CN113571411B - N型TOPCon太阳能电池的制作方法 - Google Patents

N型TOPCon太阳能电池的制作方法 Download PDF

Info

Publication number
CN113571411B
CN113571411B CN202110785634.2A CN202110785634A CN113571411B CN 113571411 B CN113571411 B CN 113571411B CN 202110785634 A CN202110785634 A CN 202110785634A CN 113571411 B CN113571411 B CN 113571411B
Authority
CN
China
Prior art keywords
temperature
solar cell
boron
low pressure
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110785634.2A
Other languages
English (en)
Other versions
CN113571411A (zh
Inventor
袁玲
王芹芹
瞿辉
曹玉甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Shunfeng New Energy Technology Co ltd
Original Assignee
Jiangsu Shunfeng New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Shunfeng New Energy Technology Co ltd filed Critical Jiangsu Shunfeng New Energy Technology Co ltd
Priority to CN202110785634.2A priority Critical patent/CN113571411B/zh
Publication of CN113571411A publication Critical patent/CN113571411A/zh
Application granted granted Critical
Publication of CN113571411B publication Critical patent/CN113571411B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种N型TOPCon太阳能电池的制作方法,其采用了新的硼扩思路及方法,通过采用降低沉积反应源量降低硼扩后的表面富硼层、采用薄BSG工艺提高表面浓度,进而提升FF,大幅度降低成本和缩短了整个工艺时间。

Description

N型TOPCon太阳能电池的制作方法
技术领域
本发明属于太阳能电池技术领域,具体涉及一种N型TOPCon太阳能电池的制作方法
背景技术
在目前太阳能电池制造行业中,由于其工艺技术的成熟和成本的降低,P型PERC电池片技术已经成为主流,但是P型电池光衰和效率瓶颈等问题被制约了发展。而N型单晶硅具有少子寿命高、杂质少、纯度高等优点,是高效太阳能电池的理想材料。现有N型TOPCon技术可以改善电池表面钝化又可以促进多数载流子传输,进而提升电池的开路电压和填充因子。N型单晶硅较常规的P型单晶硅具有发电量高和可靠性高的双重优势,是未来高效电池的发展方向。
在太阳能电池制造业中,扩散被称为电池的心脏,高效率的太阳能电池需要低表面掺杂浓度的发射器,这样可以减少少数载流子复合带来的损失,提高开路电压和太阳能电池效率;而N型硅片在硼扩散过程中难以避免会形成一层很薄的富硼层(Boron-richlayer,简记BRL)。由于这一层B原子没有活性,而且BRL会导致该部分结构缺陷,所以富硼层严重影响了硅片少数载流子的寿命,最终影响电池的效率。目前TOPCon电池的硼扩工艺时间普遍在3小时以上,同时为了满足去除正面本征多晶硅不被反刻到结区,需要长时间的高温通氧时间获得厚的硼硅玻璃(BSG),成本及产能是生产流程中的瓶颈。
发明内容
为了克服上述缺陷,本发明提供了一种新型的N型TOPCon太阳能电池的制作方法,其采用了新的硼扩思路及方法,通过采用降低沉积反应源量降低硼扩后的表面富硼层、采用薄BSG工艺提高表面浓度,进而提升FF,大幅度降低成本和缩短了整个工艺时间。
为了实现上述目的,本发明的技术方案为:
一种N型TOPCon太阳能电池的制作方法,包括如下步骤:
(a)、双面制绒
(b)、单面硼扩散:利用低压扩散炉,双片合并插入水平舟的石英舟齿中,源量为:60sccm-150sccm,使用BCl3:O2:N2=1:5-15:20-40的流量比例在低压下进行分步递温式沉积扩散;而后降温至700℃-800℃,降温20min-50min,在降温的过程中通入2L-20L氧气进行氧化,控制氧化层BSG厚度在20nm-50nm;
(c)、背面酸刻蚀;
(d)、本征多晶硅;
(e)、双面磷掺杂;
(f)、去除正面PSG及本征多晶硅;
(g)、去除背面PSG及正面BSG;
(h)、钝化;
(i)、双面印刷。
作为本发明的进一步改进:步骤(b)中所述分步递温式沉积扩散具体为:第一步,在低压下先在温度840-850℃进行沉积,时间3-8min,再升高温度至860-880℃,在氮气保护下进行高温推进8-12min;第二步,在低压下先在温度860-880℃进行沉积,时间为6-10min,随后升温至890-910℃同样在氮气保护下进行高温推进8-12min;第三步,在低压下,再使用960℃进行高温推进8-12min。
更进一步的是:所述第一步升温推进的温度与第二步沉积的温度相同。
本发明利用分步递温式沉积扩散,更能取得均匀的沉积方阻;其次第二步在第一步推进后稳定的温度基础上再沉积,有利于硼源的均匀分布,同时少量源量及真空低压沉积在表面的富硼层越少。
作为本发明的进一步改进:步骤(b)中所述的低压是指真空压力为390-410mbar。
本发明采用分步递温式沉积扩散,而上述低压下能使炉管内气流流动性更强,有助于气体的扩散,减少硅片四边与中心的方阻差异,提升均匀性。
作为本发明的进一步改进:步骤(f)中去除正面PSG具体为:配比清洗液,使清洗液中氟化铵与氟化氢的浓度比为5-30:1,使用链式清洗机去除正面的PSG。本发明中由于采用的薄BSG工艺,在薄BSG中硼的固浓度比厚BSG中的固浓度低,氧化层更致密,腐蚀速率相对慢,因此需要同步调整合适清洗方案以此保护正面结区,而氟化氢、氟化铵与二氧化硅反应快慢配合,通过调整氟化铵与氟化氢的浓度配比能够很好的去控制去除PSG的反应刻蚀速度。
本发明的总体原理和效果为:利用通过调节氮气流量,高的氮气流量降低整管的沉积源量,达到低沉积源量的目的,再进行分步递温式扩散;本发明中源量优选60sccm-150sccm,低沉积反应源量进行扩散反应降低硅片表面富硼层,沉积过程中,温度相同时,氧气与硅反应生成的氧化硅厚度是固定值,多余的氧气并不能起到更多的作用,而硼原子与硅会产生富硼层,硼原子越多,产生的富硼层越厚,从而降低反应源流量会达到降低富硼层的作用;
4BCl3+3O2---2B2O3+6Cl2
2B2O3+3Si---4B+3SiO2
Si+O2---SiO2
Si+xB---SiBx
最后本发明还设计了降温制备薄BSG的工艺,在薄BSG中硼的固浓度约在4E20-6E20,氧化温度低及时间短可以提高B扩散结区ECV的表面浓度,进而提升FF,由于硼在硅中的固溶度约合2.2E20,而硼在氧化层中的固溶度超过1E21,氧化时间短会减少硅中的硼原子向表层吸出,从而提升ECV表面浓度,改善接触。
本发明单面硼扩散工艺步骤整个运行时间只需要90min-130min,可大大提升产量约合30-50%,并大幅度降低成本。
本发明提供了新的硼扩思路及方法,通过采用降低沉积反应源量降低硼扩后的表面富硼层、采用薄BSG工艺提高表面浓度,进而提升FF,大幅度降低成本和缩短了整个工艺时间。
具体实施方式
下面结合实施例对本发明作进一步详细说明,但本发明的保护范围不限于此。
实施例1:
本实施例涉及一种N型TOPCon太阳能电池的制作方法,采用N型硅片,电阻率1-2Ω.cm,少子寿命>10ms,包括如下步骤:
1)双面制绒:进行双面碱制绒,形成金字塔绒面;
2)单面硼扩散:使用低压管式扩散,使用三氯化硼BCL3:O2=1:6,硼源源量100sccm,氧气流量600sccm,氮气流量2900sccm,真空压力为400mbar,在温度845℃进行沉积,时间5min,再升高温度至870℃,氮气流量为3000sccm进行高温推进10min;而后在温度870℃时同样通入硼源源量100sccm、氧气流量600sccm、氮气流量2900sccm进行沉积,真空压力400mbar,时间为8min,随后升温至900度,氮气流量3000sccm,压力400mbar进行推进;后再使用960℃、真空压力400mbar下进行高温推进10min;最后在降温至780℃的过程中通入氧气8L进行氧化,降温时间25min,BSG厚度36nm;
3)背面酸刻蚀:使用HF:HNO3:H2O=1:33:55的药液比例进行背面酸绒面刻蚀;
4)本征多晶硅:使用硅烷:氮气=1:5流量比例,温度630℃,在低压气氛中沉积20min,厚度控制在100nm;
5)双面磷掺杂:进行高温退火,温度维持830℃,LN2:N2=1:2,低压气氛下,时间控制在30min,方阻控制在50Ω/□;
6)去除正面PSG及本征多晶硅:配比清洗液,使清洗液中氟化铵与氟化氢的浓度比为10:1,使用链式清洗机去除正面的PSG;在温度70℃,KOH:抛光添加剂=3:1,时间6min中去除正面多晶硅;
7)去除背面PSG及正面BSG:使用HF浸泡清洗去除正面及背面的BSG及PSG;
8)正面氧化铝:使用管式进行双片插片方式镀正面单面氧化铝,厚度约8nm;
9)双面氮化硅:使用管式进行正面及背面钝化氮化硅,正面厚度约80nm,折射率1.9-2.1;背面厚度约85nm,折射率2-2.2;
10)双面印刷——正面、背面进行双次印刷技术并进行烧结。
实施例2:
本实施例涉及一种N型TOPCon太阳能电池的制作方法,包括如下步骤:
1)双面制绒:在槽式机台里,先进行预处理抛光,抛光厚度约5μm左右;KOH:添加剂=7:1,温度维持在80℃,时间约5min进行快速制绒;减薄量控制在0.3g左右;
2)单面硼扩散:使用低压管式扩散,使用三氯化硼BCL3:O2=1:8,硼源源量100sccm,氧气流量800sccm,氮气流量3100sccm,真空压力为400mbar,在温度840℃进行沉积,时间6min,升高温度至865℃,氮气流量为3200sccm进行高温推进11min;而后在温度865℃时同样通入硼源源量100sccm、氧气流量800sccm、氮气流量3100sccm进行沉积,真空压力400mbar,时间为9min,随后升温至905度氮气流量3200sccm,压力400mbar进行推进;再使用960℃、真空压力400mbar进行高温推进11min;最后降温至750℃,在降温过程中时通氧气10L进行氧化,降温35min,BSG厚度约40nm;
3)背面酸刻蚀:使用HF:HNO3:H2O=1:30:57的药液比例进行背面酸绒面刻蚀,减薄量在0.25g左右,反射率控制在35%;
4)本征多晶硅及磷掺杂:利用LPCVD设备,SiH4(硅烷):N2流量比为1:2.8,时间约30min,厚度控制在110nm;而后进行高温退火,温度维持在830℃,LN2:N2流量=1:3;低压气氛下,时间约20min左右;方阻控制在50Ω/□;
5)去除正背面的硼硅玻璃(BSG)、磷硅玻璃(PSG)以及正面多晶硅(Poly):利用配比氟化铵:氟化氢:水=15:1:25药液比例去除正面PSG,而后使用碱抛光工艺氢氧化钾(KOH):抛光添加剂=3:1,温度维持在70℃,时间使用6min,进行正面多晶硅去除,最后进行5%HF浸泡清洗正背面的BSG及PSG;
6)正背面钝化层:利用微导设备进行单面钝化氧化铝(AlOx),厚度控制在3nm左右,而后对正面镀氮氧化硅,厚度约80nm左右,折射率2.0;背面镀氮化硅,厚度约85nm左右,折射率2.1;
7)丝网印刷——分步骤印刷主栅、细栅,经过烧结工艺温度840℃完成成品制作。
按照本工艺制得的产品,经检测并与普通工艺对比如下:
Voc(mV) Isc(mA) FF(%) Eff(%)
常规topCon 0 0 0 0
Gap(新topCon-常规topCon) 2 20 0.5 0.15
由此可见,本发明通过双面生长Poly Si的工艺很好的解决了Poly Si绕镀的清洗问题;同时可有效提升电池的转化效率。
1、充分利用了现有的TOPCon设备,采用薄BSG工艺提高表面浓度,进而提升FF,整个工艺时间缩短了一半;
2、正面采用低源量沉积,减少扩散表面BRL层,并增加炉扩散设备石英器件的使用寿命及降低人力成本,加长了设备维护周期;
3、光电转换效率有0.1%-0.2%的提升。
显然,本实施例可以以许多不同的数值、形式来实现;因此本发明并不限于本文所描述的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (3)

1.一种N型TOPCon太阳能电池的制作方法,其特征在于包括如下步骤:
(a)、双面制绒;
(b)、单面硼扩散:利用低压扩散炉,双片合并插入水平舟的石英舟齿中,源量为:60sccm-150sccm,使用BCl3:O2:N2=1:5-15:20-40的流量比例在低压下进行分步递温式沉积扩散;而后降温至700°C-800°C,降温20min-50min,在降温的过程中通入2L-20L氧气进行氧化,控制氧化层BSG厚度在20nm-50nm;
(c)、背面酸刻蚀;
(d)、本征多晶硅;
(e)、双面磷掺杂;
(f)、去除正面PSG及本征多晶硅;
(g)、去除背面PSG及正面BSG;
(h)、钝化;
(i)、双面印刷;
其中,步骤(b)中所述分步递温式沉积扩散具体为:第一步 ,在低压下先在温度840-850°C进行沉积,时间3-8min,再升高温度至860-880°C,在氮气保护下进行高温推进8-12min;第二步,在低压下先在温度860-880°C进行沉积,时间为6-10min,随后升温至890-910°C同样在氮气保护下进行高温推进8-12min;第三步,在低压下,再使用960°C进行高温推进8-12min;
步骤(b)中所述的低压是指真空压力为390-410mbar。
2.根据权利要求1所述的N型TOPCon太阳能电池的制作方法,其特征在于:所述第一步升温推进的温度与第二步沉积的温度相同。
3.根据权利要求1所述的N型TOPCon太阳能电池的制作方法,其特征在于:步骤(f)中去除正面PSG具体为:配比清洗液,使清洗液中氟化铵与氟化氢的浓度比为5-30:1,使用链式清洗机去除正面的PSG。
CN202110785634.2A 2021-07-12 2021-07-12 N型TOPCon太阳能电池的制作方法 Active CN113571411B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110785634.2A CN113571411B (zh) 2021-07-12 2021-07-12 N型TOPCon太阳能电池的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110785634.2A CN113571411B (zh) 2021-07-12 2021-07-12 N型TOPCon太阳能电池的制作方法

Publications (2)

Publication Number Publication Date
CN113571411A CN113571411A (zh) 2021-10-29
CN113571411B true CN113571411B (zh) 2024-04-05

Family

ID=78164471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110785634.2A Active CN113571411B (zh) 2021-07-12 2021-07-12 N型TOPCon太阳能电池的制作方法

Country Status (1)

Country Link
CN (1) CN113571411B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116536771B (zh) * 2023-06-30 2023-09-29 无锡松煜科技有限公司 一种提高硼扩散均匀度的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766908A (zh) * 2012-07-25 2012-11-07 苏州阿特斯阳光电力科技有限公司 晶体硅太阳能电池的硼扩散方法
CN103632934A (zh) * 2013-11-29 2014-03-12 英利集团有限公司 N型硅片的硼扩散方法、晶体硅太阳能电池及其制作方法
CN107507887A (zh) * 2017-08-25 2017-12-22 苏州阿特斯阳光电力科技有限公司 一种控制掺杂曲线一致性的方法
CN108054088A (zh) * 2017-12-15 2018-05-18 浙江晶科能源有限公司 N型硅片硼扩散方法、晶体硅太阳能电池及其制作方法
CN111341649A (zh) * 2020-02-03 2020-06-26 深圳市拉普拉斯能源技术有限公司 一种n型太阳能电池硼扩散方法
CN111524983A (zh) * 2020-04-03 2020-08-11 常州大学 一种双面选择性发射极高效晶硅电池及其制备方法
CN111628047A (zh) * 2020-06-01 2020-09-04 江苏顺风光电科技有限公司 一种N型TOPCon太阳能电池的制作方法
CN111640825A (zh) * 2020-06-16 2020-09-08 东方日升(常州)新能源有限公司 N型接触钝化太阳电池制造方法及提高良率的方法
CN111668345A (zh) * 2020-06-29 2020-09-15 浙江晶科能源有限公司 一种太阳能电池及其制备方法
CN112201575A (zh) * 2020-09-11 2021-01-08 青海黄河上游水电开发有限责任公司光伏产业技术分公司 一种选择性硼源掺杂方法及双面电池的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766908A (zh) * 2012-07-25 2012-11-07 苏州阿特斯阳光电力科技有限公司 晶体硅太阳能电池的硼扩散方法
CN103632934A (zh) * 2013-11-29 2014-03-12 英利集团有限公司 N型硅片的硼扩散方法、晶体硅太阳能电池及其制作方法
CN107507887A (zh) * 2017-08-25 2017-12-22 苏州阿特斯阳光电力科技有限公司 一种控制掺杂曲线一致性的方法
CN108054088A (zh) * 2017-12-15 2018-05-18 浙江晶科能源有限公司 N型硅片硼扩散方法、晶体硅太阳能电池及其制作方法
CN111341649A (zh) * 2020-02-03 2020-06-26 深圳市拉普拉斯能源技术有限公司 一种n型太阳能电池硼扩散方法
CN111524983A (zh) * 2020-04-03 2020-08-11 常州大学 一种双面选择性发射极高效晶硅电池及其制备方法
CN111628047A (zh) * 2020-06-01 2020-09-04 江苏顺风光电科技有限公司 一种N型TOPCon太阳能电池的制作方法
CN111640825A (zh) * 2020-06-16 2020-09-08 东方日升(常州)新能源有限公司 N型接触钝化太阳电池制造方法及提高良率的方法
CN111668345A (zh) * 2020-06-29 2020-09-15 浙江晶科能源有限公司 一种太阳能电池及其制备方法
CN112201575A (zh) * 2020-09-11 2021-01-08 青海黄河上游水电开发有限责任公司光伏产业技术分公司 一种选择性硼源掺杂方法及双面电池的制备方法

Also Published As

Publication number Publication date
CN113571411A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN111524983B (zh) 一种双面选择性发射极高效晶硅电池及其制备方法
CN110197855B (zh) 用于Topcon电池制作的poly-Si绕镀的去除方法
CN111029436B (zh) 可改善LeTID现象的P型单晶PERC电池及其制作方法
CN111640823B (zh) 一种n型钝化接触电池及其制备方法
CN109004038B (zh) 太阳能电池及其制备方法和光伏组件
CN111129221A (zh) 一种perc太阳能电池碱抛光制备方法
CN112599636B (zh) 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
WO2024066207A1 (zh) 一种新型太阳能电池及其制作方法
CN112820801A (zh) 一种减小se激光损伤的厚氧化层扩散工艺
CN115020546A (zh) 双面钝化接触太阳电池及其制备方法
CN113571411B (zh) N型TOPCon太阳能电池的制作方法
CN111524999A (zh) 一种遂穿氧化钝化电池的制备方法
CN114267753A (zh) 一种TOPCon太阳能电池及其制备方法、光伏组件
CN116666479B (zh) 一种双面发电的高效选择性发射极晶硅电池及其制备方法
CN114335237A (zh) 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
CN218160392U (zh) 一种太阳能电池
CN117133834A (zh) 一种联合钝化背接触电池的短流程制备方法及其应用
CN117038799A (zh) 一种bc电池制备方法及bc电池
CN112164733A (zh) 一种太阳能电池扩散深结制备方法
CN117153948A (zh) 一种钝化接触太阳能电池制备方法
CN115132884B (zh) 一种异质结太阳能电池的制作方法
CN114628547B (zh) 一种背表面局域形貌的太阳电池及其制备方法
CN112838144B (zh) 一种金字塔绒面上优化均匀性化的工艺方法
CN112768565B (zh) 一种钝化接触结构制备方法和具有钝化接触结构的晶体硅
CN112447863B (zh) 一种太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant