CN113860371A - 一种二硫化钼纳米片的制备方法 - Google Patents

一种二硫化钼纳米片的制备方法 Download PDF

Info

Publication number
CN113860371A
CN113860371A CN202111289730.4A CN202111289730A CN113860371A CN 113860371 A CN113860371 A CN 113860371A CN 202111289730 A CN202111289730 A CN 202111289730A CN 113860371 A CN113860371 A CN 113860371A
Authority
CN
China
Prior art keywords
molybdenum disulfide
preparation
dispersion liquid
ultrasonic treatment
uniform dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111289730.4A
Other languages
English (en)
Inventor
许并社
欧阳辉灿
尚林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202111289730.4A priority Critical patent/CN113860371A/zh
Publication of CN113860371A publication Critical patent/CN113860371A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于二维层状材料制备技术领域,具体涉及一种二硫化钼纳米片的制备方法,包括以下步骤:S1、将二硫化钼粉末置于分散剂中,制备均一分散液;S2、将S1制备的均一分散液进行超声处理;S3、将S2超声处理后的分散液进行梯度离心处理,取上清液即可获得二硫化钼纳米片分散液;本发明方法所用原料简单,制备方法简单,制备周期较短而且可得到较为均匀的二硫化钼纳米片。

Description

一种二硫化钼纳米片的制备方法
技术领域
本发明属于二维层状材料制备技术领域,具体涉及一种二硫化钼纳米片的制备方法。
背景技术
近年来,随着人们对二维层状材料的不断研究,其已发展为材料科学领域备受关注的研究对象之一。从定义上来说,二维层状材料仅限于单原子层的纳米材料,但是目前人们把单层或少层的纳米材料也归属于二维层状材料。二维层状材料具有低密度、高机械强度、低摩擦系数、良好的导热性等优点,在能源、环境、电子、生物等方面得到了广泛的应用。二维层状材料包括石墨烯、黑磷、六方氮化硼、过渡金属硫族化合物、过渡金属氧化物等,人们通常把与石墨烯类似的层状材料称为类石墨烯层状材料,对不同类石墨烯二维材料的光学、电学、催化等方面性质的研究发现,这些类石墨烯二维材料在电子器件、晶体管、能量存储、催化等方面表现出了优异的性能。
二硫化钼是上述材料中的一种,目前对于二硫化钼纳米片的制备大多过程较为复杂和繁琐,且需要做很多准备工作,因此有必要提供一种制备工艺简单、制备周期短且制备原料易获得的方法来制备二硫化钼纳米片。
发明内容
为了解决上述技术问题,本发明提供了一种二硫化钼纳米片的制备方法。
本发明具体是通过如下技术方案来实现的。
一种二硫化钼纳米片的制备方法,包括以下步骤:
S1、将二硫化钼粉末置于分散剂中,制备均一分散液;
S2、将S1制备的均一分散液进行超声处理;
S3、将S2超声处理后的分散液进行梯度离心处理,取上清液即可获得二硫化钼纳米片分散液。
优选的,S1中,所述分散剂为N,N-二甲基甲酰胺(DMF)和水制成的混合溶剂、N-甲基吡咯烷酮(NMP)和水制成的混合溶剂或异丙醇和水制成的混合溶剂。
优选的,S1中,所述二硫化钼:N,N-二甲基甲酰胺或N-甲基吡咯烷酮或异丙醇:H2O的用量比为0.1g~0.35g:60~80mL:20mL。
优选的,先采用磁力搅拌制备所述分散剂,搅拌时间为20~30min,再将二硫化钼粉末加至所述分散剂中,继续磁力搅拌10~20min,制备均一分散液。
优选的,所述超声处理的功率为100~300W,超声时间为7~10h。
优选的,所述梯度离心处理具体是先在转速为2000~3000r/min下离心20~30min,之后继续在转速5000~6000r/min下离心10~20min。
本发明与现有技术相比具有如下有益效果:
(1)本发明提供了一种制备二硫化钼纳米片的方法,以二硫化钼粉末为制备源,将其置于分散剂中,经过超声和离心处理,成功获得了二硫化钼纳米片,且制备的二硫化钼纳米片尺寸较小,厚度比较薄,其机理在于,采用机械剥离手段,具体是利用功率为100~300W的超声波在弹性介质中传播时使弹性介质中的粒子振荡,使二硫化钼粉末之间激烈碰撞,进而形成纳米片;
(2)本发明制备方法简单,无需繁琐的实验步骤,在一般实验室都可以进行,设备要求低,无需各类昂贵的设备仪器,节约了大量时间与科研成本。
附图说明
图1为本发明实施例提供的二硫化钼纳米片的制备方法流程示意图;
图2为实施例1制备的二硫化钼纳米片的紫外吸收光谱图;
图3a-图3d为实施例1制备的二硫化钼纳米片在不同倍率下的TEM图。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例和附图对本发明作进一步说明,但所举实施例不作为对本发明的限定。
下述各实施例中所述实验方法和检测方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可在市场上购买得到。
实施例1
一种二硫化钼纳米片的制备方法,如图1所示,包括以下步骤:
(1)首先称取0.1g二硫化钼粉末,然后用量筒分别量取60mL的DMF和20mL的H2O并将二者混合;
(2)将混合后的DMF和H2O混合物放入磁力搅拌器中搅拌30min,然后加入二硫化钼粉末,并继续搅拌10min,制备均一分散液;
(3)将搅拌好的均一分散液倒入烧杯并用保鲜膜瓶口盖住,然后进行超声处理,超声功率为100W,超声时间为7h;
(4)使用滴定管将超声完成后的混合溶液转移到离心管中,并采用梯度离心的方法现将混合溶液先以2000r/min离心20min,然后取出继续以5000r/min离心10min,最后取出上清液即可得到二硫化钼纳米片分散液。
实施例2
一种二硫化钼纳米片的制备方法,如图1所示,包括以下步骤:
(1)首先称取0.15g二硫化钼粉末,然后用量筒分别量取80mL的NMP和20mL的H2O并将二者混合;
(2)将混合后的NMP和H2O混合物放入磁力搅拌器中搅拌20min,然后加入二硫化钼粉末,并继续搅拌20min,制备均一分散液;
(3)将搅拌好的均一分散液倒入烧杯并用保鲜膜瓶口盖住,然后进行超声处理,超声功率为200W,超声时间为10h;
(4)使用滴定管将超声完成后的混合溶液转移到离心管中,并采用梯度离心的方法现将混合溶液先以2500r/min离心30min,然后取出继续以5500r/min离心20min,最后取出上清液即可得到二硫化钼纳米片分散液。
实施例3
一种二硫化钼纳米片的制备方法,如图1所示,包括以下步骤:
(1)首先称取0.35g二硫化钼粉末,然后用量筒分别量取60mL的异丙醇和20mL的H2O并将二者混合;
(2)将混合后的异丙醇和H2O混合物放入磁力搅拌器中搅拌30min,然后加入二硫化钼粉末,并继续搅拌10min,制备均一分散液;
(3)将搅拌好的均一分散液倒入烧杯并用保鲜膜瓶口盖住,然后进行超声处理,超声功率为300W,超声时间为8h;
(4)使用滴定管将超声完成后的混合溶液转移到离心管中,并采用梯度离心的方法现将混合溶液先以3000r/min离心25min,然后取出继续以6000r/min离心20min,最后取出上清液即可得到二硫化钼纳米片分散液。
实施例1~3制备的材料性能近似,下面仅以实施例1为例,进行材料表征,具体的,将实施例1制备的二硫化钼纳米片分散液装入石英比色皿中,利用紫外分光光度计对所得的二硫化钼纳米片分散液进行吸光率测试,然后再制作透射样,对透射样品在烘箱经过60℃干燥处理30min后,使用TEM进行观察,结果如图2和图3所示。
由图2可得,可以明显看到图中在610nm、670nm处有两个特征吸收峰这两个峰是二硫化钼纳米片特征吸收峰。由图3可看出,在经过超声剥离后二硫化钼粉末已经成为了单层或者少层的片状结构,并且纳米片的尺寸在几百纳米。其机理在于,采用机械剥离手段,具体是利用功率为100~300W的超声波在弹性介质中传播时使弹性介质中的粒子振荡,使二硫化钼粉末之间激烈碰撞,进而形成纳米片;本发明制备方法简单,无需繁琐的实验步骤,在一般实验室都可以进行,设备要求低,无需各类昂贵的设备仪器,节约了大量时间与科研成本。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内也意图包含这些改动和变型在内。

Claims (6)

1.一种二硫化钼纳米片的制备方法,其特征在于,包括以下步骤:
S1、将二硫化钼粉末置于分散剂中,制备均一分散液;
S2、将S1制备的均一分散液进行超声处理;
S3、将S2超声处理后的分散液进行梯度离心处理,取上清液即可获得二硫化钼纳米片分散液。
2.根据权利要求1所述的二硫化钼纳米片的制备方法,其特征在于,S1中,所述分散剂为N,N-二甲基甲酰胺和水制成的混合溶剂、N-甲基吡咯烷酮和水制成的混合溶剂或异丙醇和水制成的混合溶剂。
3.根据权利要求2所述的二硫化钼纳米片的制备方法,其特征在于,S1中,所述二硫化钼:N,N-二甲基甲酰胺或N-甲基吡咯烷酮或异丙醇:H2O的用量比为0.1g~0.35g:60~80mL:20mL。
4.根据权利要求1所述的二硫化钼纳米片的制备方法,其特征在于,S1中,先采用磁力搅拌制备所述分散剂,搅拌时间为20~30min,再将二硫化钼粉末加至所述分散剂中,继续磁力搅拌10~20min,制备均一分散液。
5.根据权利要求1所述的二硫化钼纳米片的制备方法,其特征在于,S2中,所述超声处理的功率为100~300W,超声时间为7~10h。
6.根据权利要求1所述的二硫化钼纳米片的制备方法,其特征在于,S3中,所述梯度离心处理具体是先在转速为2000~3000r/min下离心20~30min,之后继续在转速5000~6000r/min下离心10~20min。
CN202111289730.4A 2021-11-02 2021-11-02 一种二硫化钼纳米片的制备方法 Pending CN113860371A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111289730.4A CN113860371A (zh) 2021-11-02 2021-11-02 一种二硫化钼纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111289730.4A CN113860371A (zh) 2021-11-02 2021-11-02 一种二硫化钼纳米片的制备方法

Publications (1)

Publication Number Publication Date
CN113860371A true CN113860371A (zh) 2021-12-31

Family

ID=78986637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111289730.4A Pending CN113860371A (zh) 2021-11-02 2021-11-02 一种二硫化钼纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN113860371A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787417A (zh) * 2014-03-07 2014-05-14 深圳先进技术研究院 一种磁性层状二硫化钼纳米片的制备方法
WO2015102191A1 (ko) * 2014-01-03 2015-07-09 한국과학기술원 몰리브덴 디설파이드나노시트 제조방법, 이를 위한 박리액 및 이에 의하여 제조된 몰리브덴 디설파이드 나노시트
CN106966371A (zh) * 2017-04-28 2017-07-21 福州大学 一种液相剥离过渡金属二硫属化物纳米片的方法
CN107500358A (zh) * 2017-09-22 2017-12-22 南京师范大学 一种纳米二硫化钼的制备方法及其制备的二硫化钼
CN108529570A (zh) * 2018-05-21 2018-09-14 西北师范大学 利用双液系耦合超声波微相剥离制备过渡金属硫化物纳米片的方法
CN109665563A (zh) * 2019-01-31 2019-04-23 内蒙古大学 一种剥离天然辉钼矿制备二维二硫化钼纳米材料的方法
CN110203973A (zh) * 2019-06-11 2019-09-06 南京倍格电子科技有限公司 一种高浓度MoS2纳米片的制备方法
CN113151857A (zh) * 2021-03-29 2021-07-23 浙江大学衢州研究院 一种二维超薄镍掺杂二硫化钼纳米片及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102191A1 (ko) * 2014-01-03 2015-07-09 한국과학기술원 몰리브덴 디설파이드나노시트 제조방법, 이를 위한 박리액 및 이에 의하여 제조된 몰리브덴 디설파이드 나노시트
CN103787417A (zh) * 2014-03-07 2014-05-14 深圳先进技术研究院 一种磁性层状二硫化钼纳米片的制备方法
CN106966371A (zh) * 2017-04-28 2017-07-21 福州大学 一种液相剥离过渡金属二硫属化物纳米片的方法
CN107500358A (zh) * 2017-09-22 2017-12-22 南京师范大学 一种纳米二硫化钼的制备方法及其制备的二硫化钼
CN108529570A (zh) * 2018-05-21 2018-09-14 西北师范大学 利用双液系耦合超声波微相剥离制备过渡金属硫化物纳米片的方法
CN109665563A (zh) * 2019-01-31 2019-04-23 内蒙古大学 一种剥离天然辉钼矿制备二维二硫化钼纳米材料的方法
CN110203973A (zh) * 2019-06-11 2019-09-06 南京倍格电子科技有限公司 一种高浓度MoS2纳米片的制备方法
CN113151857A (zh) * 2021-03-29 2021-07-23 浙江大学衢州研究院 一种二维超薄镍掺杂二硫化钼纳米片及其制备方法和应用

Similar Documents

Publication Publication Date Title
Yang et al. Rational design of hierarchical structure of carbon@ polyaniline composite with enhanced microwave absorption properties
CN113329603B (zh) 一种轻质多孔MXene基复合薄膜电磁屏蔽材料及其制备方法
Hu et al. A low-cost strategy to synthesize MnO nanorods anchored on 3D biomass-derived carbon with superior microwave absorption properties
CA2872445C (en) Graphene powder, method for producing graphene powder and electrode for lithium ion battery containing graphene powder
Du et al. Electromagnetic wave absorbing properties of glucose‐derived carbon‐rich SiOC ceramics annealed at different temperatures
Zhang et al. Microwave absorption characteristics of CH3NH3PbI3 perovskite/carbon nanotube composites
CN108997979B (zh) 一种复合石蜡相变材料及其制备方法
Hu et al. A self-assembled graphene/polyurethane sponge for excellent electromagnetic interference shielding performance
Wang et al. Engineering polarization surface of hierarchical ZnO microspheres via spray-annealing strategy for wide-frequency electromagnetic wave absorption
CN103466612A (zh) 一种混频超声制备原生石墨烯的方法
Liang et al. Strong electric wave response derived from the hybrid of lotus roots-like composites with tunable permittivity
CN108929542A (zh) 一种具有负介电常数的聚二甲基硅氧烷/石墨烯柔性复合薄膜及其制备方法
Qiao et al. Preparation and microwave absorption of CIP/EP hollow spheres lattice composites
Bai et al. Surface engineering of nanoflower-like MoS 2 decorated porous Si 3 N 4 ceramics for electromagnetic wave absorption
CN114568009A (zh) 一种Fe-MOF衍生石墨烯基磁性复合气凝胶吸波材料及制备方法
Zhang et al. Porous Fe@ Fe 3 O 4-C nanocomposite using polyvinyl alcohol sponge as template for microwave absorption
CN114180558A (zh) 石墨烯微纳腔超导膜的制备方法及相关产品和应用
Meng et al. Fabrication of core-shell Co@ HCN@ PANI composite material with enhanced electromagnetic wave absorption
CN113860371A (zh) 一种二硫化钼纳米片的制备方法
Simonenko et al. Triethanolamine-Assisted Hydrothermal Synthesis of Hierarchically Organized Nickel Oxide Particles
Li et al. Amorphism SiBON interface anchored rGO nanoplatelets composites with tunable electromagnetic properties for microwave absorption
Yao et al. Construction of lychee-like MoS2 microspheres on rice husk-derived porous carbon for enhanced dielectric loss and efficient electromagnetic wave absorption
Wang et al. Yolk-shell Co3O4-CoO/carbon composites for lithium-ion batteries with enhanced electrochemical properties
CN110723725A (zh) 一种低功率激光还原石墨烯膜及其制备方法
Wang et al. Green and simple production of graphite intercalation compound used sodium bicarbonate as intercalation agent

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination