CN112510112B - 一种高致密性氧化层的扩散工艺方法 - Google Patents

一种高致密性氧化层的扩散工艺方法 Download PDF

Info

Publication number
CN112510112B
CN112510112B CN202011218485.3A CN202011218485A CN112510112B CN 112510112 B CN112510112 B CN 112510112B CN 202011218485 A CN202011218485 A CN 202011218485A CN 112510112 B CN112510112 B CN 112510112B
Authority
CN
China
Prior art keywords
deposition
oxidation
oxide layer
temperature
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011218485.3A
Other languages
English (en)
Other versions
CN112510112A (zh
Inventor
王森栋
白翔
蒋万昌
赵晨
戴大洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Luan Solar Energy Technology Co Ltd
Original Assignee
Shanxi Luan Solar Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Luan Solar Energy Technology Co Ltd filed Critical Shanxi Luan Solar Energy Technology Co Ltd
Priority to CN202011218485.3A priority Critical patent/CN112510112B/zh
Publication of CN112510112A publication Critical patent/CN112510112A/zh
Application granted granted Critical
Publication of CN112510112B publication Critical patent/CN112510112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • H01L21/2256Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides through the applied layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及太阳能电池生产领域。一种高致密性氧化层的扩散工艺方法,按如下的步骤进行前氧化、第一步沉积、第一步推进、第二步沉积、第二步推进、第三步沉积、第三步推进、后氧化。通过前氧化及多次分布式沉积推进,有效改善PN结深,降低死层,减少复合;通过后氧化,使用低温,高浓度进行沉积,即增加了氧化层厚度,又不会使磷源近一步的扩散进电池片,减少了扩散半成品控制难度。

Description

一种高致密性氧化层的扩散工艺方法
技术领域
本发明涉及太阳能电池生产领域。
背景技术
在晶体硅太阳能电池生产工艺中,扩散是核心工序。在硅片表面形成均匀的高质量的 p-n 结是电池效率提升的关键,也是工艺追求的目标。目前,常规生产的扩散工艺是在管式的扩散炉内,通过液态磷源(或硼源)的挥发,在硅片表面沉积磷原子(或硼原子),然后进行向硅片体内扩散,制成 p-n 结。为配合无机碱为基础的碱背抛工艺,必须使用高致密性的氧化层来保护PN结,才能达到碱抛刻蚀替代酸抛刻蚀,扩散工艺后氧浓度加大,有效改善氧化层厚度,通过氧化层来保护正面绒面不被刻蚀掉。
发明内容
本发明所要解决的技术问题是:如何形成致密的氧化层,以在后续碱背抛工艺中保护PN结。
本发明所采用的技术方案是:一种高致密性氧化层的扩散工艺方法,按如下的步骤进行
步骤一、前氧化,其中时间200-500s,氮气0-2000sccm,氧气800-1000sccm ,温度700-780℃;
步骤二、第一步沉积,其中时间100-300s,氮气1000-2000sccm,氧气500-800sccm,三氯氧磷400-600sccm,温度700-780℃;
步骤三、第一步推进,其中时间100-300s,氮气1000-2000sccm,氧气700-1000sccm,温度780-850℃;第一步推进,温度在第一步沉积基础上提升70-80℃,氧气流量在第一步沉积基础上提升200 sccm,停止三氯氧磷,其它工艺条件不变。
步骤四、第二步沉积,其中时间100-300s,氮气1000-2000sccm,氧气400-700sccm,三氯氧磷500-700sccm,温度800-820℃;第二步沉积,温度在第一步沉积基础上提升40-100℃,氧气流量在第一步沉积基础上减少100 sccm,三氯氧磷在第一步沉积基础上提升100 sccm,其它工艺条件不变。
步骤五、第二步推进,其中时间100-300s,氮气1000-2000sccm,氧气700-1000sccm,温度820-850℃;第二步推进,停止三氯氧磷,温度在第二步沉积基础上提升30℃,氧气流量在第二步沉积基础上提升300 sccm,其它工艺条件不变。
步骤六、第三步沉积,其中时间100-300s,氮气1000-2000sccm,氧气500-800sccm,三氯氧磷400-600sccm,温度820-850℃;第三步沉积,温度在第二步沉积基础上提升30℃,氧气流量在第二步沉积基础上提升100 sccm,三氯氧磷在第二步沉积基础上减少100sccm,其它工艺条件不变。
步骤七、第三步推进,其中时间100-300s,氮气1000-2000sccm,氧气700-1000sccm,温度820-850℃;第三步推进,停止三氯氧磷,氧气流量在第三步沉积基础上提升200sccm,其它工艺条件不变。
步骤八、后氧化,其中时间500-1000s,氮气0-100sccm,氧气1000-3000sccm ,温度500-700℃。
前氧化分为三步,首先,调整氮气1000-2000sccm,氧气800-1000sccm,温度700-780℃,氧化75-200s,然后,调整氮气0sccm,氧气800-1000sccm,温度780℃,氧化50-100 s,最后,调整氮气1000-2000sccm,氧气800-1000sccm,温度700-780℃,氧化75-200s。使在硅片表面形成一层高致密性氧化层。
后氧化分为三步,首先,调整氮气100sccm,氧气1000-3000sccm ,温度500-700℃,氧化200-400s,然后,调整氮气0sccm,氧气1000-3000sccm ,温度500-700℃,氧化200-400s,最后,调整氮气100sccm,氧气1000-3000sccm ,温度500-700℃,氧化200-400s。
本发明的有益效果是:通过前氧化及多次分布式沉积推进,有效改善PN结深,降低死层,减少复合;通过后氧化,使用低温,高浓度进行沉积,即增加了氧化层厚度,又不会使磷源近一步的扩散进电池片,减少了扩散半成品控制难度。
具体实施方式
一种高致密性氧化层的扩散工艺方法,按如下的步骤进行
步骤一、前氧化,首先,调整氮气1500sccm,氧气850sccm,温度750℃,氧化100s,然后,调整氮气0sccm,氧气1000sccm,温度780℃,氧化50s,最后,调整氮气1500sccm,氧气850sccm,温度750℃,氧化100s。使在硅片表面形成一层高致密性氧化层;
步骤二、第一步沉积,其中时间200s,氮气1500sccm,氧气600sccm ,三氯氧磷500sccm,温度780℃;
步骤三、第一步推进,其中时间200s,氮气1500sccm,氧气800sccm ,温度850℃;步骤四、第二步沉积,其中时间200s,氮气1500sccm,氧气500sccm ,三氯氧磷600sccm,温度820℃;
步骤五、第二步推进,其中时间200s,氮气1500sccm,氧气900sccm ,温度850℃;
步骤六、第三步沉积,其中时间200s,氮气1500sccm,氧气600sccm ,三氯氧磷500sccm,温度850℃;
步骤七、第三步推进,其中时间200s,氮气1500sccm,氧气800sccm ,温度850℃;
步骤八、后氧化,首先,调整氮气100sccm,氧气2500sccm ,温度600℃,氧化300s,然后,调整氮气0sccm,氧气2500sccm ,温度600℃,氧化200s,最后,调整氮气100sccm,氧气2500sccm ,温度600℃,氧化300s。

Claims (1)

1.一种高致密性氧化层的扩散工艺方法,其特征在于:按如下的步骤进行
步骤一、前氧化,首先,调整氮气1000-2000sccm,氧气800-1000sccm,温度700-780℃,氧化75-200s,然后,调整氮气0sccm,氧气800-1000sccm,温度780℃,氧化50-100 s,最后,调整氮气1000-2000sccm,氧气800-1000sccm,温度700-780℃,氧化75-200s,使在硅片表面形成一层高致密性氧化层;
步骤二、第一步沉积,其中时间100-300s,氮气1000-2000sccm,氧气500-800sccm ,三氯氧磷400-600sccm,温度700-780℃;
步骤三、第一步推进,其中时间100-300s,氮气1000-2000sccm,氧气700-1000sccm ,温度780-850℃;
步骤四、第二步沉积,其中时间100-300s,氮气1000-2000sccm,氧气400-700sccm ,三氯氧磷500-700sccm,温度800-820℃;
步骤五、第二步推进,其中时间100-300s,氮气1000-2000sccm,氧气700-1000sccm ,温度820-850℃;
步骤六、第三步沉积,其中时间100-300s,氮气1000-2000sccm,氧气500-800sccm ,三氯氧磷400-600sccm,温度820-850℃;
步骤七、第三步推进,其中时间100-300s,氮气1000-2000sccm,氧气700-1000sccm ,温度820-850℃;
步骤八、后氧化,后氧化分为三步,首先,调整氮气100sccm,氧气1000-3000sccm ,温度500-700℃,氧化200-400s,然后,调整氮气0sccm,氧气1000-3000sccm ,温度500-700℃,氧化200-400s,最后,调整氮气100sccm,氧气1000-3000sccm ,温度500-700℃,氧化200-400s。
CN202011218485.3A 2020-11-04 2020-11-04 一种高致密性氧化层的扩散工艺方法 Active CN112510112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011218485.3A CN112510112B (zh) 2020-11-04 2020-11-04 一种高致密性氧化层的扩散工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011218485.3A CN112510112B (zh) 2020-11-04 2020-11-04 一种高致密性氧化层的扩散工艺方法

Publications (2)

Publication Number Publication Date
CN112510112A CN112510112A (zh) 2021-03-16
CN112510112B true CN112510112B (zh) 2022-03-15

Family

ID=74955853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011218485.3A Active CN112510112B (zh) 2020-11-04 2020-11-04 一种高致密性氧化层的扩散工艺方法

Country Status (1)

Country Link
CN (1) CN112510112B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257954B (zh) * 2021-04-20 2022-05-10 山西潞安太阳能科技有限责任公司 一种解决碱抛se-perc电池el不良的方法
CN115172518B (zh) * 2022-07-08 2024-07-30 酒泉正泰新能源科技有限公司 一种太阳能电池的多次氧化扩散方法、制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9837575B2 (en) * 2013-02-06 2017-12-05 Panasonic Production Engineering Co., Ltd. Method of manufacturing solar battery cell
CN107910256A (zh) * 2017-11-07 2018-04-13 山西潞安太阳能科技有限责任公司 太阳能电池低表面磷源浓度扩散方法
CN109980047B (zh) * 2019-03-29 2021-02-12 山西潞安太阳能科技有限责任公司 一种匹配选择性发射极的低压扩散工艺

Also Published As

Publication number Publication date
CN112510112A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN110197855B (zh) 用于Topcon电池制作的poly-Si绕镀的去除方法
CN112510112B (zh) 一种高致密性氧化层的扩散工艺方法
CN110164759B (zh) 一种区域性分层沉积扩散工艺
CN109980047B (zh) 一种匹配选择性发射极的低压扩散工艺
CN111192935B (zh) 一种管式perc太阳能电池背钝化结构及其制备方法
CN115000246B (zh) P型钝化接触电池制备方法及钝化接触电池
CN113604791B (zh) 一种基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法及应用
CN110106493B (zh) 利用管式pecvd设备制备背面钝化膜的方法
JP2012506629A (ja) 半導体デバイス製造方法、半導体デバイス、及び半導体デバイス製造設備
CN117133834B (zh) 一种联合钝化背接触电池的短流程制备方法及其应用
CN103094419A (zh) 一种高效太阳能电池制备方法
CN115692545A (zh) 一种提升PECVD路线N型TOPCon电池多晶硅活性磷掺杂浓度的方法
CN109545673B (zh) 一种晶体硅太阳电池用无氧扩散方法
CN114023635A (zh) 一种提效降本的太阳能电池硼扩散方法
CN114373674A (zh) 一种高效的硼扩散工艺
CN113193082A (zh) 一种TOPCon太阳能电池的制备方法
CN209804689U (zh) 轻掺杂基片、带有选择性发射极的基片以及太阳能电池
CN112582499A (zh) 一种适用于多主栅搭配大尺寸硅片的扩散工艺
CN116288251A (zh) 一种管式变温硼扩散沉积工艺
CN115692533A (zh) 一种TOPCon电池及其制备方法
CN112164733A (zh) 一种太阳能电池扩散深结制备方法
CN110137307B (zh) 一种低压环境下的高均匀性浅结扩散工艺
CN114242840B (zh) 匹配se的太阳能电池扩散方法
CN113571411A (zh) N型TOPCon太阳能电池的制作方法
CN113066896A (zh) 一种太阳能电池发射结制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant