CN113912009A - 一种控制水解反应制氢开和关的电化学方法 - Google Patents

一种控制水解反应制氢开和关的电化学方法 Download PDF

Info

Publication number
CN113912009A
CN113912009A CN202111403889.4A CN202111403889A CN113912009A CN 113912009 A CN113912009 A CN 113912009A CN 202111403889 A CN202111403889 A CN 202111403889A CN 113912009 A CN113912009 A CN 113912009A
Authority
CN
China
Prior art keywords
hydrolysis
catalyst
electrode
hydrogen
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111403889.4A
Other languages
English (en)
Other versions
CN113912009B (zh
Inventor
唐阳
万平玉
何宝莹
庄姝娴
陈咏梅
谢鳌
杨晓进
刘佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202111403889.4A priority Critical patent/CN113912009B/zh
Publication of CN113912009A publication Critical patent/CN113912009A/zh
Application granted granted Critical
Publication of CN113912009B publication Critical patent/CN113912009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/089Alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明公开一种控制水解反应制氢开和关的电化学方法,涉及氢能领域。该电化学方法中,通过改变水解催化剂电位实现催化剂上水解反应的开关状态以及速率的调控。该方法以硼氢化钠、水合肼、氨硼烷或甲酸为活性氢化合物溶液,以含有水解催化剂涂层的电极为工作电极,以无水解活性的惰性石墨类电极为辅助电极,通过直流电源控制工作电极上达到‑0.5~0.25V(参比可逆氢电极RHE)的低电位,而激发水解催化剂活性,实现水解反应的开状态;通过控制工作电极在0.25~1.3V的相对高电位(参比RHE),关闭催化剂的水解活性,实现水解反应的关状态。本发明提高了活性氢分子解离制氢的可控性,拓展了其应用价值和场景。

Description

一种控制水解反应制氢开和关的电化学方法
技术领域
本发明涉及一种控制水解反应制氢开和关的电化学方法,涉及氢能领域。
背景技术
硼氢化钠、水合肼、氨硼烷、甲酸或甲醇等是一类氢能源载体,具有活性氢含量高的优点。在室温或高温条件下,这类活性氢化合物在催化剂上易发生分解(水解)反应,是在线制取氢气的一种有效方法。CN110026213A报道了一种负载型铂催化剂,包括碲和负载于碲上的铂粒,可在低于30℃的环境中,快速实现甲酸的分解。通常,硼氢化钠、水合肼、氨硼烷、甲酸或甲醇在与水解催化剂接触后,达到温度后,释放氢气的水解反应则会一直进行下去,直到活性氢化合物消耗殆尽。如果需要水解反应停下来或降低速率,则必须分离催化剂与活性氢化合物或快速降低温度。为此,需通过过滤分离、磁选分离催化剂或泵出活性氢化合物溶液来控制水解反应停下来,但这无疑增加了设备的复杂性。
如果能够便捷的对水解催化剂活性进行调控,类似原位开和关水解催化剂的活性,则对于活性氢化合物水解制氢能具有重要的应用价值。CN100503425C报道了一种催化剂分解硼氢化钠制氢的方法,其特征在于:在含NaBH4溶液的容器中加入两个电极,一个为正电极,另一个为负电极,两电极分置于水解催化剂的上下方,在两电极外部电路之间接入一直流稳压电源,从而在两电极间形成直流电场,在0.3-3V直流电场作用下,使NaBH4分解产生的偏硼酸钠胶体以电泳的方式向正电极方向定向移动而除去。有助于维持水解反应以相对稳定的速度进行。在该专利中加电极和电流的目的是为了形成电场移除偏硼酸钠胶体,促进水解反应发生,并没有对水解催化剂的催化活性进行开和关的调控。
论文(Advanced Energy Materials.2019;9:1900390.)报道了一种铜镍氮化物分别作为水合肼氧化和水还原析氢的双功能电催化剂,实现了低电压0.24V/10mA cm-2的电解水制氢性能。类似专利CN103172023A也公开了一种电催化硼氢化钠溶液制氢的方法,其特征在于包括以下步骤:将质量浓度为0.1~35%的硼氢化钠水溶液通入带有阴极电极和阳极电极的电解池,施加0.3~1.5V直流电压进行电催化,硼氢化钠溶液在电极表面被催化分解产生氢气。无论是上述论文还是专利,均是基于阳极电催化水合肼或硼氢化钠的氧化反应,以及阴极电催化水的析氢还原反应,本质是一个电解过程。并非是利用活性氢化合物的化学水解制氢。
此外,对于上述过程,虽然不加电时,活性氢化合物的直接电化学阳极氧化反应不会发生,但是活性氢化合物的化学分解产氢的反应依然容易发生,这对于高活性的水解催化剂更是如此。这也是为什么硼氢化钠、氨硼烷、水合肼等与水解催化剂接触后,即使在室温下,也会在数分钟以内迅速化学分解产氢完毕而释放大量氢气(International Journalof Hydrogen Energy.2020.8168-8176),这都导致了难以实现活性氢化合物水解反应的启、停有效控制,更无法实现按需产氢。
综上所述,目前并没有报道一种原位启、停、调控水解催化剂制氢活性的有效方法。
发明内容
本发明的目的在于提供一种控制水解反应制氢开和关的电化学方法。
本发明是采用以下技术方案得以实现的:
1.以含有水解催化剂的电极为工作电极,工作电极为发生水解反应的场所,也是实现水解催化剂原位电化学氧化还原的载体,水解催化剂包括非贵金属(Fe、Co、Ni、Mn、Cu、Mo)单质、合金、氢氧化物、氮化物、磷化物以及碳包覆的上述催化剂。
2.以无水解活性的石墨、钛电极为惰性辅助电极,辅助电极的作用是为了提供水解催化剂原位电化学氧化还原反应时的对电极反应,形成电流回路。
3.以饱和甘汞电极或银-氯化盐为参比电极,电位均换算到可逆氢电极(RHE)
4.以浓度0.1~10M硼氢化钠、水合肼、氨硼烷、甲酸或甲醇的活性氢化合物溶液为电解液(氢载体),为增强溶液导电性,可添加0.1~5M氢氧化钾、硫酸钠或硫酸作为支持电解质。
5.电源外电路连接工作电极和对电极形成电流回路,连接工作电极和参比电极形成电压测量回路。
6.通过直流电源或电化学工作站控制水解催化剂所在的工作电极恒定在一个相对高的电位值,高电位值范围为0.25~1.3V参比可逆氢电极(vs.RHE),优选范围为0.4~0.8V。该电位下,水解催化剂表面被电化学氧化,当氧化电流下降至不足初始电流10%,代表催化剂表面基本转化为氧化态,这时催化剂的水解制氢活性被抑制而无氢气产生,实现了水解反应的关停状态。
7.通过直流电源控制水解催化剂所在的工作电极恒定在一个相对低的电位值,低电位值范围为-0.5~0.25V(vs.RHE),优选范围-0.2~0.1V。该电位下,水解催化剂表面被电化学还原,当还原电流下降至不足初始电流的10%,代表催化剂表面基本转化为还原态,这时催化剂表面被重新激发到高的水解催化剂活性,实现了水解反应的开启。
8.通过控制水解催化剂在不同电位实现水解反应启停后,可利用催化剂自身处在一定氧化还原状态的稳定性而停止电位的施加,而无需一直加电。对应关状态下,在开路电位自然下降至低于关电位下限后再重新施0.25~1.3V的关电位。
本发明工作电极可将水解催化剂粉体涂覆、喷涂在导电基体上形成电极,也可以采用的水热、电化学沉积、化学镀等常见的方式。
本发明上述一种实现活性氢化合物水解反应原位控制的电化学方法,可用在氢能、电化学反应控制等领域。
本发明的有益效果在于:硼氢化钠、水合肼、氨硼烷、甲酸或甲醇的活性氢化合物在水解催化剂上的水解制氢反应,无需通过过滤分离、磁选分离催化剂或泵出活性氢化合物溶液也可以控制水解反应停下来。仅需将水解催化剂制成电极,通过简单的电化学原位氧化催化剂表面状态,就可以实现水解活性的关停。即使催化剂初期在接触空气被氧化了或者被电化学氧化了,也可以通过电化学还原迅速转化至还原态而激发水解活性。再者,本发明电化学原位氧化还原控制水解催化剂氧化还原状态来调控水解反应活性,具有响应快、可操作性强的优点,提高了活性氢化合物制氢的便利性和应用价值,在安全储氢、制氢、加氢站加氢、应急领域制氢等氢能领域具有显著的应用价值。
具体实施方式
以下将结合实施例对本发明做进一步详细说明。
下述实施例中所用的试验材料和试剂等,如无特殊说明,均可从商业途径获得。
实施例1
以负载有碳包覆镍钼氮催化剂的泡沫镍电极为工作电极,电极有效尺寸约为25mm*40mm*1.6mm;以同等尺寸石墨板为辅助电极;以饱和甘汞为参比电极。在1L电解池中加入浓度0.2M NaBH4-2M NaOH混合溶液。通过直流电源或电化学工作站控制工作电极电位为0.5V(vs.RHE),约20s后,工作电极氧化电流下降至不足1mA/cm-2,低于初始电流1/10。这时无论是工作电极还是辅助电极表面均无明显气泡产生,代表水解反应关停。
通过直流电源或电化学工作站控制工作电极电位为0V(vs.RHE),此时工作电极上开始出现气泡,代表水解制氢化学反应开始。约20s后,工作电极还原电流下降至不足1mA/cm-2,低于初始电流1/10。此电化学还原过程工作电极上产生大量气泡且速率加快,代表水解反应的开启,此时,无需再对工作电极施加0V低电位。
实施例2
以负载有铜单质-氢氧化钴催化剂的泡沫镍电极为工作电极,电极有效尺寸约为25mm*40mm*1.6mm;以同等尺寸石墨板为辅助电极;以饱和甘汞为参比电极。在1L电解池中加入浓度0.5M N2H4-2M NaOH混合溶液。通过直流电源或电化学工作站控制工作电极电位为0.8V(vs.RHE),约10s后,工作电极氧化电流下降至不足1.7mA/cm-2,低于初始电流1/10。这时无论是工作电极还是辅助电极表面均无明显气泡产生,代表水解反应关停。此时,停止对工作电位施加电位,工作电极处于开路电位下,当工作电极表面再次出现大量气泡时,则再施加工作电极0.8V高电位,抑制并关停水解活性。
通过直流电源或电化学工作站控制工作电极电位为-0.2V(vs.RHE),此时工作电极上开始出现气泡,水解反应开始被激发。约7s后,工作电极还原电流下降至不足1.2mA/cm-2,低于初始电流1/10。此电化学还原过程工作电极上产生大量气泡且速率加快,代表水解反应的开启。此时,无需再对工作电极施加-0.2V低电位。
实施例3
以负载有钴钼合金催化剂的泡沫镍电极为工作电极,电极有效尺寸约为25mm*20mm*1.6mm;以同等尺寸石墨板为辅助电极;以饱和甘汞为参比电极。在1L电解池中加入浓度1M NaBH4-2M NaOH混合溶液。通过直流电源或电化学工作站控制工作电极电位为0.45V(vs.RHE),约30s后,工作电极氧化电流下降至不足1mA/cm-2,低于初始电流1/10。这时无论是工作电极还是辅助电极表面均无明显气泡产生,代表水解反应关停。此时,停止对工作电位施加电位,工作电极处于开路电位下,当工作电极表面再次出现大量气泡时,则再施加工作电极0.45V高电位,抑制并关停水解活性。
通过直流电源或电化学工作站控制工作电极电位为-0.05V(vs.RHE),此时工作电极上开始出现气泡,水解反应开始被激发。约60s后,工作电极还原电流下降至不足1.2mA/cm-2,低于初始电流1/10。此电化学还原过程工作电极上产生大量气泡且速率加快,代表水解反应的开启。此时,无需再对工作电极施加-0.05V低电位。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,与本发明构思无实质性差异的各种工艺方案均在本发明的保护范围内。

Claims (7)

1.一种控制水解反应制氢开和关的电化学方法,其特征在于:在硼氢化钠、水合肼、氨硼烷、甲酸或甲醇的活性氢化合物的溶液中,通过电化学方法实现活性氢化合物水解制氢这类化学反应的开和关,具体是通过将电极催化剂进行原位电化学阳极氧化,抑制催化剂的水解制氢活性从而关停氢气的产生;通过将水解催化剂进行原位电化学阴极还原,进而激活催化剂的水解制氢活性从而促进氢气的产生。
2.根据权利要求1所述的方法,其特征在于:以含有水解催化剂的电极为工作电极,工作电极为发生水解化学反应的场所,也是实现水解催化剂原位电化学氧化还原的载体,水解催化剂包括非贵金属(Fe、Co、Ni、Mn、Cu、Mo)单质、合金、氢氧化物、氮化物、磷化物以及碳包覆的上述催化剂。
3.根据权利要求1所述的方法,其特征在于:以无水解活性的石墨、钛电极为惰性辅助电极,辅助电极的作用是为了提供水解催化剂原位电化学氧化还原反应时的对电极反应,形成电流回路。
4.根据权利要求1所述的方法,其特征在于:活性氢化合物浓度为0.1~10M,为增强溶液导电性,可添加0.1~5M氢氧化钾、硫酸钠或硫酸作为支持电解质。
5.根据权利要求1所述的方法,其特征在于:通过直流电源控制水解催化剂所在的工作电极达到0.25~1.3V的相对高电位(参比可逆氢电极RHE)即关电位,使催化剂表面被电化学氧化,抑制催化剂的水解活性,实现水解化学反应的关状态。
6.根据权利要求1所述的方法,其特征在于:通过直流电源控制水解催化剂所在的工作电极上达到-0.5~0.25V(vs.RHE)的相对低电位即开电位,使工作电极催化剂表面原位电化学还原至还原态而激发水解催化剂活性,开启水解制氢化学反应。
7.根据权利要求1所述的方法,其特征在于:通过控制水解催化剂在不同电位实现水解反应启停后,可利用催化剂自身处在一定氧化还原状态的稳定性而停止电位的施加,而无需一直加电,对应关状态下,在开路电位下降至低于关电位下限后再重新施0.25~1.3V的关电位。
CN202111403889.4A 2021-11-24 2021-11-24 一种控制水解反应制氢开和关的电化学方法 Active CN113912009B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111403889.4A CN113912009B (zh) 2021-11-24 2021-11-24 一种控制水解反应制氢开和关的电化学方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111403889.4A CN113912009B (zh) 2021-11-24 2021-11-24 一种控制水解反应制氢开和关的电化学方法

Publications (2)

Publication Number Publication Date
CN113912009A true CN113912009A (zh) 2022-01-11
CN113912009B CN113912009B (zh) 2023-11-21

Family

ID=79247824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111403889.4A Active CN113912009B (zh) 2021-11-24 2021-11-24 一种控制水解反应制氢开和关的电化学方法

Country Status (1)

Country Link
CN (1) CN113912009B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171005A (zh) * 2017-05-25 2017-09-15 北京鑫海港亿科技有限公司 一种氢燃料电池系统及其控制方法
CN108118222A (zh) * 2017-12-21 2018-06-05 陕西科技大学 一种用于水解制氢的Mg-Ga-In三元镁合金的制备方法
CN109148917A (zh) * 2018-09-13 2019-01-04 北京化工大学 一种实现储氢小分子制氢同时输出电能的方法
CN109926082A (zh) * 2019-03-22 2019-06-25 北京化工大学 一种碳包覆氮化镍钼复合材料及其制备方法
CN113278983A (zh) * 2021-05-21 2021-08-20 长沙理工大学 一种电化学制氢工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171005A (zh) * 2017-05-25 2017-09-15 北京鑫海港亿科技有限公司 一种氢燃料电池系统及其控制方法
CN108118222A (zh) * 2017-12-21 2018-06-05 陕西科技大学 一种用于水解制氢的Mg-Ga-In三元镁合金的制备方法
CN109148917A (zh) * 2018-09-13 2019-01-04 北京化工大学 一种实现储氢小分子制氢同时输出电能的方法
CN109926082A (zh) * 2019-03-22 2019-06-25 北京化工大学 一种碳包覆氮化镍钼复合材料及其制备方法
CN113278983A (zh) * 2021-05-21 2021-08-20 长沙理工大学 一种电化学制氢工艺

Also Published As

Publication number Publication date
CN113912009B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
CN109321936B (zh) 一种基于液流氧化还原媒介分步电解水制氢的装置和方法
Li et al. Achieving high single‐pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering
CN113005469B (zh) 一种钌负载无定型的氢氧化镍/磷化镍复合电极及其制备方法和应用
US20070278108A1 (en) Method of forming a porous nickel coating, and related articles and compositions
CN109686990B (zh) 一种Ni-Zn/氮硫双掺杂三维石墨烯电极材料的制备方法及应用
CN109852992B (zh) 一种高效电催化全分解水纳米片阵列电极及其制备方法和应用
Wen et al. Preliminary study on zinc–air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction
CA3116079A1 (en) Hydrogen evolution reaction catalyst
CN115233253A (zh) 一种电催化硝酸根还原产氨催化剂及其制备方法和应用
US4431494A (en) Method for electrolytic production of alkaline peroxide solutions
Yang et al. A three-dimensional nanostructure of NiFe (OH) X nanoparticles/nickel foam as an efficient electrocatalyst for urea oxidation
Cheng et al. Comprehensive understanding and rational regulation of microenvironment for gas‐involving electrochemical reactions
CN113699548A (zh) 弱酸盐层保护的析氧催化电极及其制备与用途、及提高析氧催化电极析氧反应稳定性的方法
US4501803A (en) Porous gas diffusion-electrode
JP2015004112A (ja) 電解合成装置
JP4601647B2 (ja) 水素発生装置及びこれを用いた燃料電池システム
CN113912009B (zh) 一种控制水解反应制氢开和关的电化学方法
CN114134531B (zh) 一种制备自支撑层状金属氢氧化物的通用方法
CN113463131B (zh) 一种铜单原子催化剂及其制备方法与应用
KR20170106608A (ko) 이산화탄소 환원 및 포름산 산화용 촉매 및 그 제조방법
JP6200475B2 (ja) 二酸化炭素の電気化学的還元のためのシステムおよびその方法
JP5140496B2 (ja) 水素発生装置用電解質溶液及び水素発生装置
CN114059086A (zh) 一种基于酸性电解质两步电解制氢的装置和方法
CN110453256B (zh) 一种多面体钴铱纳米颗粒析氢电催化剂及其镀液和制备方法
CN114774978B (zh) 一种Ni-Fe MMO薄膜修饰的泡沫镍催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant