CN115233253A - 一种电催化硝酸根还原产氨催化剂及其制备方法和应用 - Google Patents

一种电催化硝酸根还原产氨催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN115233253A
CN115233253A CN202210683098.XA CN202210683098A CN115233253A CN 115233253 A CN115233253 A CN 115233253A CN 202210683098 A CN202210683098 A CN 202210683098A CN 115233253 A CN115233253 A CN 115233253A
Authority
CN
China
Prior art keywords
cobalt
copper
ammonia
catalyst
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210683098.XA
Other languages
English (en)
Inventor
楼耀尹
方佳怡
孙世刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202210683098.XA priority Critical patent/CN115233253A/zh
Publication of CN115233253A publication Critical patent/CN115233253A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/27Ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种电催化硝酸根还原产氨催化剂及其制备方法和应用,其有效成分包括由泡沫镍和均匀电沉积于该泡沫镍上的铜元素及钴元素所构成的铜钴镍片,该铜钴镍片中的铜元素和钴元素的摩尔百分比为20‑70%∶30‑80%。本发明廉价易得,制备方法简单环保,且还原硝酸根产氨的效果极佳,在常温常压条件下利用清洁的电能进行电催化硝酸根还原产氨时,具有优秀的产氨法拉第效率和氨产率,超过了目前已报道的大部分电还原硝酸根产氨催化剂的催化性能,其中氨生产单位质量速率明显优于传统的Haber‑Bosch工艺,在批量处理高浓度硝酸盐溶液时,具有很高的硝酸盐去除率,处理完成后的溶液中的硝酸盐残留量低于世界卫生组织规定的饮用水限量。

Description

一种电催化硝酸根还原产氨催化剂及其制备方法和应用
技术领域
本发明属于硝酸根还原产氨技术领域,具体涉及一种电催化硝酸根还原产氨催化剂及其制备方法和应用。
背景技术
硝酸根阴离子(NO3 -)广泛存在于工农业废水中,对人类健康和生态平衡构成严重的威胁,尤其是其不完全转化会生成亚硝酸盐(NO2 -),被认为可通过诱导肝损伤和高铁血红蛋白血症的致癌物质。
传统上,NO3 -的转化去除主要向两个方向进行:(1)通过污水处理厂的反硝化过程还原成氮气(N2);(2)通过微生物分泌的硝酸盐/亚硝酸盐还原酶(如Shewanellaoneidensis细胞色素c亚硝酸盐还原酶)还原成氨气(NH3)。其中,NO3 -还原成NH3从工业角度来看更受关注,因为NH3是一种非常重要的工业化学品,被广泛用于合成药物、化肥、染料、塑料等,并且也被用作无碳氢载体的氢储存/释放载体。但是迄今为止,NH3的工业合成严重依赖于不可持续且对生态不友好的Haber-Bosch路线,该路线需要高温(400-600℃),高压(200-350atm)的苛刻条件,且作为原料的氢气的来源严重依赖于化石能源。事实上,Haber-Bosch工艺过程中产生的二氧化碳总量约占全球每年二氧化碳排放量的1.2%。
通过利用自然环境中的反硝化微生物,在温和的环境条件下将废水中的NO3 -生物催化还原为NH3(称为bio-NRA)是一种新兴、可持续且环保的技术,可将难处理的硝酸盐污染物转化为高价值的产品。这些高价值的产品又可通过离子交换吸附、鸟粪石沉淀等物理化学方法,获得NH3的沉淀物,并用于进一步的工业应用。但是,bio-NRA的生物催化系统耗时长且NH3产率低,与Haber-Bosch路线相比相去甚远,难以满足实际的工业需求。此外,bio-NRA对待处理废水的环境很敏感.如采矿废水中NO3 -浓度高(超过2500mg L-1)且有机物含量低,会限制微生物的繁殖生长。因此,为了填补自然界生物催化的有限性和环境修复的高需求之间的空白,科学家们开始将微生物酶的功能导入容易批量制备的人工合成的化学材料中,并利用可再生电能进行还原驱动,实现低碳、环保、高效的硝酸根还原制氨。
在bio-NRA中,硝酸盐还原酶接受来自醌的电子将NO3 -还原为NO2 -,产生的NO2 -被亚硝酸还原酶(NIR)进一步转化为NH3。在各种NIR中,广泛存在于根瘤菌中的铜型NIR(Cu-NIR)被科学家们广泛研究。Cu-NIR包含由3个相同亚基组成的三聚体蛋白质,每个酶单体中都有两种类型的铜原子,分别充当电子供体中心(T1Cu)和催化中心(T2Cu)。其作用机制为*NO2 -(其中*表示吸附物质)通过两个氧原子以双齿形式与T2Cu结合,电子从T1Cu转移到T2Cu,T2Cu氧化态从(II)降低到(I),促进*NO2 -以桥接硝基结合形式与T2Cu结合。同时,T2Cu旁边的天冬氨酸为NO2 -中的一个氧提供质子,使得N-O键伸长,导致N-O键断裂。
虽然Cu-NIR具有独特的组成结构和优异的催化活性,但其产氨的法拉第效率在70%左右,且氨的生产率低于1mmol cm-2h-1。虽然现有技术中,许多研究人员对Cu-NIR进行改性,将硝酸根还原产氨的法拉第效率提高到了90%以上,但是,氨的生产率仍无法满足实际应用的需求。
发明内容
本发明目的在于克服现有技术缺陷,提供一种电催化硝酸根还原产氨催化剂。
本发明的另一目的在于提供上述电催化硝酸根还原产氨催化剂的制备方法。
本发明的再一目的在于提供上述电催化硝酸根还原产氨催化剂的应用。
本发明的技术方案如下:
一种电催化硝酸根还原产氨催化剂,其有效成分包括由泡沫镍和均匀电沉积于该泡沫镍上的铜元素及钴元素所构成的铜钴镍片,该铜钴镍片中的铜元素和钴元素的摩尔百分比为20-70%∶30-80%。
在本发明的一个优选实施方案中,所述铜钴镍片中的铜元素和钴元素的摩尔百分比为45-55%∶45-55%。
进一步优选的,所述铜钴镍片中的铜元素和钴元素的摩尔百分比为50%∶50%。
在本发明的一个优选实施方案中,其有效成分为所述铜钴镍片,且所述铜钴镍片的厚度为8-11nm。
上述电催化硝酸根还原产氨催化剂的制备方法,包括:以去除表面污染物的泡沫镍作为工作电极,以铂片为对电极,于电镀液中并在0.04-0.06Acm-1的电流密度下进行恒电流电沉积250-350s,获得所述铜钴镍片,其中的电镀液由可溶性铜盐、可溶性钴盐、柠檬酸三钠和超纯水组成,可溶性铜盐和可溶性钴盐的总量与柠檬酸三钠的摩尔比为10∶3。
在本发明的一个优选实施方案中,所述可溶性铜盐和可溶性钴盐在所述电镀液中的总浓度为0.05mol/L,所述柠檬酸三钠在所述电镀液中的浓度为0.015mol/L。
在本发明的一个优选实施方案中,所述可溶性铜盐为硫酸铜、氯化铜、乙酸铜和硝酸铜中的至少一种,所述可溶性钴盐为硫酸钴、氯化钴、乙酸钴和硝酸钴中的至少一种。
铜钴镍片作为电催化硝酸根还原产氨催化剂的应用,该铜钴镍片由泡沫镍和均匀电沉积于该泡沫镍上的铜元素及钴元素所构成,且该铜钴镍片中的铜元素和钴元素的摩尔百分比为20-70%∶30-80%。
在本发明的一个优选实施方案中,所述铜钴镍片中的铜元素和钴元素的摩尔百分比为45-55%∶45-55%。
进一步优选的,所述铜钴镍片中的铜元素和钴元素的摩尔百分比为50%∶50%。
一种硝酸根还原产氨方法,应用上述电催化硝酸根还原产氨催化剂作为自支撑一体式电极在电化学系统中电催化还原硝酸根制氨。
本发明的有益效果是:
1、本发明在常温常压条件下利用清洁的电能进行电催化硝酸根还原产氨时,具有优秀的产氨法拉第效率和氨产率,超过了目前已报道的大部分电还原硝酸根产氨催化剂的催化性能,其中氨生产单位质量速率明显优于传统的Haber-Bosch工艺。
2、本发明在-0.1--0.4V vs.RHE的宽电位区间内,其产氨法拉第效率均可以保持在90%以上,在1-100mmol L-1的宽的NO3 -浓度范围内,在-0.1Vvs.RHE下的产氨法拉第效率均保持在95%以上,可以适应多种废水环境系统,且保持良好的NO3 -回收能力。
3、本发明的产氨法拉第效率的稳定性良好。
4、本发明在批量处理高浓度硝酸盐溶液时,具有很高的硝酸盐去除率,处理完成后的溶液中的硝酸盐残留量低于世界卫生组织规定的饮用水限量。
附图说明
图1为本发明实施例1的实验结果图,其中,(a)在泡沫镍上原位电沉积铜钴合金催化剂的示意图;(b)不同铜钴比例催化剂的X射线衍射图(XRD);不同催化剂的高分辨透射电镜图(HRTEM)和扫描电镜图(SEM)(c)(f):Cu,(d)(g):Cu50Co50,(e)(h):Co。
图2为本发明实施例1的实验结果图,其中,Cu50Cos0、Cu和Co催化剂在含0.1M硝酸根和不含硝酸根的1M KOH溶液中的线性伏安曲线(v=1mV s-1)(a)和对应的-0.2-0.1Vvs.RHE的电位区间内的Tafel斜率(b);(c)Cu50Co50催化剂在不同转速下的线性伏安曲线及通过K-L方程计算出的不同电位下的电子转移数;沉积在泡沫镍上的不同铜钴比例催化剂在0V vs.RHE的电位下催化硝酸根还原的产物的法拉第效率(d)和产物产率和电流密度(e);Cu50Co50/Ni foam、Cu/Ni foam和Co/Ni foam催化剂在不同电极电位下的产物的法拉第效率(f)和产率(g);(h)Cu50Co50/Ni foam催化剂在单向流动池中以-0.1V vs.RHE恒电位电解24h的电流密度和产氨法拉第效率;(i)在用Cu50Co50/Ni foam以-0.1V vs.RHE的电极电位进行恒电位电解的条件下,电解液中NO3 -,NO2 -和NH3的浓度和FE随时间的变化。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。
实施例1
(1)按下表1配制电镀液:
表1电镀液组分
Figure BDA0003697913440000041
(2)将(1×1cm2)长方形泡沫镍(厚度:2mm,75ppi),依次在丙酮、乙醇、超纯水溶液中超声清洗10min,以去除表面污染物。超声功率为100W,超声频率为40kHz。
(3)将步骤(2)洗净的泡沫镍作为工作电极,(1×1cm2)铂片作为对电极,分别在如表1所示的相应配比的电镀液中,使用恒电流仪,在0.05A cm-1的电流密度下,恒电流电沉积300s,得到纯Cu催化剂、Cu70Co30催化剂、Cu50Co5o催化剂、Cu20Co80催化剂和纯Co催化剂。
(4)将步骤(4)所得的纯Cu催化剂、Cu70Co30催化剂、Cu50Co50催化剂、Cu20Co80催化剂和纯Co催化剂分别置于超纯水搅拌清洗5遍,用氩气吹干,待用。
本实施例使用带有X射线能谱仪的扫描电子显微镜(SEM,ZEISS Sigma)在15kV的操作电压下对纯Cu催化剂、Cu70Co30催化剂、Cu50Co50催化剂、Cu20Co80催化剂和纯Co催化剂的形貌和元素组成进行表征。在200kV的加速电压下,使用高分辨透射电子显微镜(HRTEM,FEI-Tecnai G2 F20)对纯Cu催化剂、Cu70Co30催化剂、Cu50Co50催化剂、Cu20Co80催化剂和纯Co催化剂晶格排布进行观察。使用电感耦合等离子体发射光谱仪(ICP-OES)对纯Cu催化剂、Cu70Co30催化剂、Cu50Co50催化剂、Cu20Co80催化剂和纯Co催化剂进行化学成分分析。使用带有Cu-KαX射线源的X射线衍射仪(XRD,SmartLab-SE)对纯Cu催化剂、Cu70Co30催化剂、Cu50Co50催化剂、Cu20Co80催化剂和纯Co催化剂进行晶体物质结构分析。使用A1 Ka X射线激发的Thermo Fisher Scientific Nexsa X射线光电子能谱仪(XPS,Nexsa)对纯Cu催化剂、Cu70Co30催化剂、Cu50Co50催化剂、Cu20Co80催化剂和纯Co催化剂进行表面化学状态分析。所有的XPS光谱都用284.8eV的C1s谱线进行校正。
X射线衍射(XRD)结果显示(图1(b)),纯Cu催化剂和纯Co催化剂的组成分别为零价金属铜和金属钴;Cu70Co30催化剂、Cu50Co50催化剂和Cu20Co80催化剂则都表现出合金的特性,没有出现相应金属单质衍射峰信号,且随着钴元素的加入,铜的衍射峰逐渐向高角度偏移。这意味着原子半径更小的钴元素成功掺入到了金属铜中,导致了晶格间距的收缩。用高分辨透射电子显微镜观察到,Cu50Co50催化剂的Cu(111)晶面的晶格间距为0.208nm(图1(d))。这与纯Cu催化剂中观察到的0.210nm的Cu(111)晶格间距(图1(c))相比有明显的收缩,与纯Co催化剂中观察到0.206nm的Co(111)的晶格间距(图1(e))相比存在晶格膨胀。这与XRD的结果一致。
本实施例还利用电子显微镜(SEM)对催化剂的形貌结构进行了观察。当催化剂主要由铜元素构成时,催化剂呈现由几十纳米的颗粒堆积成的枝晶状结构。而当钴元素含量占比超过50%时(Cu50Co50、Cu20Co80和Co),催化剂呈现三维纳米片堆积的枝晶状结构(图1(g)和图1(h))。原子力显微镜测试出催化性能最好的Cu50Co50催化剂的纳米片的厚度约为10nm。另外,通过X射线光电子能谱(XPS),本实施例观察到不同催化剂的Cu 2p图谱中均存在Cu2+特征峰,说明催化剂表面被空气中的氧部分氧化。Co 2p图谱也显示出Co的氧化物特征峰。另外合金催化剂的Co 2p结合能较纯Co催化剂的有明显的增加。这可能是因为铜钴合金化后影响了电子的分布,导致Co 3d能带向费米能级的相反方向移动。这很有可能改变催化剂对硝酸根还原反应的中间产物(eg:*H和*NO3)的吸附能。
实施例2
(1)试剂配制:
A、硝酸根还原电解液的配制:称取28.055g的KOH固体置于烧杯中,加水溶解。待溶液的温度降至室温后转移至500mL烧瓶中定容,得到1mol L-1KOH溶液。称取5.055g KNO3和28.055g KOH于烧杯中,加水溶解。待溶液的温度降至室温后转移至500mL烧瓶中定容,得到100mmol L-1KNO3和1mol L-1KOH的混合溶液。分别取1mL、5mL、10mL和50mL的0.1mol L-1KNO3和1mol L-1KOH的混合溶液于不同的100mL容量瓶中,加1mol L-1KOH溶液定容,分别得到1mmol L-1、5mmol L-1、10mmol L-1和50mmol L-1KNO3与1mol L-1KOH的混合溶液
B、不同铜盐和钴盐的电沉积液配制:
氯盐:称取0.1938g六水合氯化铜、0.3285g二水合氯化钴和0.2207g二水合柠檬酸三钠于50mL超纯水中,溶解待用;
乙酸盐:称取0.2269g四水合乙酸铜、0.3395g一水合乙酸钴和0.2207g二水合柠檬酸三钠于50mL超纯水中,溶解待用;
硝酸盐:称取0.2745g三水合硝酸铜、0.3969g六水合硝酸钴和0.2207g二水合柠檬酸三钠于50mL超纯水中,溶解待用。
(2)具体测试条件:
A、本实施例的电化学测试都是在辰华CHI 760e电化学工作站上使用三电极系统测试得到的。并且所有催化剂在测试前,均在-0.6V vs RHE下,于0.1mol L-1硫酸钾的除氧溶液中恒电位还原600s。使用电沉积有催化剂的泡沫镍电极为工作电极,铂片作对电极,汞/氧化汞电极(填充1mol L-1KOH溶液)作参比电极,以1mV s-1的扫描速率,在单槽电解池中得到电化学线性伏安曲线(工作电极面积:0.3*0.3cm2),在H性电解池中进行硝酸根还原的恒电压原位电解实验(工作电极面积:0.5*0.5cm-2)。使用具有不同硝酸钾浓度(1、5、10、50和100mmol L-1)的1mol L-1KOH水溶液作为电解液。
B、将纯Cu催化剂、Cu50Co50催化剂和纯Co催化剂分别超声分散于含粘结剂的溶剂中(600μL异丙醇:380μL超纯水:20μL 5%Nafion溶液),形成均匀的油墨(5mg mL-1)。取10μL油墨均匀地负载在抛光的玻碳电极(GCE,0.196cm2)上。将负载有催化剂的玻碳电极、铂电极和汞/氧化汞电极分别作工作电极、对电极和参比电极,在旋转圆盘电极的测试系统(带有旋转器)上得到不同转速下(100、225、400、625rpm)的线性伏安曲线。扫描速率为10mV s-1。使用含有100mmol L-1浓度硝酸钾的1mol L-1KOH水溶液作为电解液。所有电化学测试前,均使用氩气吹扫除去电解液中的溶解氧。
C、本实施例中的催化剂的稳定性测试在流动池中进行。电沉积有催化剂的泡沫镍电极为工作电极,铂片作对电极,汞/氧化汞电极(填充1mol L-1 KOH溶液)作参比电极,在100mmol L-1KNO3+1mol L-1KOH的电解液中,以-0.1V vs.RHE的电位恒电位电解还原24小时。阴阳极室中电解液流速为1mL min-1,且两室之间用Nafion膜隔开。
(3)具体测试结果如下:
A、通过1mV s-1低扫速下的线性伏安曲线初步比较了Cu、Co和Cu50Co50催化剂的NO3 -RR电催化活性。从图2(a)中可以看到,在含硝酸根的电解液中的电流密度要远大于不含硝酸根的。说明在含硝酸根的溶液中,电流的主要贡献来源于硝酸根的还原,且催化剂都表现出良好的硝酸根还原性能。本实施例用达到10mA cm-2电流密度所需的过电位(η10mA cm -2,=E°-E;E°=0.69V vs.RHE),作为一个比较NO3 -RR活性的标准。在1mol L-1KOH+0.1mol L- 1KNO3的电解液中,Cu50Co50催化剂的
Figure BDA0003697913440000071
为498mV,低于纯Cu(503mV)和纯Co(690mV)催化剂的
Figure BDA0003697913440000072
在0V vs.RHE的电极电位下,Cu50Co50催化剂的还原电流密度为145.5mAcm-2,为此时纯Cu催化剂(82.1mA cm-2)的近2倍,纯Co催化剂(6mA cm-2)的约20倍。实际上,在Cu和Cu50Co50的曲线中可以观察到两个还原电流峰(S1和S2)。在反应初期,Cu和Cu50Co50对NO3 -RR表现出相似的行为,说明Cu在反应的这个阶段起着重要作用。根据之前的研究,0.08Vvs.RHE附近的S1峰为经过2电子转移将*NO3物种还原为*NO2的过程(Eq.(1)),而S2峰为经过6电子转移将*NO2物种还原为*NH3的过程(Eq.(2))。在S2峰区域,Cu50Co50与Cu相比出现了67mV的正电位偏移,说明随着外加电位的增加,Co与Cu之间有很好的协同作用,*NO2还原为*NH3的势能垒降低。
*NO3+2e-+H2O→*NO2+2OH- Eq.(1)
*NO2+6e-+5H2O→*NH3+7OH- Eq.(2)
B、为了研究所有催化剂的反应路线,本实施例通过Koutecky-Levich(K-L)图的斜率估计了NO3 -RR过程中转移的电子数(n)。Cu催化剂先后经历了2e-到6e-的还原过程,验证了公式(1)(2)所述的还原路线。而在Cu50Co50上,在峰S1和S2之间的电位区域只观察到了8e-转移过程(图2b),表明强烈的合金效应同时促进了这两条路径。在纯Co催化剂上也发生了8电子转移过程,但发生的电极电位要负得多,即势能垒较高。根据图2(a)的线性伏安曲线得到了分别针对S1段反应和S2段反应的Tafel图。对于S1段(0.17-0.1V vs.RHE),Cu50Co50催化剂在这个电位区间内的Tafel斜率为205.75mV decade-1,比纯Cu催化剂的Tafel斜率(232.43mV decade-1)略有降低,表明Co的加入能促进催化剂/电解质界面的电子转移在。纯Co催化剂在较正的电极电位下基本没有还原硝酸根的电催化活性,因此不考虑Co在此电位区间内的Tafel斜率。在S2峰的电位区域(图2(b)),Cu50Co50催化剂的Tafel斜率(148.95mV decade-1)也较纯Cu催化剂的(229.75mV decade-1)有了明显的降低。这可以解释为Cu和Co在Cu50Co50上的电子再分配,在表征部分的XPS结果也证实了这一点。Co催化剂的Tafel斜率值较低,为94.24mV decades-1,但发生的电极电位比Cu50Co50低95mV。这一结果表明,与Cu基催化剂相比,Co在跨越高能量势垒后,表现出更好的NO3 -RR反应动力学性能。将Co与Cu合金化可获得更快的电子转移速率,并改善NO3 -RR的动力学性能。
C、为了进一步评价不同催化剂的NO3 -RR性能,本实施例在H型电解池中,利用催化剂进行恒电位电解还原NO3 -。氨和亚硝酸根作为NO3 -RR的主要产物,分别使用纳式试剂检测法和离子色谱进行定量检测。如图2(d)(e)所示,在0V vs.RHE的电极电位下,纯Cu催化剂主要产亚硝酸根,产氨效率仅有32%。而随着钴元素的加入,占比从0%逐渐增加到100%,产氨法拉第效率逐渐提升而后平稳,产氨偏电流密度呈现火山型关系,当钴元素占比50%时,即Cu50Co50催化剂的NO3-RR产氨偏电流密度(347mA cm-2,88%FE for NH3)也最高,为纯Cu催化剂(34mA cm-2,32%FE for NH3)的10倍左右,纯Co催化剂(21mA cm-2,84%FE for NH3)的17倍。测量了催化剂的电化学活性表面积(ECSA),所有催化剂的ECSA都相当。在Cu50Co50催化剂上获得了最大的ECSA归一化电流密度,表明该催化剂具有最高的产氨活性。
Cu50Co50催化剂在过电位仅为590mV时(0.1V vs.RHE)的产氨法拉第效率达到65%。仍有一部分硝酸根还原到亚硝酸根。随着电极电位负移,产物中的亚硝酸根快速减少,在-0.2V vs.RHE时,Cu50Co50催化剂的产氨法拉第效率达100±1%,产氨偏电流密度为1035mV cm-2,相对应的产氨效率为4.8mmol cm-2h-1,是此时纯Co催化剂的约2倍,纯Cu催化剂的约8倍。(图2(g))。根据电沉积过程中消耗的电荷,估计沉积得到的Cu50Co50催化剂的质量,据此计算得到其产氨的质量活性(Y(mass-NH3))约为960mmol g-1h-1,是Haber-Bosch工艺(200mmol g-1h-1)的5倍左右。在-0.1--0.4V vs.RHE的宽电位区间内,其产氨法拉第效率均可以保持在90%以上,但随着电极电位的继续负移,氢气的析出逐渐增多,产氨的法拉第效率会减小(图2(f))。换用上述氯盐、乙酸盐和硝酸盐等不同阴离子的铜钴盐来制备催化剂,在-0.2V vs.RHE下均可达90%以上的产氨法拉第效率。
D、实际生活中废水的NO3 -含量在0.88-1950mmol L-1之间。因此,本实施例在1-100mmol L-1的NO3 -浓度范围内,用Cu50Co50催化剂进行硝酸根还原处理。在-0.1Vvs.RHE下,Cu50Co50的产氨法拉第效率均保持在95%以上(图S12)。这表明Cu50Co50催化剂可以适应多种废水环境系统,且保持良好的NO3 -回收能力。本实施例还采用单向连续流动模式,考察了在泡沫镍载体上的Cu50Co50催化剂的NO3 -RR活性、稳定性和法拉第效率,以模拟实验室规模的真实废水处理过程。Cu50Co50在-0.1Vvs.RHE下进行24小时恒电位电解,其产氨法拉第效率稳定在95%左右,电流密度保持在85%以上。
E、批量处理100mmol L-1(约6,200ppm)的高浓度硝酸盐溶液:如图2(i)所示,在-0.1V vs.RHE的还原电位下,4小时即可去除90%的硝酸盐;10小时后硝酸盐的去除率达到99.5%,NH3法拉第效率为96%。溶液中的硝酸盐残留量仅为31ppm,低于世界卫生组织规定的饮用水限量,即50ppm。对于产生的氨,可以考虑采用空气气提、离子交换、折点加氯、鸟粪石沉淀等方法进行进一步的提取净化。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (10)

1.一种电催化硝酸根还原产氨催化剂,其特征在于:其有效成分包括由泡沫镍和均匀电沉积于该泡沫镍上的铜元素及钴元素所构成的铜钴镍片,该铜钴镍片中的铜元素和钴元素的摩尔百分比为20-70%∶30-80%。
2.如权利要求1所述的一种电催化硝酸根还原产氨催化剂,其特征在于:所述铜钴镍片中的铜元素和钴元素的摩尔百分比为45-55%∶45-55%。
3.如权利要求2所述的一种电催化硝酸根还原产氨催化剂,其特征在于:所述铜钴镍片中的铜元素和钴元素的摩尔百分比为50%∶50%。
4.如权利要求1至3中任一权利要求所述的一种电催化硝酸根还原产氨催化剂,其特征在于:其有效成分为所述铜钴镍片,且所述铜钴镍片的厚度为8-11nm。
5.权利要求1至4中任一权利要求所述的电催化硝酸根还原产氨催化剂的制备方法,其特征在于:包括:以去除表面污染物的泡沫镍作为工作电极,以铂片为对电极,于电镀液中并在0.04-0.06Acm-1的电流密度下进行恒电流电沉积250-350s,获得所述铜钴镍片,其中的电镀液由可溶性铜盐、可溶性钴盐、柠檬酸三钠和超纯水组成,可溶性铜盐和可溶性钴盐的总量与柠檬酸三钠的摩尔比为10∶3。
6.如权利要求5所述的制备方法,其特征在于:所述可溶性铜盐和可溶性钴盐在所述电镀液中的总浓度为0.05mol/L,所述柠檬酸三钠在所述电镀液中的浓度为0.015mol/L。
7.铜钴镍片作为电催化硝酸根还原产氨催化剂的应用,其特征在于:该铜钴镍片由泡沫镍和均匀电沉积于该泡沫镍上的铜元素及钴元素所构成,且该铜钴镍片中的铜元素和钴元素的摩尔百分比为20-70%∶30-80%。
8.如权利要求7所述的应用,其特征在于:所述铜钴镍片中的铜元素和钴元素的摩尔百分比为45-55%∶45-55%。
9.如权利要求8所述的应用,其特征在于:所述铜钴镍片中的铜元素和钴元素的摩尔百分比为50%∶50%。
10.一种硝酸根还原产氨方法,其特征在于:应用权利要求1至4中任一权利要求所述的电催化硝酸根还原产氨催化剂作为自支撑一体式电极在电化学系统中电催化还原硝酸根制氨。
CN202210683098.XA 2022-06-16 2022-06-16 一种电催化硝酸根还原产氨催化剂及其制备方法和应用 Pending CN115233253A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210683098.XA CN115233253A (zh) 2022-06-16 2022-06-16 一种电催化硝酸根还原产氨催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210683098.XA CN115233253A (zh) 2022-06-16 2022-06-16 一种电催化硝酸根还原产氨催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115233253A true CN115233253A (zh) 2022-10-25

Family

ID=83669798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210683098.XA Pending CN115233253A (zh) 2022-06-16 2022-06-16 一种电催化硝酸根还原产氨催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115233253A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672822A (zh) * 2022-04-11 2022-06-28 华南理工大学 一种用于硝酸盐还原制氨的反钙钛矿相氮化物三维自支撑电极材料及其制备方法与应用
CN116219473A (zh) * 2023-02-11 2023-06-06 浙江大学 一种原位自优化原子级铜催化剂的制备及应用方法
CN116393138A (zh) * 2023-04-20 2023-07-07 河南师范大学 一种用于硝酸根还原转氨的铜镍锡纳米金属玻璃催化剂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924260A (zh) * 2014-04-14 2014-07-16 太原理工大学 一种三维泡沫镍负载铜和钴的复合析氢电极及其制备方法
CN106702425A (zh) * 2016-12-09 2017-05-24 济南大学 一种在泡沫铁表面制备二硫化钼/铜/钴催化析氢层的方法
US20210032116A1 (en) * 2018-04-02 2021-02-04 Ariel Scientific Innovations Ltd. Electrocatalysts, the preparation thereof, and using the same for ammonia synthesis
CN113668001A (zh) * 2021-07-27 2021-11-19 北京化工大学 析氢反应催化剂用于电催化硝酸根还原合成氨的方法
CN113998760A (zh) * 2021-10-30 2022-02-01 北京工业大学 用于非均相电芬顿体系的铜钴氧化物/碳纳米管/泡沫镍复合电极及应用
CN114045518A (zh) * 2021-12-27 2022-02-15 安徽大学 一种钴酸铜催化电极材料及其在硝酸根还原制氨中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924260A (zh) * 2014-04-14 2014-07-16 太原理工大学 一种三维泡沫镍负载铜和钴的复合析氢电极及其制备方法
CN106702425A (zh) * 2016-12-09 2017-05-24 济南大学 一种在泡沫铁表面制备二硫化钼/铜/钴催化析氢层的方法
US20210032116A1 (en) * 2018-04-02 2021-02-04 Ariel Scientific Innovations Ltd. Electrocatalysts, the preparation thereof, and using the same for ammonia synthesis
CN113668001A (zh) * 2021-07-27 2021-11-19 北京化工大学 析氢反应催化剂用于电催化硝酸根还原合成氨的方法
CN113998760A (zh) * 2021-10-30 2022-02-01 北京工业大学 用于非均相电芬顿体系的铜钴氧化物/碳纳米管/泡沫镍复合电极及应用
CN114045518A (zh) * 2021-12-27 2022-02-15 安徽大学 一种钴酸铜催化电极材料及其在硝酸根还原制氨中的应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672822A (zh) * 2022-04-11 2022-06-28 华南理工大学 一种用于硝酸盐还原制氨的反钙钛矿相氮化物三维自支撑电极材料及其制备方法与应用
CN114672822B (zh) * 2022-04-11 2023-05-23 华南理工大学 一种用于硝酸盐还原制氨的反钙钛矿相氮化物三维自支撑电极材料及其制备方法与应用
CN116219473A (zh) * 2023-02-11 2023-06-06 浙江大学 一种原位自优化原子级铜催化剂的制备及应用方法
CN116219473B (zh) * 2023-02-11 2024-01-30 浙江大学 一种原位自优化原子级铜催化剂的制备及应用方法
CN116393138A (zh) * 2023-04-20 2023-07-07 河南师范大学 一种用于硝酸根还原转氨的铜镍锡纳米金属玻璃催化剂的制备方法
CN116393138B (zh) * 2023-04-20 2024-04-05 河南师范大学 一种用于硝酸根还原转氨的铜镍锡纳米金属玻璃催化剂的制备方法

Similar Documents

Publication Publication Date Title
Mahyoub et al. An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO 2 to CO
Darband et al. Hydrazine-assisted electrochemical hydrogen production by efficient and self-supported electrodeposited Ni-Cu-P@ Ni-Cu nano-micro dendrite catalyst
Chen et al. Tunable Ru‐Ru2P heterostructures with charge redistribution for efficient pH‐universal hydrogen evolution
Chen et al. Regulation of the electronic structure of Co4N with novel Nb to form hierarchical porous nanosheets for electrocatalytic overall water splitting
CN115233253A (zh) 一种电催化硝酸根还原产氨催化剂及其制备方法和应用
Shrestha et al. Cerium guided site-selective crystal disorder engineering of MIL-88B (Ni) frameworks for electrocatalysis offering high-performance water oxidation
Wu et al. Direct-current electrodeposition of Ni–S–Fe alloy for hydrogen evolution reaction in alkaline solution
Xu et al. Surface reconstruction and directed electron transport in NiSe2/MoSe2 Mott-Schottky heterojunction catalysts promote urea-assisted water splitting
Yang et al. P doped NiCoZn LDH growth on nickel foam as an highly efficient bifunctional electrocatalyst for Overall Urea-Water Electrolysis
Wang et al. Nickel enhanced the catalytic activities of amorphous copper for the oxygen evolution reaction
Wu et al. Electrodeposited nickel–iron–carbon–molybdenum film as efficient bifunctional electrocatalyst for overall water splitting in alkaline solution
Kim et al. Stainless steel: A high potential material for green electrochemical energy storage and conversion
Du et al. Vanadium doped cobalt phosphide nanorods array as a bifunctional electrode catalyst for efficient and stable overall water splitting
Song et al. Self-supported amorphous nickel-iron phosphorusoxides hollow spheres on Ni-Fe foam for highly efficient overall water splitting
Liu et al. Bulk CrCoNiFe alloy with high conductivity and density of grain boundaries for oxygen evolution reaction and urea oxidation reaction
Yang et al. A three-dimensional nanostructure of NiFe (OH) X nanoparticles/nickel foam as an efficient electrocatalyst for urea oxidation
Yoon et al. Self-supported anodic film of Fe (III) redox center doped Ni-Co Prussian blue analogue frameworks with enhanced catalytic activity towards overall water electrolysis
Fathollahi et al. Modulation of active surface sites on Ni–Fe–S by the dynamic hydrogen bubble template method for energy-saving hydrogen production
Zhou et al. Synthesis of flower-like nickel–iron–chromium nanostructure compound deposited stainless steel foil as an efficient binder-free electrocatalyst for water splitting
Chen et al. Co-doped Fe3S4 nanoflowers for boosting electrocatalytic nitrogen fixation to ammonia under mild conditions
Cho et al. Water splitting over an ultrasonically synthesized NiFe/MoO3@ CFP electrocatalyst
Ren et al. Modulating interfacial charge distribution of Ni2P-NiSe2 by multiple interface engineering for accelerating water splitting with industry-level activity and stability
Yang et al. Efficient Mo–Co (OH) 2/Co3O4/Ni foam electrocatalyst for overall water splitting
Lu et al. H2 Evolution Catalysts for Microbial Electrolysis Cells
Chen et al. Constructing hollow nanorod arrays by nickel–cobalt phosphide nanosheets as high-performance electrocatalysts for urea-assisted energy-efficient hydrogen generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination