CN113860272A - 一种富介孔的六方氮化硼多孔材料的制备方法 - Google Patents

一种富介孔的六方氮化硼多孔材料的制备方法 Download PDF

Info

Publication number
CN113860272A
CN113860272A CN202111416523.0A CN202111416523A CN113860272A CN 113860272 A CN113860272 A CN 113860272A CN 202111416523 A CN202111416523 A CN 202111416523A CN 113860272 A CN113860272 A CN 113860272A
Authority
CN
China
Prior art keywords
boron nitride
hexagonal boron
porous material
nitride porous
mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111416523.0A
Other languages
English (en)
Other versions
CN113860272B (zh
Inventor
王学斌
许晨阳
苗蒙
葛聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202111416523.0A priority Critical patent/CN113860272B/zh
Publication of CN113860272A publication Critical patent/CN113860272A/zh
Application granted granted Critical
Publication of CN113860272B publication Critical patent/CN113860272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0248Compounds of B, Al, Ga, In, Tl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0259Compounds of N, P, As, Sb, Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种富介孔的六方氮化硼多孔材料的制备方法,其制备方法为:将硼砂溶于水中,同时加入氮源混合后形成悬浊液,加热搅拌,蒸干水分后得到前驱体。将前驱体压制成型或直接置于管式炉中,在保护气气氛下高温热解,反应一段时间后切换气氛刻蚀多余的碳后即可得到富介孔的六方氮化硼多孔材料。本发明方法具有原材料成本较低、易于操作、环境友好、原子利用率高、比表面积大、扩大化生产可行性高的特点。在水处理领域,该产品具有高吸附容量、吸附速率的特点,能够在高、低温或酸、碱等极端条件下稳定使用,并且可以通过简单的热处理等方式对使用后的产品进行循环再生。

Description

一种富介孔的六方氮化硼多孔材料的制备方法
技术领域
本发明属于多孔陶瓷材料制备领域,具体涉及一种富介孔的六方氮化硼多孔吸附剂材料的合成以及其在水处理领域的应用。
背景技术
六方氮化硼是一种典型的二维材料,因其与石墨相似的晶体结构,常常被称为“白石墨”。在实际使用时,为避免粉体之间的堆叠、团聚造成的困扰,常在合成时将其二维结构进行再组装,形成连通稳定的三维化结构,称为三维化的六方氮化硼多孔材料。六方氮化硼多孔材料拥有理论上超高的比表面积,可适用于水处理中的污染物吸附领域。相比于工业中常用的污水吸附剂活性炭,六方氮化硼拥有同样出色的性能。此外,六方氮化硼本身具有耐高温的特点,使其在使用后可以简单地高温再生,而其耐酸碱腐蚀性则允许其在特殊的极端条件下使用。因此,六方氮化硼多孔材料有望在水处理领域成为一种新型的先进吸附剂。
目前,六方氮化硼多孔材料的主要困境在其合成的困难和成本的高昂。主流的合成路线包括硬模板法、软模板法和无模板法。硬模板法合成的六方氮化硼多孔材料具有孔壁较厚,比表面积较小(<1000m2/g)的缺点,此外,通常还需要繁琐且具有一定危险性的去模板操作(Adv.Func.Mater.2018,28,1801205)。软模板法可以合成出高比表面积的六方氮化硼多孔材料,但成本高昂,且成本主要来源于硼源,如硼嵌段共聚物(Nat.Nanotechnol.2007,2,43)。无模板法在这几种方法中成本较低,但合成出的氮化硼通常可控性较差,难以制备成块体。此前的合成方法多采用含硼化合物如硼酸及其脱水物包括氧化硼等,和含氮化合物如尿素、三聚氰胺、氯化铵作为原料,直接混合或混合后定型,在氨气或氮气等气氛中高温焙烧,在部分反应中氨气也可以充当氮源。
针对现有技术中合成程序较多、所用原材料成本较高且具有一定的危险性的难题。本发明采用硼源中已知成本极低的硼砂和成本较低的氮源(如三聚氰胺)制得的前驱体进行高温热解,即可制得富介孔的六方氮化硼多孔材料。此方法具有合成步骤较少、易于操作等特点,为六方氮化硼多孔材料的合成提供了新的思路。相比于硼砂-尿素法合成的片状六方氮化硼(专利CN109650355A),本方法合成的多孔粉体、块体具有三维化贯通且疏松的孔状结构和超高比表面积,更适用于吸附领域。相比于硼酸-三聚氰胺法(专利CN111377418A)的高微孔比表面积(微孔直径<2nm)和低介孔比表面积(2nm<介孔直径<50nm),本发明中富介孔的六方氮化硼多孔材料,在水处理领域尤其是针对较大尺寸分子的污染物吸附领域的具有更优异的性能,同时所用原材料成本较低、性能优异等特点为氮化硼吸附剂的工业化生产及商业化应用提供了可行性。
发明内容
针对现有技术中存在的不足,本发明的目的是提供一种低成本、易操作、环境友好、高性能的六方氮化硼多孔吸附剂材料的制备方法。本发明提供了一种由硼砂和某种氮源形成的前驱体直接高温热解制备得到宏观结构完整的六方氮化硼多孔材料的方法,本方法易于操作、成本较低,得到的产品具有极高的比表面积,同时产品在水处理吸附领域尤其是大分子染料吸附、油吸附、油水分离领域具有优异的性能,结合氮化硼的化学惰性和耐高温特性,可以在吸附污染物后通过简单的热处理来达到再生循环利用的效果。本发明所采用的技术方案为:一种富介孔的六方氮化硼多孔材料的制备方法,包括以下步骤:
(1)将硼砂溶解在水中,加入氮源混合形成悬浊液,搅拌加热蒸干水分,得到白色前驱体;
(2)将前驱体成型后或直接置于高温加热炉中,通入保护气,升温至反应温度A反应一定时间;
(3)降温至一定温度B,通入刻蚀性气氛反应一段时间随后降温至室温即可得到富介孔的六方氮化硼多孔材料。
上述步骤(1)中,硼砂可以是十水四硼酸钠、五水四硼酸钠、四水四硼酸钠、无水四硼酸钠等硼砂的原料中任一者或更多者任意比例的组合。优选地,硼砂选择十水四硼酸钠。
上述步骤(1)中,氮源可以是三聚氰胺、三聚氰酸、双氰胺、尿素、碳化氮、氨气的原料中任一者或更多者的任意组合。优选地,选择三聚氰胺和尿素。更优选地,选择三聚氰胺。
上述步骤(1)中,所选硼源和氮源中的硼原子、氮原子摩尔比范围为1:(1-72)。优选地,选择硼原子:氮原子摩尔比例为1∶16的配比。
上述步骤(1)中,搅拌加热的温度为60-95℃,时间为2-36h。优选地,温度选择85℃,时间选择12h。
上述步骤(2)中,升温速率为2-100℃/min,反应温度A为800-1300℃,保温时间为1-72h。优选地,升温速率设置为10℃/min,反应温度为1000℃,保温时间为6h。
上述步骤(2)中,保护气可以是氩气、氮气、氢气、氦气、氨气、空气中的其中任一者或更多者的任意组合。成本上优选地,选择氮气作为保护气。
上述步骤(2)中,当使用氨气作为保护气时,氨气可以同时作为反应的氮源,反应过程中可以不添加额外的氮源,并且氨气可以作为刻蚀碳的气体。
上述步骤(3)中,刻蚀碳的气体可以是氧气、空气、水蒸气、氨气中的任一者或更多者的任意组合。成本上优选地,选择空气作为刻蚀碳的气氛。
上述步骤(3)中,反应温度B为500-850℃,将权利要求7中所述的保护气切换为刻蚀气后,在反应温度B下保温2-24h。优选地,反应温度B为600℃。
进一步地,本发明所述的富介孔的六方氮化硼多孔材料比表面积通常大于100m2/g,目前制备的样品最高可达1420m2/g,其孔径大小主要分布为2-20nm的介孔。
制备得到的六方氮化硼块体或粉体可直接用于水污染处理中。
本发明的制备方法与现有技术相比,具有以下突出优点:
1)本发明操作简便,设备要求低,硼砂作为成本极低的硼源,极大地降低了六方氮化硼多孔材料合成的原料成本,来源广泛且易于获取,并且可适用多种不同氮源。
2)本发明得到的六方氮化硼多孔材料块体结构完整均匀,在本申请权利要求书中规定范围内的工艺参数的变化对展产品较高的结晶度和纯度影响较小,具有优异的稳定性。
3)本发明采用简便的无模板方法直接热解,能实现高质量六方氮化硼粉体及六方氮化硼多孔材料的可控宏量制备,最终产品具有超薄的孔壁和超高的比表面积。
4)本发明提供的六方氮化硼多孔材料,在吸附染料、有机物的应用方面具有优异的性能,其中对刚果红的最大吸附量可达1096mg/g,是目前已有的氮化硼吸附剂领域的最高水平。该产品还可以吸附自重5.7倍的泵油,其性能远远优于市场中常见的几种吸附剂。结合其超低的成本和展现出本发明中的产品在水处理吸附等领域的极大应用和开发潜力。
附图说明
图1为本发明实施例1制备得到的六方氮化硼多孔材料的图片。
图2为本发明实施例1制备得到的六方氮化硼多孔材料的X射线衍射谱图。
图3为本发明实施例1制备得到的六方氮化硼多孔材料的扫描电子显微镜照片。
图4为本发明实施例1制备得到的六方氮化硼多孔材料的透射电子显微镜照片。
图5为本发明实施例1制备得到的六方氮化硼多孔材料的氮气吸脱附曲线。
图6为本发明实施例1制备得到的六方氮化硼多孔材料的孔径分布曲线。
图7为本发明实施例1制备得到的六方氮化硼多孔材料对刚果红染料的吸附等温线。
图8为本发明实施例1制备得到的六方氮化硼多孔材料吸附有机物性能示意图。
具体实施方式
下面结合附图并通过具体的实施例进一步介绍本发明,但实施例仅为本发明的解释而非限定。
实施例1:
(1)将1.9克的硼砂溶解在装有100毫升水的聚四氟乙烯容器中,溶解后加入10.08克的三聚氰胺,搅拌形成白色乳浊液,容器中的乳浊液温度保持75℃,搅拌至水分蒸干,得到前驱体;(2)将前驱体块体置于不锈钢模具中,再将模具置于压片机下,以5MPa的压力压制成型,将压制成型的前驱体置于管式炉中,氮气气氛下热解,以10℃/min的升温速率升温至第一反应温度1000℃,热解时间为100min;(3)随后降温至600℃,将氮气切换为空气,空气气流量为1000ml/min,维持600℃的第二反应温度3h,随后自然冷却至室温,得到六方氮化硼多孔材料样品。
上述实施例1所得到的六方氮化硼多孔材料为白色轻质多孔块状结构(图1);其X射线衍射图谱(图2)中26°,43°和76°两个峰分别对应氮化硼的(002),(100)和(110)晶面,而且无其他杂项衍射峰出现,表明六方氮化硼的结晶度和纯度较好;扫描电子显微镜照片(图3)和透射电子显微镜照片(图4)可以观察到实施例1得到的六方氮化硼多孔材料的薄壁蜂窝状多孔结构,透射电子显微镜照片中可以看出得到的六方氮化硼多孔材料存在丰富的介孔结构;根据氮气吸脱附曲线(图5)应用标准Brunauer-Emmett-Teller分析可以计算出实施例1的样品比表面积为1420m2/g;应用骤冷固体密度泛函理论(QSDFT)方法可以得到孔径分布曲线(图6),可以看出样品孔径主要分布在2-20nm,同时可以计算出样品具有较大的介孔比表面积。
实施例1所得到的六方氮化硼多孔材料用于刚果红染料吸附中,可达到1096mg/g的最大吸附量(图7),是目前氮化硼吸附剂中的最高水平。将其块体样品用于油性污染物吸附中(图8),可吸附自重5.7倍的泵油,且可以轻松地从水中分离,避免二次污染。在各种油性污染物吸附中,实施例1制备的六方氮化硼多孔材料均优于常见的几种吸附剂。
实施例2、3
将实施例1步骤(2)中第一反应温度分别改为900℃、1100℃,其他各项操作均与实施例1相同。均能得到六方氮化硼多孔材料,比表面积分别为525m2/g和458m2/g,孔径分别主要分布3-4nm和2-4nm范围内。在温度更高时(实施例1),比表面积由实施例2氮气吸脱附曲线中相对平稳的初始上升曲线,斜率有所提高,表明1000℃的热解温度相对900℃的热解温度能获得更大比表面积的产物,但热解温度进一步提升时(实施例3),比表面积有所降低,这是由于产物在更高裂解温度时有着更高的结晶度。
实施例4、5
将实施例1步骤(1)中三聚氰胺的投料质量分别改为5.04g和15.12g,其他各项操作均与实施例1相同。均能得到三维多孔结构的氮化硼,比表面积分别为320m2/g和316m2/g,孔径分别主要分布在2-4nm和3-4nm范围内。
实施例6、7
将实施例1步骤(2)中热解保温时间分别改为1h和3h,其他各项操作均与实施例1相同。得到的六方氮化硼多孔材料比表面积分别为353m2/g和261m2/g,孔径都主要分布在3-4nm范围内。
实施例8
将实施例1步骤(1)中氮源改为尿素,质量为28.83g(保持硼元素和氮元素的摩尔比与实施例1相同),其他各项步骤均与实施例1相同。得到的六方氮化硼多孔材料比表面积为169m2/g。

Claims (11)

1.本发明公开了一种富介孔的六方氮化硼多孔材料的制备方法及其在水处理领域的应用,其特征在于,所述的六方氮化硼多孔材料是一种白色轻质多孔的粉体/块体材料,具有高比表面积(100-1420m2/g),孔类型由介孔(孔直径2-50nm)占主导地位,按以下步骤进行制备:
(1)将硼砂溶解在水中,加入氮源混合形成悬浊液,搅拌加热蒸干水分,得到白色前驱体;
(2)将前驱体成型后或直接置于高温加热炉中,通入保护气,升温至反应温度A反应一定时间;
(3)降温至一定温度B,通入刻蚀性气氛反应一段时间随后降温至室温即可得到富介孔的六方氮化硼多孔材料。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中,硼砂可以是十水四硼酸钠、五水四硼酸钠、四水四硼酸钠、无水四硼酸钠等硼砂的原料中任一者或更多者任意比例的组合。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中,氮源可以是三聚氰胺、三聚氰酸、双氰胺、尿素、碳化氮、氨气的原料中任一者或更多者的任意组合。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中,所选硼源和氮源中的硼、氮原子摩尔比范围为1∶(1-72)。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中,搅拌加热的温度为60-95℃,时间为2-36h。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中,升温速率为2-100℃/min,反应温度A为800-1300℃,保温时间为2-72h。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中,保护气可以是氩气、氮气、氢气、氦气、氨气、空气中的其中任一者或更多者的任意组合。
8.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中,当使用氨气作为保护气时,氨气可以同时作为反应的氮源,反应过程中可以不添加额外的氮源,并且氨气可以作为刻蚀碳的气体。
9.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中,刻蚀碳的气体可以是氧气、空气、水蒸气、氨气中的任一者或更多者的任意组合。
10.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中,反应温度B为500-850℃,将权利要求7中所述的保护气切换为刻蚀气后,在反应温度B下保温2-24h。
11.根据权利要求1所述的一种富介孔的六方氮化硼多孔材料,其特征在于,包含粉体和块体中任一项或多项组合的六方氮化硼多孔材料。
CN202111416523.0A 2021-11-25 2021-11-25 一种富介孔的六方氮化硼多孔材料的制备方法 Active CN113860272B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111416523.0A CN113860272B (zh) 2021-11-25 2021-11-25 一种富介孔的六方氮化硼多孔材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111416523.0A CN113860272B (zh) 2021-11-25 2021-11-25 一种富介孔的六方氮化硼多孔材料的制备方法

Publications (2)

Publication Number Publication Date
CN113860272A true CN113860272A (zh) 2021-12-31
CN113860272B CN113860272B (zh) 2023-12-19

Family

ID=78985360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111416523.0A Active CN113860272B (zh) 2021-11-25 2021-11-25 一种富介孔的六方氮化硼多孔材料的制备方法

Country Status (1)

Country Link
CN (1) CN113860272B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753866A (zh) * 2021-08-03 2021-12-07 湖南大学 一种六方氮化硼纳米晶及其固相制备方法
CN114195106A (zh) * 2022-01-10 2022-03-18 南京大学 一种高比表面积氮化硼多孔材料的制备方法
CN114874015A (zh) * 2022-06-30 2022-08-09 河北工业大学 一种高比表面积六方氮化硼微球颗粒及其块体的制备方法
CN115490523A (zh) * 2022-09-27 2022-12-20 深圳市宝硼新材料科技有限公司 大尺寸六方氮化硼的制备方法以及大尺寸六方氮化硼
CN116143525A (zh) * 2023-01-09 2023-05-23 山东工业陶瓷研究设计院有限公司 一种基于bn前驱体制备多孔陶瓷材料的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783570A (en) * 1980-11-11 1982-05-25 Pilot Precision Co Ltd Lead of color pencil and its preparation
CN105800572A (zh) * 2016-02-26 2016-07-27 辽宁首钢硼铁有限责任公司 一种利用硼砂高效生产六方氮化硼并联产偏硼酸钠的方法
CN105817226A (zh) * 2016-04-25 2016-08-03 江苏大学 层状氮化硼的层间限域铜纳米颗粒的催化剂及其制备方法与应用
CN106006584A (zh) * 2015-07-23 2016-10-12 营口天元化工研究所股份有限公司 一种制备六方氮化硼粉末的方法
CN108275663A (zh) * 2018-04-08 2018-07-13 中国科学院山西煤炭化学研究所 一种熔融体气泡模板法制备均匀孔介孔氮化硼的方法
CN109502562A (zh) * 2018-11-11 2019-03-22 淄博市新阜康特种材料有限公司 一种较高纯度六方氮化硼粉体的制备方法
CN109534306A (zh) * 2018-12-27 2019-03-29 沈阳大学 基于尿素氮源制备球形六方氮化硼粉体的方法
CN111377742A (zh) * 2020-03-23 2020-07-07 河北工业大学 一种三维多孔六方氮化硼的无模板合成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783570A (en) * 1980-11-11 1982-05-25 Pilot Precision Co Ltd Lead of color pencil and its preparation
CN106006584A (zh) * 2015-07-23 2016-10-12 营口天元化工研究所股份有限公司 一种制备六方氮化硼粉末的方法
CN105800572A (zh) * 2016-02-26 2016-07-27 辽宁首钢硼铁有限责任公司 一种利用硼砂高效生产六方氮化硼并联产偏硼酸钠的方法
CN105817226A (zh) * 2016-04-25 2016-08-03 江苏大学 层状氮化硼的层间限域铜纳米颗粒的催化剂及其制备方法与应用
CN108275663A (zh) * 2018-04-08 2018-07-13 中国科学院山西煤炭化学研究所 一种熔融体气泡模板法制备均匀孔介孔氮化硼的方法
CN109502562A (zh) * 2018-11-11 2019-03-22 淄博市新阜康特种材料有限公司 一种较高纯度六方氮化硼粉体的制备方法
CN109534306A (zh) * 2018-12-27 2019-03-29 沈阳大学 基于尿素氮源制备球形六方氮化硼粉体的方法
CN111377742A (zh) * 2020-03-23 2020-07-07 河北工业大学 一种三维多孔六方氮化硼的无模板合成方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
XU,CY: "Porous monolith of few-layered boron nitride for effective water cleanup", JOURNAL OF MATERIALS CHEMISTRY A, vol. 10, no. 2, pages 846 - 854 *
ZHANG,N: "The effect of the boron source composition ratio on the adsorption performance of hexagonal boron nitride without a template", MATERIALS CHEMISTRY AND PHYSICS, vol. 163, pages 331 - 336 *
卢丙增: "六方氮化硼的合成及吸附性能研究", 中国优秀硕士学位论文全文数据库 *
李师;王毅;: "六方氮化硼的制备与应用综述", 化学推进剂与高分子材料, no. 03 *
赵凯;孙苒荻;朱高远;张红玲;张炳烛;徐红彬;张懿;: "硼砂与尿素合成六方氮化硼的机理", 化学研究, no. 04 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753866A (zh) * 2021-08-03 2021-12-07 湖南大学 一种六方氮化硼纳米晶及其固相制备方法
CN113753866B (zh) * 2021-08-03 2023-02-07 湖南大学 一种六方氮化硼纳米晶及其固相制备方法
CN114195106A (zh) * 2022-01-10 2022-03-18 南京大学 一种高比表面积氮化硼多孔材料的制备方法
CN114874015A (zh) * 2022-06-30 2022-08-09 河北工业大学 一种高比表面积六方氮化硼微球颗粒及其块体的制备方法
CN114874015B (zh) * 2022-06-30 2022-09-09 河北工业大学 一种高比表面积六方氮化硼微球颗粒及其块体的制备方法
CN115490523A (zh) * 2022-09-27 2022-12-20 深圳市宝硼新材料科技有限公司 大尺寸六方氮化硼的制备方法以及大尺寸六方氮化硼
CN116143525A (zh) * 2023-01-09 2023-05-23 山东工业陶瓷研究设计院有限公司 一种基于bn前驱体制备多孔陶瓷材料的方法

Also Published As

Publication number Publication date
CN113860272B (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
CN113860272A (zh) 一种富介孔的六方氮化硼多孔材料的制备方法
Bambalaza et al. Compaction of a zirconium metal–organic framework (UiO-66) for high density hydrogen storage applications
El Haskouri et al. Silica-based powders and monoliths with bimodal pore systems
Chandrasekar et al. Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO 2 adsorption
Katsuki et al. ZSM-5 zeolite/porous carbon composite: conventional-and microwave-hydrothermal synthesis from carbonized rice husk
Kang et al. Hydrogen adsorption on nitrogen-doped carbon xerogels
Moussa et al. Hollow core@ mesoporous shell boron nitride nanopolyhedron-confined ammonia borane: A pure B–N–H composite for chemical hydrogen storage
Asgarian et al. The effect of different sources of porous carbon on the synthesis of nanostructured boron carbide by magnesiothermic reduction
CN108275663B (zh) 一种熔融体气泡模板法制备均匀孔介孔氮化硼的方法
Sharma et al. Knobby surfaced, mesoporous, single-phase GIS-NaP1 zeolite microsphere synthesis and characterization for H 2 gas adsorption
Yuan et al. Preparation of ordered mesoporous silicon carbide monoliths via preceramic polymer nanocasting
Ghosh et al. The effect of KOH concentration on chemical activation of porous carbon sorbents for carbon dioxide uptake and carbon dioxide–methane selectivity: the relative formation of micro-(< 2 nm) versus meso-(> 2 nm) porosity
CN111377742B (zh) 一种三维多孔六方氮化硼的无模板合成方法
Liu et al. Preparation of ordered mesoporous crystalline alumina replicated by mesoporous carbon
CN111943238A (zh) 一种多孔绒球状氧化镁的制备方法
Xia et al. Facile and high yield synthesis of mesostructured MCM-48 silica crystals
Zhao et al. Microwave synthesis of AFI-type aluminophosphate molecular sieve under solvent-free conditions
Aili et al. Characteristics of carbon microspheres and study on its adsorption isotherms
Wu et al. Synthesis of ordered mesoporous carbon materials with semi-graphitized walls via direct in-situ silica-confined thermal decomposition of CH 4 and their hydrogen storage properties
JP5388051B2 (ja) メソポーラスカーボン(mc−mcm−48)およびその製造方法
Zeng et al. Facile synthesis of hierarchically porous carbonaceous materials derived from olefin/aldehyde precursors using silica as templates
CN108793120B (zh) 憎水性双mof基多孔碳材料的制备
Chen et al. A green and efficient strategy for utilizing of coal fly ash to synthesize K-MER zeolite as catalyst for cyanoethylation and adsorbent of CO2
Zheng et al. Synthesis of a novel mesoporous silicon carbide with a thorn-ball-like shape
Klinthongchai et al. Effect of TMB/P123 ratios on physicochemical properties of mesocellular foam carbon (MCF-C) as catalyst for ethanol dehydrogenation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant