据权利要求11所述的存储器单元布置,
其中,对于所述另外的多个存储器结构中的每个存储器结构:
所述第五存储器单元包括第一电极和第二电极,其中,所述第一电极耦合至所述第二控制线或由所述第二控制线的部分提供,并且其中所述第二电极耦合至所述相应的第五控制线或由所述相应的第五控制线的部分提供;并且
所述第六存储器单元包括第一电极和第二电极,其中,所述第一电极耦合至所述相应的第五控制线或由所述相应的第五控制线的部分提供,并且其中,所述第二电极耦合至所述第四控制线或由所述第四控制线的部分提供;和/或
其中,对于所述另外的多个存储器结构中的每个存储器结构:
所述第七存储器单元包括第一电极和第二电极,其中,所述第一电极耦合至所述另外的第二控制线或由所述另外的第二控制线的部分提供,并且其中,所述第二电极耦合至所述第五控制线或由所述相应的第五控制线的部分提供;并且
所述第八存储器单元包括第一电极和第二电极,其中,所述第一电极耦合至所述相应的第五控制线或由所述相应的第五控制线的部分提供,并且其中,所述第二电极耦合至所述另外的第四控制线或由所述另外的第四控制线的部分提供。
15.根据权利要求8所述的存储器单元布置,还包括:
第一位线;
第二位线;
第三位线;
字线;
第一存取器件,被配置为将所述第一位线连接至由施加在所述字线处的电压控制的所述第一控制线;
第二存取器件,被配置为将所述第二位线连接至由施加在所述字线处的电压控制的所述第二控制线;
第三存取器件,被配置为将所述第三位线连接至由施加在所述字线处的电压控制的所述第四控制线。
16.根据权利要求1所述的存储器单元布置,
其中,所述多个存储器结构的多个第一剩余-可极化部分由所述连续第一存储层的相应的部分提供,并且其中所述多个存储器结构的多个第二剩余-可极化部分由所述连续第二存储层的相应的部分提供。
17.一种存储器单元布置,包括:
第一控制线和第二控制线;
多个存储器结构,其中,所述多个存储器结构中的每个存储器结构包括第三控制线和设置在所述第一控制线与所述第二控制线之间的一对存储器单元;
其中,对于所述多个存储器结构中的每个存储器结构:
相应的一对存储器单元中的第一存储器单元和所述相应的一对存储器单元中的第二存储器单元通过相应的第三控制线彼此耦合,
所述第一存储器单元耦合至所述第一控制线,
所述第二存储器单元耦合至所述第二控制线,
所述第一存储器单元包括第一剩余-可极化部分,并且
所述第二存储器单元包括第二剩余-可极化部分;
其中所述多个存储器结构中的每个存储器结构的所述第一存储器单元的所述第一剩余-可极化部分是连续第一有源层的部分,并且
其中所述多个存储器结构中的每个存储器结构的所述第二存储器单元的所述第二剩余-可极化部分是连续第二有源层的部分。
18.根据权利要求17所述的存储器单元布置,
其中所述连续第一有源层包括铁电材料,并且其中所述连续第二有源层包括铁电材料。
19.根据权利要求1所述的存储器单元布置,
其中所述连续第一存储层包括铁电材料,并且其中所述连续第二存储层包括铁电材料。
20.根据权利要求19所述的存储器单元布置,
其中所述多个存储器结构中的每个第一存储器单元的存储器部分通过所述连续第一存储层的铁电材料彼此连接;并且
其中所述多个存储器结构中的每个第二存储器单元的存储器部分通过所述连续第二存储层的铁电材料彼此连接。
CN202110796013.4A 2020-07-15 2021-07-14 存储器单元布置 Active CN113948115B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/929,666 2020-07-15
US16/929,666 US11393832B2 (en) 2020-07-15 2020-07-15 Memory cell arrangement

Publications (2)

Publication Number Publication Date
CN113948115A CN113948115A (zh) 2022-01-18
CN113948115B true CN113948115B (zh) 2023-07-21

Family

ID=74882260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110796013.4A Active CN113948115B (zh) 2020-07-15 2021-07-14 存储器单元布置

Country Status (2)

Country Link
US (1) US11393832B2 (zh)
CN (1) CN113948115B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101291B2 (en) 2020-07-15 2021-08-24 Ferroelectric Memory Gmbh Memory cell arrangement and methods thereof
US11309034B2 (en) * 2020-07-15 2022-04-19 Ferroelectric Memory Gmbh Memory cell arrangement and methods thereof
US20220139934A1 (en) 2020-10-30 2022-05-05 Ferroelectric Memory Gmbh Memory cell, capacitive memory structure, and methods thereof
US11950430B2 (en) 2020-10-30 2024-04-02 Ferroelectric Memory Gmbh Memory cell, capacitive memory structure, and methods thereof
DE102021200003A1 (de) * 2021-01-04 2022-07-07 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zur Verwendung eines Halbleiterbauelements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963466A (en) * 1998-04-13 1999-10-05 Radiant Technologies, Inc. Ferroelectric memory having a common plate electrode
CN1276905A (zh) * 1997-08-15 2000-12-13 薄膜电子有限公司 一种铁电体数据处理器件
CN1906700A (zh) * 2003-12-05 2007-01-31 桑迪士克3D公司 包含多个串联选择装置的nand存储阵列及其操作方法
CN101199021A (zh) * 2005-06-14 2008-06-11 薄膜电子有限公司 制作铁电存储器件的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611014B1 (en) 1999-05-14 2003-08-26 Kabushiki Kaisha Toshiba Semiconductor device having ferroelectric capacitor and hydrogen barrier film and manufacturing method thereof
KR100407578B1 (ko) 2001-01-08 2003-12-01 삼성전자주식회사 강유전체 메모리 장치
US8027145B2 (en) 2007-07-30 2011-09-27 Taiyo Yuden Co., Ltd Capacitor element and method of manufacturing capacitor element
US8829646B2 (en) 2009-04-27 2014-09-09 Macronix International Co., Ltd. Integrated circuit 3D memory array and manufacturing method
JP5395738B2 (ja) * 2010-05-17 2014-01-22 株式会社東芝 半導体装置
JP2012038865A (ja) 2010-08-05 2012-02-23 Toshiba Corp 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法
JP2013038186A (ja) 2011-08-05 2013-02-21 Toshiba Corp 不揮発性半導体記憶装置の製造方法
US8964442B2 (en) 2013-01-14 2015-02-24 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
KR102161603B1 (ko) * 2014-03-11 2020-10-05 에스케이하이닉스 주식회사 전자 장치
CN107534046B (zh) 2015-03-02 2020-09-08 东芝存储器株式会社 半导体存储装置及其制造方法
US10446502B2 (en) 2017-08-30 2019-10-15 Micron, Technology, Inc. Apparatuses and methods for shielded memory architecture
KR102396119B1 (ko) * 2017-09-15 2022-05-11 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US10262730B1 (en) * 2017-10-16 2019-04-16 Sandisk Technologies Llc Multi-state and confined phase change memory with vertical cross-point structure
KR102512794B1 (ko) * 2018-01-17 2023-03-23 에스케이하이닉스 주식회사 전자 장치
US11043496B2 (en) * 2018-12-18 2021-06-22 Micron Technology, Inc. Thin film transistors and related fabrication techniques
KR102286428B1 (ko) 2019-01-22 2021-08-05 서울대학교 산학협력단 3차원 적층형 메모리 장치 및 상기 장치에서의 수직 상호 연결 구조
US11309034B2 (en) 2020-07-15 2022-04-19 Ferroelectric Memory Gmbh Memory cell arrangement and methods thereof
US11101291B2 (en) 2020-07-15 2021-08-24 Ferroelectric Memory Gmbh Memory cell arrangement and methods thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276905A (zh) * 1997-08-15 2000-12-13 薄膜电子有限公司 一种铁电体数据处理器件
US5963466A (en) * 1998-04-13 1999-10-05 Radiant Technologies, Inc. Ferroelectric memory having a common plate electrode
CN1906700A (zh) * 2003-12-05 2007-01-31 桑迪士克3D公司 包含多个串联选择装置的nand存储阵列及其操作方法
CN101199021A (zh) * 2005-06-14 2008-06-11 薄膜电子有限公司 制作铁电存储器件的方法

Also Published As

Publication number Publication date
US11393832B2 (en) 2022-07-19
CN113948115A (zh) 2022-01-18
US20210091097A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
CN113948115B (zh) 存储器单元布置
US11309034B2 (en) Memory cell arrangement and methods thereof
US11688447B2 (en) Memory cell, memory cell arrangement, and methods thereof
US11508756B2 (en) Memory cell arrangement and methods thereof
US11335391B1 (en) Memory cell arrangement and method thereof
CN114446348B (zh) 存储器单元布置及其方法
US9847123B2 (en) Multi-bit ferroelectric memory device and methods of forming the same
US11380695B2 (en) Memory cell arrangement and method thereof
US11158361B2 (en) Memory cell arrangement and methods thereof
US11189331B1 (en) Memory cell arrangement and methods thereof
US10978129B1 (en) Memory cell, memory cell arrangement and methods thereof
US11081159B1 (en) Memory cell arrangement and methods thereof
US11195589B1 (en) Memory cell arrangement and methods thereof
JP4033624B2 (ja) 強誘電体メモリ
US20240032306A1 (en) Memory cells and arrangements thereof
US11393518B1 (en) Memory cell arrangement and methods thereof
TWI760122B (zh) 多閘極鐵電記憶體以及記憶體陣列裝置
KR100816689B1 (ko) 강유전체 메모리 셀어레이
CN116648750A (zh) 铁电存储器及存储设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant