CN113851556A - 单晶perc电池及其扩散方法 - Google Patents

单晶perc电池及其扩散方法 Download PDF

Info

Publication number
CN113851556A
CN113851556A CN202110988501.5A CN202110988501A CN113851556A CN 113851556 A CN113851556 A CN 113851556A CN 202110988501 A CN202110988501 A CN 202110988501A CN 113851556 A CN113851556 A CN 113851556A
Authority
CN
China
Prior art keywords
single crystal
temperature
oxygen
nitrogen
phosphorus oxychloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110988501.5A
Other languages
English (en)
Inventor
朱士祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Risheng Anhui New Energy Co ltd
Original Assignee
Dongfang Risheng Anhui New Energy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Risheng Anhui New Energy Co ltd filed Critical Dongfang Risheng Anhui New Energy Co ltd
Priority to CN202110988501.5A priority Critical patent/CN113851556A/zh
Publication of CN113851556A publication Critical patent/CN113851556A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • H01L21/2256Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides through the applied layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了单晶PERC电池及其扩散方法,包括如下步骤:S1:第一次预沉积,通入携带三氯氧磷的氮气和氧气进行第一次预沉积,流量为1001‑1200sccm,氧气流量为500‑700sccm,时间为200‑450s,温度750℃‑800℃;S2:温度升至800℃‑900℃,通入携带三氯氧磷的氮气和氧气,携带三氯氧磷的氮气流量为400‑600sccm,氧气流量为80‑600sccm;时间为500‑800s;S4:炉内进行降温处理;本发明提供的单晶PERC电池及其扩散方法,通过在第一次预沉积的步骤中增加三氯氧磷的通入量,即在规定的时间内能够提高扩散表面浓度,加厚硅片表面的磷硅玻璃,从而对硅片内部PN结起到一定的保护作用,可消除PN结表面的皮带印,有效的保护硅片内部的PN结,提高单晶PERC电池的生产质量。

Description

单晶PERC电池及其扩散方法
技术领域
本发明涉及太阳能电池技术领域,具体涉及单晶PERC电池 及其扩散方法。
背景技术
单晶PERC电池转换效率高,且相对成本低,为进一步降低 PERC电池的衰减问题,在进行生产单晶PERC电池PN结的过程 中,通过掺镓电池片替代掺硼电池片,能够降低PERC电池的衰 减率。在具体制造PERC电池PN结的过程中,掺镓电池片对制造 环境要求高于掺硼电池片。
现有技术的不足之处在于:在实际加工发现,在切换掺镓片 时会出现批量刻蚀下料皮带印,从而导致对单晶PERC电池的PN 结的损坏,影响其使用效率,为此,现有技术中,整体的更换皮 带材质的方法进行消除皮带印,但是效果并不明显,仍然存在皮 带印。
发明内容
本发明的目的是提供单晶PERC电池及其扩散方法,以解决现有 技术中的上述不足之处。
为了实现上述目的,本发明提供如下技术方案:
一种单晶PERC电池扩散方法,包括如下步骤:
S1:第一次预沉积,通入携带三氯氧磷的氮气和氧气进行第 一次预沉积,流量为1001-1200sccm,氧气流量为500-700sccm, 时间为200-450s,温度750-800℃;
S2:温度升至800-900℃,通入携带三氯氧磷的氮气和氧气, 携带三氯氧磷的氮气流量为400-600sccm,氧气流量为80-600sccm; 时间为500-800s;S1中,通入1001-1200sccm的携带三氯氧磷的 氮气,使得硅片表面磷硅玻璃加厚,由于硅片表面磷硅玻璃加厚、 硅片表面磷的浓度变大,从而会导致电池片方阻减小,因此在S2 的高温推进步骤中,将温度控制在840-860℃内,能够有效的控制 方阻在150±20Ω内;
S4:炉内进行降温处理。
作为优选,第一次预沉积持续时间为350-450s:优选的,本 发明中,将第一次预沉积持续时间为350-450s,更能够将磷硅玻 璃厚度加厚,以消除PN结表面的皮带印。
作为优选,在步骤S1之前还包括S0,S0:通入氧气,流量为 600-1000sccm,持续时间为200-220s,在硅片表面形成第一SiO2层;在沉积前通入氧气,使得在硅片表面形成一层SiO2层,可以 作为保护层,减少后续高温扩散对硅片表面的损伤,提高PN结的 形成质量。
作为优选,步骤S2中:温度升至840-860℃,通入携带三氯 氧磷的氮气流量为400-600sccm,氧气流量为100-400sccm;时间 为500-800s:
作为优选,步骤S2之后还包括:
S3:扩散温度保持840-860℃,氮气流量保持1800sccm,通 入携带三氯氧磷的氮气,流量为400-600sccm,氧气流量为 100-400sccm,时间100-140s。
作为优选,S3:扩散温度保持840-860℃,氮气流量保持 1800sccm,停止通入携带三氯氧磷的氮气,通入氧气流量为 100-400sccm,时间100-140s,在表面形成SiO2保护层;本步骤中, 在停止通入携带三氯氧磷的氮气后,将通入氧气的流量控制在 100-400sccm内,时间100-140s,能后在表面形成SiO2保护层, 可以防止沉积气体对硅或者PN结表面的损伤。
作为优选,S4中:炉管降温至740-760℃,炉内氮气流量保持 在2000sccm,停止通入携带三氯氧磷的氮气和氧气,持续时间为 8-10min。
作为优选,步骤S4之后还包括:
S5:沉积步,在炉管温度降低至740-760℃后,通入携带三氯 氧磷的氮气和氧气,携带三氯氧磷的氮气流量为800-1000sccm, 氧气流量为500-700sccm。
一种单晶PERC电池,由上述任一项的单晶PERC电池扩散 方法制备而成。
在上述技术方案中,本发明提供的单晶PERC电池及其扩散 方法具备的有益效果:
1.本发明通过在第一次预沉积的步骤中增加三氯氧磷的通入 量,即在规定的时间内能够提高扩散表面浓度,加厚硅片表面的 磷硅玻璃,从而对硅片内部PN结起到一定的保护作用,且消除了 PN结表面的皮带印,有效的保护硅片内部的PN结,提高单晶 PERC电池的生产质量。
2.本发明通过在第一次预沉积之前通入600-1000sccm的氧气, 能够在硅片表面形成第一SiO2层,硅片表面能够形成微薄的第一 SiO2层,可以作为保护层,减少后续高温扩散对硅片表面的损伤, 提高PN结的形成质量。
3.本发明高温推进步,将扩散温度设置840-860℃之间,能够 使得对应的方块电阻值为保持在130-170Ω之间,即在增加硅片表 面磷硅玻璃的形成厚度一消除皮带印的同时,通过对高温推进的 温度控制,将对应的方块电阻控制在可用范围内,能够提高电池 的转换效率,且在恒温推进的步骤中通入100-400sccm的氧气,使 得硅片表面形成SiO2层,能够有效的保护硅片表面结构,使得PN 结形成深度在可控范围内,且能够防止沉积气体对硅或者PN结表 面的损伤。
应当理解,前面的一般描述和以下详细描述都仅是示例性和 说明性的,而不是用于限制本公开。
本申请文件提供本公开中描述的技术的各种实现或示例的概 述,并不是所公开技术的全部范围或所有特征的全面公开。
具体实施方式
为使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开的实施例,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描 述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本 公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有 其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公 开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用 的“包括”或者“包含”等类似的词语意指出现该词前面的元件或 者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除 其他元件或者物件。
下面结合具体实施例对本发明中提供的单晶PERC电池及其 扩散方法座具体说明:
本发明提供的单晶PERC电池及其扩散方法,对比例4中的方法 除表1中的参数不同外,扩散方法均与其他实施例相同;
本发明采用三氯氧磷(POCl3)液态源扩散方法,在硅片表面形 成N型层,通入携带三氯氧磷的氮气,氮气在此系统中不参入反应; 只是惰性介质。
实施例一
单晶PERC电池及其扩散方法,采用如下步骤进行:
S1:第一次预沉积,通入携带三氯氧磷的氮气和氧气进行第一次 预沉积,流量为1001-1200sccm,氧气流量为500-700sccm,时间为 200-450s,温度750-800℃;
优选的,本实施例中,通入携带三氯氧磷的氮气的流量可为 1001sccm、1050sccm、1100sccm、1150sccm、1200sccm等,通入 氧气的流量控制在500-700sccm之间,时间为200-450s,温度 750-800℃,即通过通入流量为1001-1200sccm携带三氯氧磷的氮 气,使得第一次预沉积中,加大硅片表面磷硅玻璃的厚度,如表1 中所示,实施例1相对于对比例4中,可消除PN结表面的皮带印, 有效的保护硅片内部的PN结,提高单晶PERC电池的生产质量。
S2:高温推进:温度升至800-900℃,通入携带三氯氧磷的氮 气和氧气,携带三氯氧磷的氮气流量为400-600sccm,氧气流量为 80-600sccm;时间为500-800s。
S3:恒温推进:扩散温度保持800-900℃,氮气流量保持 1800sccm,持续通入携带三氯氧磷的氮气,流量为400-600sccm, 氧气流量为80-600sccm。
S4:炉管降温至740-760℃,炉内氮气流量保持在2000sccm, 停止通入携带三氯氧磷的氮气和氧气,持续时间为8-10min。
S5:沉积步,在炉管温度降低至740-760℃后,通入携带三氯 氧磷的氮气和氧气,携带三氯氧磷的氮气流量为800-1000sccm, 氧气流量为500-700sccm。
更为优选的,本实施例中,在第一次预沉积之前设置步骤S0, S0中:通入600-1000sccm的氧气,持续时间为200-220s,在硅片 表面形成第一SiO2层,优选的,S0中通入氧气的流量为可为 600sccm、700sccm、750sccm,800sccm、1000sccm等,在硅片表 面形成第一SiO2层,硅片表面能够形成微薄的第一SiO2层,即与 实施例一、实施例二以及实施例三相比,即在步骤第一次预沉积 之前通入少量的氧气,可以作为保护层,减少后续高温扩散对硅 片表面的损伤,提高PN结的形成质量。
实施例二;
S1:第一次预沉积,通入携带三氯氧磷的氮气和氧气进行第 一次预沉积,流量为1001-1200sccm,氧气流量为500-700sccm, 时间为200-450s,温度750-800℃。
S2:高温推进:温度升至840-860℃,通入携带三氯氧磷的氮 气和氧气,携带三氯氧磷的氮气流量为400-600sccm,氧气流量为 80-600sccm;时间为500-800s,使表面生成第二SiO2层。
S3:恒温推进:扩散温度保持840-860℃,氮气流量保持 1800sccm,持续通入携带三氯氧磷的氮气,流量为400-600sccm, 氧气流量为80-600sccm;
具体的,在实施例一中的S1中,通入1001-1200sccm的携带 三氯氧磷的氮气,使得硅片表面磷硅玻璃加厚,消除PN结表面的 皮带印,由于硅片表面磷硅玻璃加厚、硅片表面磷的浓度变大, 会导致电池片方阻减小,影响电池转换效率,因此,优选的,本 实施例中,在步骤S2中的高温推进步中:可将S2中的高温推进 的扩散温度可设置为840℃、850℃以及860℃,如表一中所示, 实施例2相对对比例4以及实施例一中的方块电阻来说,能够将 对应的方块电阻值为保持在130-170Ω之间,即在增加硅片表面磷 硅玻璃的形成厚度一消除皮带印的同时,通过对高温推进的温度 控制,能够将对应的方块电阻控制在可用范围内,能够提高电池 的转换效率,结合实对比例四以及实施例一可知,本实施例中, 在增加硅片表面磷硅玻璃厚度,消除皮带印的情况下,通过高温 推进的扩散温度提升840-860℃之间,能够使得对应的方块电阻控 制在可用范围内,提高电池的转换效率。
S4:炉管降温至740-760℃,炉内氮气流量保持在2000sccm, 停止通入携带三氯氧磷的氮气和氧气,持续时间为8-10min。
S5:沉积步,沉积步,在炉管温度降低至740-760℃后,通入 携带三氯氧磷的氮气和氧气,携带三氯氧磷的氮气流量为 800-1000sccm,氧气流量为500-700sccm。
优选的,本实施例中,第一次预沉积之前通入600-1000sccm 的氧气,持续时间为200-220s,在硅片表面形成第一SiO2层,优 选的,S0中通入氧气的流量为可为600sccm、700sccm、750sccm, 800sccm、1000sccm等,在硅片表面形成第一SiO2层,硅片表面 能够形成微薄的第一SiO2层,即与实施例一、实施例二以及实施 例三相比,即在步骤第一次预沉积之前通入少量的氧气,可以作 为保护层,减少后续高温扩散对硅片表面的损伤,提高PN结的形 成质量。
实施例三;
S0:通入氧气,流量为600-1000sccm,持续时间为200-220s, 在硅片表面形成第一SiO2层。
本实施例中,在步骤第一次预沉积之前通入600-1000sccm的 氧气,优选的,本实施例中,S0中通入氧气的流量为可为600sccm、 700sccm、750sccm、800sccm、1000sccm等,在硅片表面形成第 一SiO2层,硅片表面能够形成微薄的第一SiO2层,即与实施例一、 实施例二以及实施例三相比,即在步骤第一次预沉积之前通入少 量的氧气,可以作为保护层,减少后续高温扩散对硅片表面的损 伤,提高PN结的形成质量。
S1:第一次预沉积,通入携带三氯氧磷的氮气和氧气进行第 一次预沉积,流量为1001-1200sccm,氧气流量为500-700sccm, 时间为200-450s,温度750-800℃。
S2:高温推进:温度升至840-860℃,通入携带三氯氧磷的氮 气和氧气,携带三氯氧磷的氮气流量为400-600sccm,氧气流量为 100-400sccm;时间为500-800s,使表面生成第二SiO2层。
S3:恒温推进:扩散温度保持840-860℃,氮气流量保持 1800sccm,持续通入携带三氯氧磷的氮气,流量为400-600sccm, 氧气流量为100-400sccm;
更为优选的,本实施例中,S2中高温推进步骤中的氧气流量 可为100sccm、200sccm、300sccm以及400sccm等,通过在高温 推进步中,氧气通入量控制在100sccm到400sccm之间,即相对 实施例一、实施例二、施例三、以及对比例4可知,本实施例中, 在增加硅片表面磷硅玻璃厚度,消除皮带印,以及通过控制温度, 使得对应的方块电阻控制在可用范围内,提高电池的转换效率的 情况下,在高温推进的步骤中通入100-400sccm的氧气,使得硅片 表面形成微薄的SiO2层,有效的保护硅片表面结构,使得PN结 形成深度在可控范围内,且能够防止沉积气体对硅或者PN结表面 的损伤。
S4:炉管降温至740-760℃,炉内氮气流量保持在2000sccm, 停止通入携带三氯氧磷的氮气和氧气,持续时间为8-10min。
S5:沉积步,沉积步,在炉管温度降低至740-760℃后,通入 携带三氯氧磷的氮气和氧气,携带三氯氧磷的氮气流量为 800-1000sccm,氧气流量为500-700sccm;
本发明中提供的单晶PERC电池带的扩散方法中,通入流量 为1001-1200sccm的携带三氯氧磷的氮气,使得第一次预沉积中, 加大硅片表面磷硅玻璃的厚度,可消除PN结表面的皮带印,有效 的保护硅片内部的PN结,提高单晶PERC电池的生产质量;
在步骤第一次预沉积之前通入600-1000sccm的氧气,持续时 间为200-220s,硅片表面能够形成微薄的第一SiO2层,即在步骤 第一次预沉积之前通入少量的氧气,可以作为保护层,减少后续 高温扩散对硅片表面的损伤,提高PN结的形成质量;且在高温推 进步中:可将S2中的高温推进的扩散温度设置在840℃到860℃ 之间,能够将对应的方块电阻值为保持在130-170Ω之间,即克服 了在消除PN结表面的皮带印时,硅片表面磷硅玻璃加厚、硅片表 面磷的浓度变大,会导致电池片方阻减小,影响电池转换效率的 问题,即在增加硅片表面磷硅玻璃的形成厚度一消除皮带印的同 时,通过对高温推进的温度控制,能够将对应的方块电阻控制在 可用范围内,能够提高电池的转换效率,结合实对比例四以及实 施例一可知,本实施例中,在增加硅片表面磷硅玻璃厚度,消除 皮带印的情况下,通过高温推进的扩散温度提升840-860℃之间, 能够使得对应的方块电阻控制在可用范围内,提高电池的转换效 率;且在高温推进的步骤中通入100-400sccm的氧气,使得硅片表 面形成微薄的SiO2层,有效的保护硅片表面结构,使得PN结形 成深度在可控范围内,且能够防止沉积气体对硅或者PN结表面的 损伤。
具体的,本发明还提供了一种单晶PERC电池,其由上述的 的单晶PERC电池的扩散方法制备而成,即通过上述PERC电池 扩散方法制成的单晶PERC电池同样具有上述效果,不一一赘述。
实施例 S1:三氯氧磷(sccm) S1:时间(s) 皮带印 S3:温度(℃) 方阻(Ω) S3:氧气(℃)
实施例1 1001-1200 220-450 800-900 110-200 80-600
实施例2 1001-1200 220-450 840-860 130-170 80-600
实施例3 1001-1200 220-450 840-860 130-170 100-400
对比例4 700-1000 100-210 880-950 180-220 600-800
表1
以上只通过说明的方式描述了本发明的某些示范性实施例,毋庸 置疑,对于本领域的普通技术人员,在不偏离本发明的精神和范围的 情况下,可以用各种不同的方式对所描述的实施例进行修正。因此, 上述描述在本质上是说明性的,不应理解为对本发明权利要求保护范 围的限制。

Claims (9)

1.一种单晶PERC电池扩散方法,其特征在于,包括如下步骤:
S1:第一次预沉积,通入携带三氯氧磷的氮气和氧气进行第一次预沉积,流量为1001-1200sccm,氧气流量为500-700sccm,时间为200-450s,温度750-800℃;
S2:温度升至800-900℃,通入携带三氯氧磷的氮气和氧气,携带三氯氧磷的氮气流量为400-600sccm,氧气流量为80-600sccm;时间为500-800s;
S4:炉内进行降温处理。
2.根据权利要求1所述的单晶PERC电池扩散方法,其特征在于,
S1中:第一次预沉积持续时间为350-450s。
3.根据权利要求1所述的单晶PERC电池扩散方法,其特征在于,在步骤S1之前还包括S0:
S0:通入氧气,流量为600-1000sccm,持续时间为200-220s,在硅片表面形成第一SiO2层。
4.根据权利要求1所述的单晶PERC电池扩散方法,其特征在于,步骤S2中:温度升至840-860℃,通入携带三氯氧磷的氮气流量为400-600sccm,氧气流量为100-400sccm;时间为500-800s。
5.根据权利要求4所述的单晶PERC电池扩散方法,其特征在于,步骤S2之后还包括:
S3:扩散温度保持840-860℃,氮气流量保持1800sccm,通入携带三氯氧磷的氮气,流量为400-600sccm,氧气流量为100-400sccm,时间100-140s。
6.根据权利要求4所述的单晶PERC电池扩散方法,其特征在于,步骤S2之后还包括:
S3:扩散温度保持840-860℃,氮气流量保持1800sccm,停止通入携带三氯氧磷的氮气,通入氧气流量为100-400sccm,时间100-140s,在表面形成SiO2保护层。
7.根据权利要求1所述的单晶PERC电池扩散方法,其特征在于,S4中:炉管降温至740-760℃,炉内氮气流量保持在2000sccm,停止通入携带三氯氧磷的氮气和氧气,持续时间为8-10min。
8.根据权利要求7所述的单晶PERC电池扩散方法,其特征在于,步骤S4之后还包括:
S5:沉积步,在炉管温度降低至740-760℃后,通入携带三氯氧磷的氮气和氧气,携带三氯氧磷的氮气流量为800-1000sccm,氧气流量为500-700sccm。
9.一种单晶PERC电池,其特征在于,其由权利要求1-8中任一项的单晶PERC电池扩散方法制备而成。
CN202110988501.5A 2021-08-26 2021-08-26 单晶perc电池及其扩散方法 Pending CN113851556A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110988501.5A CN113851556A (zh) 2021-08-26 2021-08-26 单晶perc电池及其扩散方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110988501.5A CN113851556A (zh) 2021-08-26 2021-08-26 单晶perc电池及其扩散方法

Publications (1)

Publication Number Publication Date
CN113851556A true CN113851556A (zh) 2021-12-28

Family

ID=78976381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110988501.5A Pending CN113851556A (zh) 2021-08-26 2021-08-26 单晶perc电池及其扩散方法

Country Status (1)

Country Link
CN (1) CN113851556A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509748A (zh) * 2011-11-30 2012-06-20 合肥晶澳太阳能科技有限公司 一种降低冶金级硅太阳能电池暗电流的扩散工艺
CN102820383A (zh) * 2012-09-11 2012-12-12 江阴鑫辉太阳能有限公司 多晶硅太阳能电池扩散方法
CN103606596A (zh) * 2013-11-26 2014-02-26 英利集团有限公司 磷掺杂硅片、其制作方法、太阳能电池片及其制作方法
CN103730537A (zh) * 2013-12-26 2014-04-16 英利能源(中国)有限公司 一种多晶硅太阳能电池扩散工艺
CN104821272A (zh) * 2015-03-26 2015-08-05 江西泰明光伏有限公司 Pn结的扩散方法、气体扩散装置和晶体硅太阳能电池片
CN111628043A (zh) * 2020-04-14 2020-09-04 横店集团东磁股份有限公司 一种适用于perc电池叠加se的新型扩散工艺
CN113013284A (zh) * 2019-12-20 2021-06-22 苏州阿特斯阳光电力科技有限公司 一种se扩散方法及得到的硅片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509748A (zh) * 2011-11-30 2012-06-20 合肥晶澳太阳能科技有限公司 一种降低冶金级硅太阳能电池暗电流的扩散工艺
CN102820383A (zh) * 2012-09-11 2012-12-12 江阴鑫辉太阳能有限公司 多晶硅太阳能电池扩散方法
CN103606596A (zh) * 2013-11-26 2014-02-26 英利集团有限公司 磷掺杂硅片、其制作方法、太阳能电池片及其制作方法
CN103730537A (zh) * 2013-12-26 2014-04-16 英利能源(中国)有限公司 一种多晶硅太阳能电池扩散工艺
CN104821272A (zh) * 2015-03-26 2015-08-05 江西泰明光伏有限公司 Pn结的扩散方法、气体扩散装置和晶体硅太阳能电池片
CN113013284A (zh) * 2019-12-20 2021-06-22 苏州阿特斯阳光电力科技有限公司 一种se扩散方法及得到的硅片
CN111628043A (zh) * 2020-04-14 2020-09-04 横店集团东磁股份有限公司 一种适用于perc电池叠加se的新型扩散工艺

Similar Documents

Publication Publication Date Title
CN107681018B (zh) 一种太阳能电池片的低压氧化工艺
CN108110088B (zh) 太阳能电池的低压扩散工艺及利用其制备得到的太阳能电池
CN113437182A (zh) 一种太阳能电池的扩散工艺、制备方法及硅片
JPH104204A (ja) 太陽電池の製造方法
CN109103081A (zh) 一种晶体硅太阳能电池的扩散工艺
CN109004038B (zh) 太阳能电池及其制备方法和光伏组件
CN103094419A (zh) 一种高效太阳能电池制备方法
CN107910256A (zh) 太阳能电池低表面磷源浓度扩散方法
CN112820801A (zh) 一种减小se激光损伤的厚氧化层扩散工艺
CN108470798A (zh) 一种用于晶硅电池片的含氧扩散方法
CN113571602B (zh) 一种二次扩散的选择性发射极及其制备方法和应用
CN112510112B (zh) 一种高致密性氧化层的扩散工艺方法
CN102544238A (zh) 一种多晶硅硅片多重扩散的制造方法
CN112582499B (zh) 一种适用于多主栅搭配大尺寸硅片的扩散工艺
CN113851556A (zh) 单晶perc电池及其扩散方法
CN113193082A (zh) 一种TOPCon太阳能电池的制备方法
CN209804689U (zh) 轻掺杂基片、带有选择性发射极的基片以及太阳能电池
CN116288251A (zh) 一种管式变温硼扩散沉积工艺
CN113571411B (zh) N型TOPCon太阳能电池的制作方法
CN103715299B (zh) 一种逆扩散的方法
CN114678265A (zh) 一种新型硼扩散湿氧工艺
CN107546117B (zh) 一种扩散方阻异常硅片的处理工艺
CN113206008B (zh) 太阳能电池的扩散方法和太阳能电池
CN114188436B (zh) 一种硅基底制备方法及太阳能电池
CN112133765A (zh) 一种采用固态扩散方式制备的晶硅电池及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination