CN113861668B - 一种高折光指数、高耐磨tpu粒子及制备方法 - Google Patents

一种高折光指数、高耐磨tpu粒子及制备方法 Download PDF

Info

Publication number
CN113861668B
CN113861668B CN202111365758.1A CN202111365758A CN113861668B CN 113861668 B CN113861668 B CN 113861668B CN 202111365758 A CN202111365758 A CN 202111365758A CN 113861668 B CN113861668 B CN 113861668B
Authority
CN
China
Prior art keywords
tpu
refractive index
under
carboxyl
chain extender
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111365758.1A
Other languages
English (en)
Other versions
CN113861668A (zh
Inventor
周小三
邹松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nilun Technology Shanghai Co ltd
Original Assignee
Nilun Chemical Shanghai Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nilun Chemical Shanghai Co ltd filed Critical Nilun Chemical Shanghai Co ltd
Priority to CN202111365758.1A priority Critical patent/CN113861668B/zh
Publication of CN113861668A publication Critical patent/CN113861668A/zh
Application granted granted Critical
Publication of CN113861668B publication Critical patent/CN113861668B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明公开了一种高折光指数、高耐磨TPU粒子及制备方法,该TPU粒子是通过非共价超分子相互作用实现含羧基的TPU分子与氧化铝的络合,从而得到高折光指数、高耐磨TPU粒子;其中,非共价超分子相互作用主要是基于TPU线状结构的进一步多层次自组装,通过与含羧基的扩链剂混合并与溶于乙酸乙酯的Al2O3“非共价交联”,在含羧基的扩链剂交联下,促使Al2O3与TPU发生非共价超分子相互作用形成Al的络合物,以提高其力学性能,从而制得高折光指数、高耐磨TPU粒子。

Description

一种高折光指数、高耐磨TPU粒子及制备方法
技术领域
本发明属于TPU粒子及制备技术领域,具体涉及一种高折光指数、高耐磨TPU粒子及制备方法。
背景技术
市场上常见的镜片按照材质大体分为玻璃片、树脂片、PC片等。其中玻璃对光线的折射能力较强,因此玻璃镜片的折射率还可以做到1.80、1.90。但是由于玻璃镜片易碎及材质偏重等特性,一般只有在超高度近视需要用到1.80、1.90折射率镜片时才会选择玻璃镜片。
高折光指数光学树脂是光学材料的一个重要研究方向可以进一步降低元件的曲率和厚度减轻重量而不影响其折射能力能够使光学仪器小型化和轻量化。国内市场上自主开发研究高折射率镜片的厂家很少,高折射率产品几乎全靠进口,不仅价格昂贵,而且其品质及性能满足不了消费者的要求。
目前,制备新型高折光指数光学材料有2种策略。一是通过分子设计,在高分子材料中引入高摩尔折光指数和低摩尔体积的原子或基团,如苯基,-S-,-SO2-,-S-S-等,如文献:Musikant,Solomon.Optical Materials:An Introduction to Selection andApplication.Dekker,1985和申烦,王坤,鄢道仁,等.高折射率含硫树脂光学材料研究进展[J].化学世界,2016,57(007):457-464;二是将折光指数高且在可见光区有高光学透明性的无机纳米粒子(如Ti02)与高分子材料基体进行复合,如文献C Lü,Cui Z,Cheng G,etal.Research on Preparation,Structure and Properties of TiO2/PolythiourethaneHybrid Optical Films with High Refractive Index[J].Macromolecular Materials&Engineering,2003,288(9):717-723和Bhagat S D,Chatterjee J,Chen B,et al.HighRefractive Index Polymers Based on Thiol-Ene Cross-Linking Using PolarizableInorganic/Organic Monomers[J].Macromolecules,2013,45(3):1174-1181。在高分子材料中引入具有高摩尔折光指数和低分子色散的硫原子,是目前制备高折光指数树脂镜片的主流方法,如文献Okubo T,Kohmoto S,Yamamoto M,et al.Preparation,characterization,and optical properties of disulfide-comprising oligo[2,5-bis(thiomethyl)-1,4-dithiane]and its poly[S-alkylcarbamate][J].Journal ofMaterials Science,1999,34(2):337-347和专利冈崎光树,金村芳信,永田辉幸.多元硫醇及其制法和由其制得的含硫的聚氨酯基树脂及制法和透镜:CN,CN1215737 A[P]。文献KimH I,Yeo H,Goh M,et al.Preparation of UV-Curable Acryl Resin for HighRefractive Index Based on 1,5-Bis(2-acryloylenethyl)-3,4-ethylenedithiothiophene[J].European Polymer Journal,2015,75:303-309设计合成了含有硫杂环和噻吩单元的丙烯酸酯单体,经光聚合后,得到了折光指数为1.644的含硫丙烯酸树脂。通过多元硫醇和异氰酸酯的分子设计,可以制备折光指数为1.59-1.80的聚硫氨酯,参见专利永田辉章,冈崎光树,三浦∴.具有高折射率的树脂含该树脂的透镜及制备此透镜的方法:CN,CN1039429A[P]等。这些聚氨酯普遍是通过硫醇类交联剂交联的聚氨酯,主要存在3点不足:1.硫醇类交联剂价格昂贵;2.交联效率低造成生产效率低,3.交联类高分子很难重复使用。根据Lorentz-Lorenz方程,分子摩尔体积越大,折光指数越小;摩尔折射率越高,折光指数越高;分子极性越强,折光指数越高。表明在聚合物中引入氧化铝类可以显著提高聚合物材料的折光指数。本发明创造性把可重复使用的TPU引入到镜片行业,同时通过络合作用使得Al2O3被引入到TPU中,从而实现不同的折光指数。
发明内容
本发明的目的在于提供一种高折光指数、高耐磨TPU粒子及制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种高折光指数、高耐磨TPU粒子,所述TPU粒子通过非共价超分子相互作用实现TPU与Al2O3的络合;其中,TPU分子中需含有羧基,由此需引入含羧基扩链剂;本发明中含羧基扩链剂仅限于2,2-二羟甲基丙酸(DMPA)与2,2-二羟甲基丁酸(DMBA)。
优选的,TPU粒子的制作采用1,4-丁二醇(BDO)与对称性高、分子刚性大的二甲苯二异氰酸酯(XDI)作为硬段。
优选的,由Lorentz-Lorenz方程得:分子摩尔体积越大,折光指数越小;摩尔折射率越高,折光指数越高;分子极性越强,折光指数越高;本发明在聚合物中引入氧化铝类可以显著提高聚合物材料的折光指数,从而实现不同的折光指数。
优选的,所述Al2O3是溶于乙酸乙酯的混合物。
优选的,其中带有羧基的TPU是溶于乙酸乙酯的,可置换出权利要求4中的乙酸乙酯。
一种高折光指数、高耐磨TPU粒子的制备方法包括以下步骤:
(1)按照典型的预聚物法制备TPU,其中保持异氰酸酯过量;
a.在氮气保护下,将聚合物多元醇原材料聚丁二醇/聚碳酸酯二元醇(即PTMG/PCDL)中的一种加入到反应容器,在真空装置、油浴锅140℃、-0.190MPa条件下脱水2h;
b.多异氰酸酯XDI通入真空装置,至融化后,降温到90℃,在氮气保护下反应2h,至体系充分预聚为止;
c.加入扩链剂及其他助剂BDO、DMPA(或DMBA)与步骤b中的预聚体充分混合均匀,即得含羧基的TPU分子;
(2)在氮气保护下,且温度大于TPU熔点时,持续搅拌直至检测NCO达到理论值,降温加入Al2O3混合物,再通过真空抽掉乙酸乙酯,制得TPU与Al2O3的络合物。
与现有技术相比,本发明的有益效果是:非共价超分子相互作用主要是基于TPU线状结构的进一步多层次自组装,通过与含羧基的扩链剂混合并与溶于乙酸乙酯的Al2O3“非共价交联”,在含羧基的扩链剂交联下,促使Al2O3与TPU发生非共价超分子相互作用形成Al的络合物,以提高其力学性能,从而制得高折光指数、高耐磨TPU粒子。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种高折光指数、高耐磨TPU粒子,其中,所述TPU粒子通过非共价超分子相互作用实现TPU与Al2O3的络合。其中,TPU分子中需含有羧基,由此需引入含羧基扩链剂;发明中含羧基扩链剂仅限于DMPA与DMBA。
二羟甲基羧酸本身含有两个羟基,同时作为扩链剂,这种双重作用使其在自乳化TPU乳液的制备中显示出很大的优越性。在氨基甲酸酯合成过程中,它使反应体系呈酸性,在酸性条件下,-NCO与-OH反应温和,而-NHCOO-不参与反应,不会造成凝胶;羧基位于大分子链段中,作为扩链剂可以制成稳定性极好,成膜耐溶剂性能极佳的TPU分子;同时使得TPU粒子能迅速与Al2O3通过“非共价交联”来提高其力学性能,从而实现TPU制品优异性能。
在本发明的一优选实施方案中,所述一种高折光指数、高耐磨TPU粒子,其中,TPU粒子的制作采用BDO与对称性高、分子刚性大的XDI作为硬段,使聚氨酯硬段结构更加规整,力学性能更加优异。
在本发明的一优选实施方案中,所述的Al2O3,其中由Lorentz-Lorenz方程得:分子摩尔体积越大,折光指数越小;摩尔折射率越高,折光指数越高;分子极性越强,折光指数越高。本发明在聚合物中引入氧化铝类可以显著提高聚合物材料的折光指数,从而实现不同的折光指数。
在本发明的一优选实施方案中,所述Al2O3是溶于乙酸乙酯的混合物。
在本发明的一优选实施方案中,其中带有羧基的TPU是溶于乙酸乙酯的,可置换出Al2O3混合物中的乙酸乙酯。
本发明还提供了一种TPU粒子制备方法,所述方法包括以下步骤:
(1)按照典型的预聚物法制备TPU,其中保持异氰酸酯过量;
a.在氮气保护下,将聚合物多元醇原材料PTMG/PCDL中的一种加入到反应容器,在真空装置、油浴锅140℃、-0.190MPa条件下脱水2h;
b.多异氰酸酯XDI通入真空装置,至融化后,降温到90℃,在氮气保护下反应2h,至体系充分预聚为止;
c.加入扩链剂及其他助剂BDO、DMPA(或DMBA)与步骤b中的预聚体充分混合均匀,即得含羧基的TPU分子。
(2)在氮气保护下,且温度大于TPU熔点时,持续搅拌直至检测NCO达到理论值,降温加入Al2O3混合物,再通过真空抽掉乙酸乙酯,制得TPU与Al2O3的络合物。
折光指数测定方法如下:光线自一种透明介质进入另一透明介质的时候,由于两种介质的密度不同,光的进行速度发生变化,即发生折射现象,一般折光率系指光线在空气中进行的速度与供试品中进行速度的比值。根据折射定律,折光率是光线入射角的正弦与折角的正弦的比值,即:n=sin i/sin r。式中n为折光率,Sin i为光线入射角的正弦,Sinr为折射角的正弦;
耐磨性:ASTM3389;
下列实施例中得到的所有TPU样品(预聚物法制备TPU和TPU络合物)均在高于80℃条件下通过用力挤出、注塑等塑料加工手段将该TPU制备成所需的制品,该制品即为“非共价交联”的TPU制品,用于性能测试。
实施例1-10
实施例1-8以及实施例9-10(对比例)中各组分的组成(按重量份记)如表1所示。
表1
Figure BDA0003359626670000051
Figure BDA0003359626670000061
BDO 中泰化学
XDI 日本三井化学
PCDL 日本宇部株式会
PTMG 巴斯夫化学
DMPA GE化学
表2为实施例1-10中制得的络合物各性能测试结果。
表2
Figure BDA0003359626670000062
从表2中可以看出,由PTMG1000/PCDL1000作为软段,DMPA作为含羧基扩链剂形成的高折光指数、高耐磨TPU粒子-TPU分子与Al2O3的络合物,可以显著提高TPU材料的折光指数及耐磨性。
实施例11-20
实施例11-18以及实施例19-20(对比例)中各组分的组成(按重量份记)如表3所示。
样品编号 XDI PTMG2000 PCDL2000 BDO DMBA Al<sub>2</sub>O<sub>3</sub>
11 24.61 121.82 - 5.9 0 1.39
12 24.61 121.82 - 5.9 0.11 1.39
13 24.61 121.82 - 5.2 0 2.75
14 24.61 121.82 - 5.2 0.22 2.75
15 24.61 - 121.82 5.9 0 1.39
16 24.61 - 121.82 5.9 0.11 1.39
17 24.61 - 121.82 5.2 0 2.75
18 24.61 - 121.82 5.2 0.22 2.75
19 24.61 121.82 - 6.31 0 0
20 24.61 - 121.82 6.31 0 0
DMBA GE化学
表4为实施例11-20中制得的络合物各性能测试结果。
表4
Figure BDA0003359626670000071
从表4中可以看出,由PTMG2000/PCDL2000作为软段,DMBA作为含羧基扩链剂形成的高折光指数、高耐磨TPU粒子一TPU分子与Al2O3的络合物,可以显著提高TPU材料的折光指数及耐磨性。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (3)

1.一种高折光指数、高耐磨TPU粒子,其特征在于:所述TPU粒子通过非共价超分子相互作用实现TPU与Al2O3的络合;其中,TPU分子中需含有羧基,由此需引入含羧基扩链剂;含羧基扩链剂仅限于2,2-二羟甲基丙酸(DMPA)与2,2-二羟甲基丁酸(DMBA),所述Al2O3是溶于乙酸乙酯的混合物,
高折光指数、高耐磨TPU粒子的制备方法包括以下步骤:
(1)按照典型的预聚物法制备TPU,其中保持异氰酸酯过量;
a.在氮气保护下,将聚合物多元醇原材料聚丁二醇/聚碳酸酯二元醇(即PTMG/PCDL)中的一种加入到反应容器,在真空装置、油浴锅140℃、-0.190MPa条件下脱水2h;
b.多异氰酸酯XDI通入真空装置,至融化后,降温到90℃,在氮气保护下反应2h,至体系充分预聚为止;
c.加入扩链剂及其他助剂BDO、DMPA或DMBA与步骤b中的预聚体充分混合均匀,即得含羧基的TPU分子;
(2)在氮气保护下,且温度大于TPU熔点时,持续搅拌直至检测NCO达到理论值,降温加入Al2O3混合物,再通过真空抽掉乙酸乙酯,制得TPU与Al2O3的络合物。
2.根据权利要求1所述的一种高折光指数、高耐磨TPU粒子,其特征在于:TPU粒子的制作采用1,4-丁二醇(BDO)与对称性高、分子刚性大的二甲苯二异氰酸酯(XDI)作为硬段。
3.一种如权利要求1-2任一项的高折光指数、高耐磨TPU粒子的制备方法包括以下步骤:
(1)按照典型的预聚物法制备TPU,其中保持异氰酸酯过量;
a.在氮气保护下,将聚合物多元醇原材料聚丁二醇/聚碳酸酯二元醇(即PTMG/PCDL)中的一种加入到反应容器,在真空装置、油浴锅140℃、-0.190MPa条件下脱水2h;
b.多异氰酸酯XDI通入真空装置,至融化后,降温到90℃,在氮气保护下反应2h,至体系充分预聚为止;
c.加入扩链剂及其他助剂BDO、DMPA或DMBA与步骤b中的预聚体充分混合均匀,即得含羧基的TPU分子;
(2)在氮气保护下,且温度大于TPU熔点时,持续搅拌直至检测NCO达到理论值,降温加入Al2O3混合物,再通过真空抽掉乙酸乙酯,制得TPU与Al2O3的络合物。
CN202111365758.1A 2021-11-17 2021-11-17 一种高折光指数、高耐磨tpu粒子及制备方法 Active CN113861668B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111365758.1A CN113861668B (zh) 2021-11-17 2021-11-17 一种高折光指数、高耐磨tpu粒子及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111365758.1A CN113861668B (zh) 2021-11-17 2021-11-17 一种高折光指数、高耐磨tpu粒子及制备方法

Publications (2)

Publication Number Publication Date
CN113861668A CN113861668A (zh) 2021-12-31
CN113861668B true CN113861668B (zh) 2023-02-28

Family

ID=78984852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111365758.1A Active CN113861668B (zh) 2021-11-17 2021-11-17 一种高折光指数、高耐磨tpu粒子及制备方法

Country Status (1)

Country Link
CN (1) CN113861668B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123921A (zh) * 1993-12-27 1996-06-05 凸版印刷株式会社 透明的全息封条
JPH09151316A (ja) * 1995-11-29 1997-06-10 Sumitomo Bakelite Co Ltd 熱可塑性樹脂複合材料の製造方法及び熱可塑性樹脂複合材料
CN1205022A (zh) * 1996-09-21 1999-01-13 默克专利股份有限公司 多层干涉色颜料
CN101405355A (zh) * 2006-03-17 2009-04-08 昭和电工株式会社 树脂组合物
CN103562258A (zh) * 2011-05-16 2014-02-05 昭和电工株式会社 固化性散热组合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178615B2 (en) * 2004-09-01 2012-05-15 Ppg Industries Ohio, Inc Process for making polymers having nanostructures incorporated into the matrix of the polymer
PL2177569T3 (pl) * 2008-10-15 2011-12-30 Evonik Degussa Gmbh Procesowy środek pomocniczy dla termoplastycznych poliuretanów

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1123921A (zh) * 1993-12-27 1996-06-05 凸版印刷株式会社 透明的全息封条
JPH09151316A (ja) * 1995-11-29 1997-06-10 Sumitomo Bakelite Co Ltd 熱可塑性樹脂複合材料の製造方法及び熱可塑性樹脂複合材料
CN1205022A (zh) * 1996-09-21 1999-01-13 默克专利股份有限公司 多层干涉色颜料
CN101405355A (zh) * 2006-03-17 2009-04-08 昭和电工株式会社 树脂组合物
CN103562258A (zh) * 2011-05-16 2014-02-05 昭和电工株式会社 固化性散热组合物

Also Published As

Publication number Publication date
CN113861668A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
AU2006280850B2 (en) Polythiourethane-based polymerizable composition and optical resin obtained from the same
Wang et al. A colorless, transparent and self-healing polyurethane elastomer modulated by dynamic disulfide and hydrogen bonds
AU2006280851B2 (en) Polyurethane/thiourethane-based optical resin and process for producing the same
CN101155848B (zh) 聚硫氨酯类聚合性组合物及使用该组合物的光学用树脂的制备方法
US20100204428A1 (en) Process and Composition for the Preparation of Transparent Polyurethanes and Polyurethanes Obtained Therefrom
CN103483521A (zh) 塑料透镜的制备方法
US5306799A (en) High refractive index plastic lens and composition therefor
US20120157651A1 (en) Thiourethane-based lens elements and processes for their production
CN110218290B (zh) 一种强韧、透明、荧光、抗菌聚氨酯薄膜的合成方法
JP2005532436A (ja) ポリウレタンアイオノマーおよびそれらの調製方法および形成方法
KR20200110355A (ko) 소르비톨계 가교결합된 광학 중합체
EP4089071A1 (en) Xylylene diisocyanate composition, modified xylylene diisocyanate composition, polymerizable composition, resin, molded body, optical element, and lens
CN113861668B (zh) 一种高折光指数、高耐磨tpu粒子及制备方法
CN111253539A (zh) 一种tpu组合物及其制备方法
JP4779144B2 (ja) ポリウレタン系でブロック共重合体系の硬化性組成物、及び前記組成物から得られる透明材料
CN111566518B (zh) 聚硫氨酯类塑料镜片
CN111040602A (zh) 一种聚氨酯涂层剂及其制备方法和应用
KR20060009384A (ko) 투명 성형체
CN112321842A (zh) 一种紫外光固化超支化丙烯酸酯树脂及其制造方法
CN110483734B (zh) 一种高软化温度、高冲击韧性且抗黄变的聚氨酯光学树脂材料及其制备方法
CN113874413A (zh) 可聚合组合物及使用其的光学材料
CN113603871B (zh) 光学树脂及其制备方法及应用
JP3245535B2 (ja) 光学用樹脂
KR20140105075A (ko) 내충격성이 우수한 폴리티오우레탄계 중합성 조성물 및 이를 이용한 광학용 수지의 제조방법
JP2005220162A (ja) 重合性組成物、光学材料用樹脂、およびプラスチックレンズ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231019

Address after: Room 21412, Building 2, No.1 Haikun Road, Fengxian District, Shanghai, July 2015

Patentee after: Nilun Technology (Shanghai) Co.,Ltd.

Address before: 201418 Building 1, No. 1, Haikun Road, Fengxian District, Shanghai

Patentee before: Nilun chemical (Shanghai) Co.,Ltd.