CN110137307B - 一种低压环境下的高均匀性浅结扩散工艺 - Google Patents

一种低压环境下的高均匀性浅结扩散工艺 Download PDF

Info

Publication number
CN110137307B
CN110137307B CN201910396644.XA CN201910396644A CN110137307B CN 110137307 B CN110137307 B CN 110137307B CN 201910396644 A CN201910396644 A CN 201910396644A CN 110137307 B CN110137307 B CN 110137307B
Authority
CN
China
Prior art keywords
pressure
temperature
nitrogen
furnace body
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910396644.XA
Other languages
English (en)
Other versions
CN110137307A (zh
Inventor
何一峰
赵庆国
吕文辉
姚春梅
汪燕萍
张宇辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Beisheng Green Energy Technology Co ltd
Zhejiang Beyondsun Pv Co ltd
Original Assignee
Zhejiang Beyondsun Pv Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Beyondsun Pv Co ltd filed Critical Zhejiang Beyondsun Pv Co ltd
Priority to CN201910396644.XA priority Critical patent/CN110137307B/zh
Publication of CN110137307A publication Critical patent/CN110137307A/zh
Application granted granted Critical
Publication of CN110137307B publication Critical patent/CN110137307B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2233Diffusion into or out of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开的一种低压环境下的高均匀性浅结扩散工艺,包括以下步骤:(1)将硅片导入石英舟,石英舟恒温常压导入已净化炉管;(2)抽真空至炉体压力为50‑100mbar,对炉体分段扩散加热、恒温沉积、恒温分段推进加热;(3)在50‑100mbar下,对炉体降温并退火;(4)充氮恢复常压并导出石英舟,与现有技术相比,本发明可通过调整电池片PN的均匀性而降低表面扩散浓度,并且均匀性较好的结能更好的匹配烧结,从而提高表面欧姆接触品质,结合退火工艺提高少子寿命,有效提高电池片的电性能参数,并最终提高转换效率。

Description

一种低压环境下的高均匀性浅结扩散工艺
技术领域
本发明涉及太阳能电池技术领域,具体涉及一种低压环境下的高均匀性浅结扩散工艺。
背景技术
P型多晶硅片在扩散工序需在其表面进行磷沉积从而形成一层N型硅层,组成PN结结构,在生产过程中表面结的深度及均匀性会直接影响电池片的品质,较浅的N型层将大大减少表面死层的出现,减少对体材料掺杂影响,提高少子寿命,从而提高电池片的转换效率;更加均匀的PN结将有助于与后端烧结的匹配情况,减少因方阻均匀性较差造成的局部烧结不良的情况。
实际生产中由于无法实时扩散深度,而采用监控电池片表面各区域方块电阻,行业现有工艺是将方阻控制在100-110,单片方阻不均匀性控制在8%以内,整管方阻不均匀性控制在6%以内,均匀度不够,方阻的控制区间小,进而单片及整管的不均匀性的控制范围小,电池片效率低。
发明内容
为解决上述问题,本发明提供一种低压环境下的高均匀性浅结扩散工艺,提高了电池片PN表面结的均匀度,方阻控制区间范围大,少子寿命长,电池片效率高。
本发明解决的技术方案是,提供一种低压环境下的高均匀性浅结扩散工艺,包括以下步骤:(1)将硅片导入石英舟,石英舟恒温常压导入已净化炉管;(2)抽真空至炉体压力为50-100mbar,对炉体分段扩散加热、恒温沉积、恒温分段推进加热;(3)在50-100mbar下,对炉体降温并退火;(4)充氮恢复常压并导出石英舟。
优选地,所述步骤(2)中,分段扩散加热包括恒温扩散、变温扩散。
优选地,所述步骤(2)中,所述恒温分段推进加热包括3段恒温推进加热。
优选地,所述恒温温度为780℃。
优选地,所述变温扩散温度为800℃。
优选地,所述步骤(3)中,炉体降温至750℃并退火。
优选地,所述步骤(2)、步骤(3)中,还包括提供气体环境。
优选地,所述气体包括氧气、氮气中的一种或两种。
优选地,所述氧气质量流量为200-900 SCCM,氮气质量流量为500-1000 SCCM。
本方案中,通过低压环境下的高均匀性浅结扩散,随着反应管真空度的提升,分子平均自由行程加大,增强分子的穿透力,使源掺杂均匀性更好,消减了传统扩散的光环效应(即硅片中间方阻值高,而四周方阻值低),从而提升掺杂均匀性;同时,降低管内的压力可减少湍流产生,利于气流的稳定,提高气氛均匀性,从而提高扩散的均匀性;使用低压扩散炉,可以实现快速排空,减少残留源对结的影响,利于形成浅结,减少表面复合,此外,在低压扩散环境中,掺杂原子分压比大,降低掺杂源耗,降低成本。
与现有技术相比,经本方案处理的多晶硅片扩散结均匀性的提升,大幅降低现有扩散表面的结深,同时不出现过品质异常的扩散结,由于扩散结均匀性的提升,有利于烧结工艺的优化,减少局部烧结不良的情况,由于显现浅结的优势,提高电池片转换效率,低压环境分子平均自由行程加大,可降低80-90%的化学品用量降低生产成本,且将现有400-500片一管的扩散模式改为800-1200片一管,降低单位能耗,提高生产效率,降低生产成本。
本发明可通过调整电池片PN的均匀性而降低表面扩散浓度,并且均匀性较好的结能更好的匹配烧结,从而提高表面欧姆接触品质,结合退火工艺提高少子寿命,有效提高电池片的电性能参数,并最终提高转换效率。
具体实施方式
以下是本发明的具体实施例,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
本方案中所述的扩散时要通入大量纯氮气作为稀释气体,故称大氮,同时还有一路量比较小的氮气要通过磷源瓶携带磷源进入管体,故称小氮。
实施例1
按照以下工艺进行电池片扩散:
统一收集传统酸制绒后的硅片;
将硅片导入低压工艺专用石英舟;
净化炉管,时间20s,温度780℃,炉体压力为常压,气体介质为氮气,大氮质量流量为3000SCCM;
进舟,时间1000s,温度780℃,炉体压力为常压,气体介质为氮气,大氮质量流量为3000SCCM;
恒温扩散,时间400s,温度780℃,炉体压力为常压,气体介质为氧气与氮气,质量流量氧气为500SCCM,大氮为500SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM。
恒温沉积,时间200s,温度800℃,炉体压力为常压,气体介质为氮气,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM。
恒温推进,时间1000s,温度800℃,炉体压力为常压,气体介质为氧气与氮气,质量流量氧气为200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM。
降温,时间400s,温度750℃,炉体压力为常压,气体介质为氧气与氮气,质量流量氧气为900SCCM,大氮1000SCCM。
退火,时间600s,温度750℃,炉体压力为常压,气体介质为氮气,大氮1000SCCM。
检测,炉体压力为常压。
出舟,时间1000s,温度780℃,炉体压力为常压,气体介质为氮气,大氮3000SCCM。
保温待用,温度780℃,炉体压力为常压,气体介质为氮气,大氮3000SCCM。
如下表所示,为酸制绒后扩散120方阻不均匀性:
Figure DEST_PATH_IMAGE002
使用实施例1工艺,方阻控制到120均匀性就会有较大的偏差,中心与四周的方阻会有20-30的差别,以此状态至印刷烧结,必须降低烧结温度,否则会有部分区域烧穿,造成不良片,但由于被动地降低烧结温度且各区域烧结效果有较大差别,极易造成效率的损失。
实施例2
按照以下工艺进行电池片扩散:
统一收集传统酸制绒后的硅片;
将硅片导入低压工艺专用石英舟;
净化炉管,时间20s,温度780℃,炉体压力为常压,气体介质为氮气,大氮质量流量为3000SCCM;
进舟,时间1000s,温度780℃,炉体压力为常压,气体介质为氮气,大氮质量流量为3000SCCM;
主抽真空,时间240s,温度780℃,炉体压力为50mbar;
检漏,时间60s,温度780℃,炉体压力为50mbar;
抽真空,时间40s,温度780℃,炉体压力为50mbar;
恒温扩散,时间400s,温度780℃,炉体压力为50mbar,氧气500SCCM,大氮500SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
变温扩散,时间300s,温度800℃,炉体压力为50mbar,氧气200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM;
恒温沉积,时间200s,温度800℃,炉体压力为50mbar,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
恒温推进一段,时间300s,温度800℃,炉体压力为50 mbar,氧气200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM;
恒温推进二段,时间500s,温度800℃,炉体压力为50 mbar,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
恒温推进三段,时间200s,温度800℃,炉体压力为50 mbar,氧气200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM;
变温扩散,时间300s,温度830℃,炉体压力为50mbar,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
恒温推进,时间600s,温度830℃,炉体压力为50mbar,大氮1000SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM。
降温,时间400s,温度750℃,炉体压力为50mbar,氧气900SCCM,大氮1000SCCM。
退火,时间600s,温度750℃,炉体压力为50mbar,大氮1000SCCM;
充氮,炉体压力至常压;
检测,炉体压力为常压;
出舟,时间1000s,温度780℃,炉体压力为常压,大氮3000SCCM;
保温待用,温度780℃,炉体压力为常压,大氮3000SCCM。
如下表所示,为实施例2下的120方阻不均匀性:
Figure DEST_PATH_IMAGE004
根据实验数据,在本发明下,扩散工序可将方阻控制提升至120,其均匀性要好于常规扩散下120方阻,据需要可在本发明下将方阻进一步提升至130。
本方案中,多段推进、多段扩散可减少单次扩散的源量,减少局部掺杂浓度过高,形成死层区域影响电池片转换效率,控制各个扩散层的扩散浓度和深度,形成不同扩散层,并控制各个扩散层的扩散时间、温度,形成更加均匀的PN结。
下表为实施例1与实施例2所制备的电池片参数对比,结果表明由实施例2所制备的电池片PN的均匀性而降低表面扩散浓度,并且均匀性较好的结能更好的匹配烧结,从而提高表面欧姆接触品质,结合退火工艺提高少子寿命,有效提高电池片的电性能参数,并最终提高转换效率。
Figure DEST_PATH_IMAGE006
实施例3
按照以下工艺进行电池片扩散:
统一收集传统酸制绒后的硅片;
将硅片导入低压工艺专用石英舟;
净化炉管,时间20s,温度780℃,炉体压力为常压,气体介质为氮气,大氮质量流量为3000SCCM;
进舟,时间1000s,温度780℃,炉体压力为常压,气体介质为氮气,大氮质量流量为3000SCCM;
主抽真空,时间240s,温度780℃,炉体压力为100mbar;
检漏,时间60s,温度780℃,炉体压力为100mbar;
抽真空,时间40s,温度780℃,炉体压力为100mbar;
恒温扩散,时间400s,温度780℃,炉体压力为100mbar,氧气500SCCM,大氮500SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
变温扩散,时间300s,温度800℃,炉体压力为100mbar,氧气200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM;
恒温沉积,时间200s,温度800℃,炉体压力为100mbar,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
恒温推进一段,时间300s,温度800℃,炉体压力为100 mbar,氧气200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM;
恒温推进二段,时间500s,温度800℃,炉体压力为100 mbar,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
恒温推进三段,时间200s,温度800℃,炉体压力为100 mbar,氧气200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM;
变温扩散,时间300s,温度830℃,炉体压力为100mbar,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
恒温推进,时间600s,温度830℃,炉体压力为100mbar,大氮1000SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM。
降温,时间400s,温度750℃,炉体压力为100mbar,氧气900SCCM,大氮1000SCCM。
退火,时间600s,温度750℃,炉体压力为100mbar,大氮1000SCCM;
充氮,炉体压力至常压;
检测,炉体压力为常压;
出舟,时间1000s,温度780℃,炉体压力为常压,大氮3000SCCM;
保温待用,温度780℃,炉体压力为常压,大氮3000SCCM。
实施例4
按照以下工艺进行电池片扩散:
统一收集传统酸制绒后的硅片;
将硅片导入低压工艺专用石英舟;
净化炉管,时间20s,温度780℃,炉体压力为常压,气体介质为氮气,大氮质量流量为3000SCCM;
进舟,时间1000s,温度780℃,炉体压力为常压,气体介质为氮气,大氮质量流量为3000SCCM;
主抽真空,时间240s,温度780℃,炉体压力为80mbar;
检漏,时间60s,温度780℃,炉体压力为80mbar;
抽真空,时间40s,温度780℃,炉体压力为80mbar;
恒温扩散,时间400s,温度780℃,炉体压力为80mbar,氧气500SCCM,大氮500SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
变温扩散,时间300s,温度800℃,炉体压力为80mbar,氧气200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM;
恒温沉积,时间200s,温度800℃,炉体压力为80mbar,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
恒温推进一段,时间300s,温度800℃,炉体压力为80 mbar,氧气200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM;
恒温推进二段,时间500s,温度800℃,炉体压力为80 mbar,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
恒温推进三段,时间200s,温度800℃,炉体压力为80 mbar,氧气200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM;
变温扩散,时间300s,温度830℃,炉体压力为80mbar,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
恒温推进,时间600s,温度830℃,炉体压力为80mbar,大氮1000SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM。
降温,时间400s,温度750℃,炉体压力为80mbar,氧气900SCCM,大氮1000SCCM。
退火,时间600s,温度750℃,炉体压力为80mbar,大氮1000SCCM;
充氮,炉体压力至常压;
检测,炉体压力为常压;
出舟,时间1000s,温度780℃,炉体压力为常压,大氮3000SCCM;
保温待用,温度780℃,炉体压力为常压,大氮3000SCCM。
以上未涉及之处,均适用于现有技术。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (2)

1.一种低压环境下的高均匀性浅结扩散工艺,其特征在于,包括以下步骤:
将硅片导入石英舟,石英舟恒温常压导入已净化炉管;
抽真空至炉体压力为50-100mbar,对炉体分段扩散加热、恒温沉积、恒温分段推进加热;所述分段扩散加热包括恒温扩散和变温扩散,所述恒温扩散的条件为时间400s,温度780℃,炉体压力为50mbar,氧气500SCCM,大氮500SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM,所述分段扩散加热的变温扩散的条件为时间300s,温度800℃,炉体压力为50mbar,氧气200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM;恒温沉积的条件为时间200s,温度800℃,炉体压力为50mbar,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;恒温分段推进加热包括恒温推进一段、恒温推进二段和恒温推进三段,恒温推进一段的条件为时间300s,温度800℃,炉体压力为50 mbar,氧气200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM,恒温推进二段的条件为时间500s,温度800℃,炉体压力为50 mbar,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM,恒温推进三段的条件为时间200s,温度800℃,炉体压力为50 mbar,氧气200SCCM,大氮900SCCM,打开通源管路,源瓶压力500mbar,小氮730SCCM;
变温扩散,时间300s,温度830℃,炉体压力为50mbar,大氮800SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
恒温推进,时间600s,温度830℃,炉体压力为50mbar,大氮1000SCCM,打开通源管路,源瓶压力500mbar,小氮800SCCM;
在50-100mbar下,对炉体降温并退火;
充氮恢复常压并导出石英舟。
2.根据权利要求1所述的一种低压环境下的高均匀性浅结扩散工艺,其特征在于,所述炉体降温至750℃并退火。
CN201910396644.XA 2019-05-13 2019-05-13 一种低压环境下的高均匀性浅结扩散工艺 Active CN110137307B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910396644.XA CN110137307B (zh) 2019-05-13 2019-05-13 一种低压环境下的高均匀性浅结扩散工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910396644.XA CN110137307B (zh) 2019-05-13 2019-05-13 一种低压环境下的高均匀性浅结扩散工艺

Publications (2)

Publication Number Publication Date
CN110137307A CN110137307A (zh) 2019-08-16
CN110137307B true CN110137307B (zh) 2021-10-22

Family

ID=67573600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910396644.XA Active CN110137307B (zh) 2019-05-13 2019-05-13 一种低压环境下的高均匀性浅结扩散工艺

Country Status (1)

Country Link
CN (1) CN110137307B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113284794B (zh) * 2021-02-25 2023-03-24 宁夏隆基乐叶科技有限公司 一种硅基底的掺杂方法、太阳能电池及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282087A (en) * 1976-06-02 1977-07-08 Seiko Epson Corp Production of solar cell
CN102945797A (zh) * 2012-12-03 2013-02-27 天威新能源控股有限公司 一种低温低表面浓度高方阻扩散工艺
CN103681976A (zh) * 2013-12-27 2014-03-26 百力达太阳能股份有限公司 一种高效低成本太阳电池扩散工艺
CN105070782A (zh) * 2015-06-19 2015-11-18 浙江宝利特新能源股份有限公司 一种太阳能电池硅片生产过程中的低压扩散工艺
CN104409339B (zh) * 2014-11-12 2017-03-15 浙江晶科能源有限公司 一种硅片的p扩散方法和太阳能电池的制备方法
CN108321255A (zh) * 2018-02-28 2018-07-24 无锡尚德太阳能电力有限公司 应用于多晶黑硅太阳能电池的低压扩散工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108315A (ja) * 1982-12-14 1984-06-22 Toshiba Corp 半導体ウエハの拡散処理方法
US4556437A (en) * 1984-07-16 1985-12-03 Victory Engineering Corporation Method of diffusing silicon slices with doping materials
CN102903619B (zh) * 2012-10-31 2014-11-19 湖南红太阳光电科技有限公司 一种实现深结低表面浓度的晶体硅扩散工艺
CN105870217B (zh) * 2015-01-12 2017-05-17 浙江光隆能源科技股份有限公司 改进的多晶太阳电池的扩散工艺
CN106449868B (zh) * 2016-08-31 2018-01-05 东方日升新能源股份有限公司 太阳能电池硅片的扩散方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282087A (en) * 1976-06-02 1977-07-08 Seiko Epson Corp Production of solar cell
CN102945797A (zh) * 2012-12-03 2013-02-27 天威新能源控股有限公司 一种低温低表面浓度高方阻扩散工艺
CN103681976A (zh) * 2013-12-27 2014-03-26 百力达太阳能股份有限公司 一种高效低成本太阳电池扩散工艺
CN104409339B (zh) * 2014-11-12 2017-03-15 浙江晶科能源有限公司 一种硅片的p扩散方法和太阳能电池的制备方法
CN105070782A (zh) * 2015-06-19 2015-11-18 浙江宝利特新能源股份有限公司 一种太阳能电池硅片生产过程中的低压扩散工艺
CN108321255A (zh) * 2018-02-28 2018-07-24 无锡尚德太阳能电力有限公司 应用于多晶黑硅太阳能电池的低压扩散工艺

Also Published As

Publication number Publication date
CN110137307A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN110164759B (zh) 一种区域性分层沉积扩散工艺
CN111341649B (zh) 一种n型太阳能电池硼扩散方法
CN107681018B (zh) 一种太阳能电池片的低压氧化工艺
CN113421944B (zh) 一种提高晶硅太阳能电池转换效率的氧化退火工艺
CN111384210B (zh) 一种perc叠加se的高开压扩散高方阻工艺
WO2022166040A1 (zh) 一种适用于hbc电池的硼扩散方法
CN116682894B (zh) 提升TOPCon电池ALD钝化膜批间均匀性的方法及应用
CN115094521A (zh) 一种硼扩散反应系统及其工艺方法
CN115692545A (zh) 一种提升PECVD路线N型TOPCon电池多晶硅活性磷掺杂浓度的方法
CN110137307B (zh) 一种低压环境下的高均匀性浅结扩散工艺
CN111293189A (zh) 一种基于水平放置lpcvd设备的隧穿氧化方法
CN114373674A (zh) 一种高效的硼扩散工艺
CN112510112A (zh) 一种高致密性氧化层的扩散工艺方法
CN114823969B (zh) 一种提升钝化接触结构性能的低温氢等离子体辅助退火方法和TOPCon太阳能电池
CN114695598A (zh) 一种浅结扩散发射极的晶硅太阳能电池的制备方法及其应用
CN113555468B (zh) 一种提升n型硅片硼扩散方阻均匀性的工艺
CN115064606B (zh) 一种用于提高多晶硅层钝化效果的水汽退火工艺
CN114759118A (zh) 一种太阳能电池的无氧推进低压扩散工艺
CN114242840B (zh) 匹配se的太阳能电池扩散方法
CN109037395B (zh) 一种提高方阻均匀性的扩散工艺
CN115148853B (zh) 一种管式单面氧化铝镀膜方法、perc电池及光伏组件
CN113206008B (zh) 太阳能电池的扩散方法和太阳能电池
CN118007096A (zh) 一种TOPCon太阳能电池的LPCVD工艺
CN118712242A (zh) 一种隧穿氧化物钝化接触结构及其制备方法
CN114582714A (zh) 一种基于硼扩散的湿氧氧化扩散工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221118

Address after: 313000 No. 800, Zhenbei Road, Zhili Town, Huzhou City, Zhejiang Province

Patentee after: ZHEJIANG BEYONDSUN PV Co.,Ltd.

Patentee after: Zhejiang Beisheng Green Energy Technology Co.,Ltd.

Address before: 313000 800 Zhenbei Road, Zhili Town, Wuxing District, Huzhou City, Zhejiang Province

Patentee before: ZHEJIANG BEYONDSUN PV Co.,Ltd.