CN113193082A - 一种TOPCon太阳能电池的制备方法 - Google Patents

一种TOPCon太阳能电池的制备方法 Download PDF

Info

Publication number
CN113193082A
CN113193082A CN202110473045.0A CN202110473045A CN113193082A CN 113193082 A CN113193082 A CN 113193082A CN 202110473045 A CN202110473045 A CN 202110473045A CN 113193082 A CN113193082 A CN 113193082A
Authority
CN
China
Prior art keywords
temperature
deposition
diffusion
layer
front surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110473045.0A
Other languages
English (en)
Inventor
孙玉峰
瞿辉
曹玉甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Shunfeng Solar Energy Technology Co ltd
Original Assignee
Changzhou Shunfeng Solar Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Shunfeng Solar Energy Technology Co ltd filed Critical Changzhou Shunfeng Solar Energy Technology Co ltd
Priority to CN202110473045.0A priority Critical patent/CN113193082A/zh
Publication of CN113193082A publication Critical patent/CN113193082A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • C30B31/08Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state the diffusion materials being a compound of the elements to be diffused
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/005Oxydation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种TOPCon太阳能电池的制备方法,包括以下步骤:1)以N型硅片作为衬底进行清洗制绒;2)正面硼扩散;3)背面进行酸清洗、刻蚀;4)制遂穿氧化层以及多晶硅层:先双面生产一层氧化层,后采用分步法进行双面多晶硅层的制备;5)背面磷扩散:采用两步沉积法,先进行低温沉积低温推进,然后再进行高温沉积推进,后降温退火;6)去除正面PSG,去除正面整面多晶硅层;7)去BSG/PSG;8)双面钝化;9)印刷烧结。本发明通过双面生长Poly Si的工艺很好的解决了Poly Si绕镀的清洗问题;同时可有效提升电池的转化效率。

Description

一种TOPCon太阳能电池的制备方法
技术领域
本发明属于太阳能电池领域,具体涉及一种双面poly结构的TOPCon结构太阳能电池的制备方法。
背景技术
隧穿氧化层钝化接触(TOPCon)太阳能电池是近年来由德国弗兰霍夫太阳能研究所提出的一种新型硅太阳能电池。太阳能电池的基本电池结构为背面结构依次为n型硅片、钝化隧穿层、掺杂n型薄膜硅层、金属电极层,当电池工作时,电子从n型硅片隧穿通过氧化硅层进入掺杂n型薄膜硅层中。双面poly结构的TOPCON电池制备流程:N型硅片清洗制绒、正面B扩散制备PN结、背面酸洗、背面刻蚀去BSG&背面抛光、背面遂穿SiO2以及Poly Si、正面酸洗、正面去poly以及PSG&BSG、正面氧化铝、正面&背面钝化膜沉积、正背面电极印刷、烧结、抗LID注入。
目前TOPCON电池背面关键结构遂穿SiO2+Poly Si目前主要为两种方式:LPCVD和PECVD,LPCVD主要通过高温分解SiH4生长Poly Si(多晶硅层),而PECVD生长Poly硅需要通过plasm电离SiH4,生长Poly si。PECVD生长的poly Si,由于需要通过plasma电离分解,所以该方法下会对衬底超薄的SiO2造成一定的破坏,另外另一种主流生长Poly Si为LPCVD生长方式,但是该方法单面性比较差,其生长的单面poly硅会对正面造成绕镀,像CN201911262690.7、CN202011157169.X等主流的生产方式都需要面对绕镀问题,但由于正面绕镀区域poly很难去除,另外由于其绕镀的不均匀性即使去除后在正面绕镀区域也会存在印迹,从而影响外观以及电池转换效率。
发明内容
为了克服上述缺陷,本发明提供一种双面poly结构的TOPCon太阳能电池的制备方法,其有效解决了绕镀问题,可以达到清洗后无绕镀印迹残留,并可有效提升电池的转化效率。
为了达到上述发明的目的,本发明采用的技术方案是:
1. 一种TOPCon太阳能电池的制备方法,包括以下步骤:
1)以N型硅片作为衬底进行清洗制绒;
2)正面硼扩散;
3)背面进行酸清洗、刻蚀;
4)制遂穿氧化层以及多晶硅层:先双面生产一层氧化层,后采用分步法进行双面多晶硅层的制备;
5)背面磷扩散:采用两步沉积法,先进行低温沉积低温推进,然后再进行高温沉积推进,后降温退火;
6)去除正面PSG,去除正面整面多晶硅层;
7)去BSG/PSG;
8)双面钝化;
9)印刷烧结。
作为本发明的进一步改进:所述步骤4)中双面氧化层的生产具体为:将硅片单插片送入炉管内500-750℃进行氧化2-10min,氧气流量5slm-30slm,压力从低压到常压,随后关闭氧气进行恒压氧化3-5min,在硅片正背面双面生长厚度为1-2nm的SiO2。该制备方法能够确保得到均一性较好的氧化硅层,是为后续保证清洗均一性的关键之一。
作为本发明的进一步改进:所述步骤4)中多晶硅层制备具体为:在上述炉管内通入SiH4,温度450-550℃先进行沉积一层8-10nm厚的多晶硅层,SiH4流量100sccm-1000sccm,沉积时间1min-5min,压力20pa-300pa之间;随后升温至550-700℃之间,沉积时间20min-60min,SiH4流量100sccm-1000sccm之间,压力20pa-300pa之间得到总厚为50-200nm的多晶硅层。
本发明利用低温下先沉积一层较薄的的多晶硅,低温沉积多晶硅的均一性以及致密性更好,然后在利用高温进行沉积,该方法制备出的双面多晶硅致密性以及均一性更优,最终在电池的正背面得到整面均匀生长的多晶硅,使其在绕镀清洗过程中可保证无多晶硅印记残留。
作为本发明的进一步改进:步骤5)中背面磷扩散具体为:采用POCI3扩散方式,先在温度为750-780℃下沉积扩散,时间为5-30min,再在780-820℃温度下推进,时间为5-30min;后在温度为800-830℃下沉积扩散,时间10-20min,随后在830-930℃温度高温推进,时间10-20min,最后进行降温至720-780之间同时退火。
上述步骤采用两步法,先进行低温沉积扩散低温推进,然后在进行高温沉积扩散高温推进,利用两次不同的温度以及工艺控制形成均一性及晶化效果较好的POLY硅层,这保证了正面的绕镀poly硅完全去除不留下任何印迹,同时又可以达到较高的表面浓度保证扩散的效果;针对上制备出的N型片方阻测试在15-80之间,P型片方阻测试30-150之间。
作为本发明的优选实施例:所述步骤6)中去除正面整面多晶硅层具体为:通过碱抛的方式垂直插入去除,其中采用浓度为3%-15%的KOH溶液,温度为40-80℃。
本发明的工作原理为:由于原有制备方法中正面绕镀区域Poly Si很难去除,另外由于其绕镀的不均匀性即使去除后在正面绕镀区域也会存在印迹,本发明通过改变LPCVD的插片方式,由原来的双面背靠背双插,改为单插;同时通过在正面生长整面均匀的PolySi,其次通过清洗工艺将正面Poly Si完全去除并且外观上无Poly Si的印迹以及残留,通过双面生长Poly Si的工艺很好的解决了Poly Si绕镀的清洗问题,简化了工艺;同时可有效提升电池的转化效率。
具体实施方式
下面结合实施例对本发明作进一步详细说明,但本发明的保护范围不限于此。
实施例1,本发明涉及的TOPCon太阳能电池的制备方法:
1)N型硅片电阻率1Ω·cm;
2)硅片去损伤层清洗制绒;
3)正面硼扩散,采用BCl3方式进行B扩散;
4)背面酸洗去BSG清洗,酸或碱进行背面刻蚀或者抛光;
5)遂穿氧化以及镀Poly Si:将硅片单插片送入炉管内650℃进行氧化5min,氧气流量15 slm,压力从低压到常压,随后关闭氧气进行恒压氧化4min,在硅片正背面双面生长的SiO2厚度为1.5nm,本发明中该层均一性较好的氧化硅是后续保证清洗均一性的关键之一;随后在炉管内继续通入SiH4,温度优选500℃,先进行沉积一层较薄的poly硅,厚度为10nm,沉积时间3min,SiH4流量500sccm,压力100pa;随后进行升温至650℃,沉积时间40min,SiH4流量800sccm,压力200pa,得到100 nm厚的二次poly硅,本发明利用低温下先沉积一层较薄的的poly硅,低温沉积poly硅的均一性以及致密性更好,然后在利用高温进行沉积,该方法制备出的双面poly致密性以及均一性更优,最终在电池的正背面得到整面均匀生长的poly 硅,在绕镀清洗过程中可保证无poly印记残留。
6)背面磷扩散:采用POCl3扩散,先低温沉积扩散,温度为760℃,小氮流量为600sccm,时间为20min,第一次推进温度为800℃,时间为15min;随后再进行第二次高温沉积扩散,沉积温度为820℃,时间20min,再进行第二次高温推进,温度为900℃,最后进行降温至750度同时退火。本步骤中对磷源、氮气和氧气等比例按一般工艺进行即可。本发明使用两步法,先进行低温沉积低温推进,然后在进行高温沉积推进,利用两次不同的温度以及工艺控制形成均一性及晶化效果较好的POLY硅层,这保证了正面的绕镀poly硅完全去除不留下任何印迹,同时又可以达到较高的表面浓度保证扩散的效果。针对上制备出的N型片方阻测试在15-80之间,P型片方阻测试30-150之间。
本方法通过两步法克服了原电池片进行P扩必须要经过高温的问题,最高温度达900℃以上,但高温会将正面绕镀的poly硅渗透到硅基中,从而清洗后留下印记残留,但是如果低温掺杂会影响表面浓度以及poly硅的晶化效果,从而降低电池片转换效率。
7)去除正面单面PSG,去除正面整面Poly Si:采用浓度为5%的HF,去除正面单面PSG,保留背面的PSG;再通过碱抛的方式将硅片垂直插进槽体中进行正面整面的Poly Si去除,KOH浓度为10%,温度为60℃,时间为3分钟;
8)随后进行酸洗去PSG&BSG,其中HF浓度为5%,酸洗后采用H2O2与NH3H20的混合溶液分两次清洗,温度为70℃,总时间为10min,该步骤可以洗去碱抛过程中的有机残留以及污染物,该步骤可以改善表面的洁净度,提升电池的电流响应;
9)正面沉积氧化铝层,在ALD腔室内真空条件下周期性通入TMA、N2、H2O双面沉积5nm后的氧化铝层;
10)正面减反膜沉积,使用PECVD依次沉积SiNx或者SiOx、SiNx、SiON三者之间相互叠加的多层膜,总膜厚在80nm;
11)背面钝化膜沉积,使用PECVD沉积SiON、SiOx、SiNx,三者之中的一层或多层,总膜厚100nm;
12)背面电极印刷、背面栅线印刷,正面电极以及栅线印刷,然后高温烧结;
13)抗LID注入,LIR或ELR。
实施例2,本发明涉及的TOPCon太阳能电池的制备方法:
1)N型硅片电阻率1.5Ω·cm;
2)硅片去损伤层清洗制绒;
3)正面硼扩散,采用旋涂B源方式进行B扩散;
4)背面酸洗去BSG清洗,酸或碱进行背面刻蚀或者抛光;
5)双面氧化以及镀Poly Si:将硅片单插片送入炉管内600℃进行氧化16min,氧气流量180 slm,压力从低压到常压,在硅片正背面双面生长厚度为1.6nm的SiO2层;随后在炉管内继续通入SiH4,沉积时间60min,SiH4流量600sccm,压力1000pa,得到正背面整面均匀生长的厚度为80nm的Poly Si;
6)背面磷扩散:采用离子注入方式,先低温沉积扩散,温度为770℃,小氮流量为800sccm,时间为18min,第一次推进温度为800℃,时间为16min;随后再进行第二次高温沉积扩散,沉积温度为830℃,时间18min,再进行第二次高温推进,温度为910℃,时间16min,最后进行降温至730度同时退火;N型片方阻测试为40;
7)去除正面单面PSG,去除正面整面多晶硅层:正面单面酸洗去除正面的PSG,HF浓度为3%;再通过硝酸刻蚀的方法将正面整面的多晶硅层去除,硝酸浓度为3%;
8)随后进行酸洗去PSG&BSG;
9)双面钝化;
10)印刷烧结制成TOPCon太阳能电池。
按照本工艺制得的产品,经检测并与普通工艺对比如下:
Figure 469570DEST_PATH_IMAGE001
由此可见,本发明通过双面生长Poly Si的工艺很好的解决了Poly Si绕镀的清洗问题;同时可有效提升电池的转化效率。
显然,本实施例可以以许多不同的数值、形式来实现;因此本发明并不限于本文所描述的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (5)

1.一种TOPCon太阳能电池的制备方法,其特征在于,包括以下步骤:
1)以N型硅片作为衬底进行清洗制绒;
2)正面硼扩散;
3)背面进行酸清洗、刻蚀;
4)制遂穿氧化层以及多晶硅层:先双面生产一层氧化层,后采用分步法进行双面多晶硅层的制备;
5)背面磷扩散:采用两步沉积法,先进行低温沉积低温推进,然后再进行高温沉积推进,后降温退火;
6)去除正面PSG,去除正面整面多晶硅层;
7)去BSG/PSG;
8)双面钝化;
9)印刷烧结。
2.根据权利要求1所述的TOPCon太阳能电池的制备方法,其特征在于:所述步骤4)中双面氧化层的生产具体为:将硅片单插片送入炉管内500-750℃进行氧化2-10min,氧气流量5slm-30slm,压力从低压到常压,随后关闭氧气进行恒压氧化3-5min,在硅片正背面双面生长厚度为1-2nm的SiO2
3.根据权利要求1或2所述的TOPCon太阳能电池的制备方法,其特征在于:所述步骤4)中多晶硅层制备具体为:在上述炉管内通入SiH4,温度450-550℃先进行沉积一层8-10nm厚的多晶硅层,SiH4流量100sccm-1000sccm,沉积时间1min-5min,压力20pa-300pa之间;随后升温至550-700℃之间,沉积时间20min-60min,SiH4流量100sccm-1000sccm之间,压力20pa-300pa之间得到总厚为50-200nm的多晶硅层。
4.根据权利要求1所述的TOPCon太阳能电池的制备方法,其特征在于:步骤5)中背面磷扩散具体为:采用POCl3扩散方式,先在温度为750-780℃下沉积扩散,时间为5-30min,再在780-820℃温度下推进,时间为5-30min;后在温度为800-830℃下沉积扩散,时间10-20min,随后在830-930℃温度高温推进,时间10-20min,最后进行降温至720-780之间同时退火。
5.根据权利要求1所述的TOPCon太阳能电池的制备方法,其特征在于:所述步骤6)中去除正面整面多晶硅层具体为:通过碱抛的方式垂直插入去除,其中采用浓度为3%-15%的KOH溶液,温度为40-80℃。
CN202110473045.0A 2021-04-29 2021-04-29 一种TOPCon太阳能电池的制备方法 Pending CN113193082A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110473045.0A CN113193082A (zh) 2021-04-29 2021-04-29 一种TOPCon太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110473045.0A CN113193082A (zh) 2021-04-29 2021-04-29 一种TOPCon太阳能电池的制备方法

Publications (1)

Publication Number Publication Date
CN113193082A true CN113193082A (zh) 2021-07-30

Family

ID=76980905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110473045.0A Pending CN113193082A (zh) 2021-04-29 2021-04-29 一种TOPCon太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN113193082A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883443A (zh) * 2022-03-28 2022-08-09 普乐新能源科技(徐州)有限公司 poly-Si绕镀去除方法及在TopCon电池制备的应用
CN116344672A (zh) * 2023-03-10 2023-06-27 天合光能股份有限公司 隧穿氧化层的制备方法、太阳能电池及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447389A (zh) * 2002-03-25 2003-10-08 联华电子股份有限公司 制作多晶硅薄膜的方法
JP2011166021A (ja) * 2010-02-12 2011-08-25 Shin-Etsu Chemical Co Ltd 太陽電池の製造方法及び太陽電池
CN105261670A (zh) * 2015-08-31 2016-01-20 湖南红太阳光电科技有限公司 晶体硅电池的低压扩散工艺
CN105374900A (zh) * 2015-10-14 2016-03-02 横店集团东磁股份有限公司 一种制备单晶硅表面钝化电池的方法
CN109285897A (zh) * 2018-09-21 2019-01-29 天合光能股份有限公司 一种高效钝化接触晶体硅太阳电池及其制备方法
CN110760925A (zh) * 2019-11-15 2020-02-07 常州时创能源科技有限公司 Pecvd淀积非晶硅薄膜的方法及其应用
CN111416017A (zh) * 2020-03-26 2020-07-14 泰州中来光电科技有限公司 一种钝化接触太阳电池制备方法
CN111640825A (zh) * 2020-06-16 2020-09-08 东方日升(常州)新能源有限公司 N型接触钝化太阳电池制造方法及提高良率的方法
CN111653474A (zh) * 2020-05-19 2020-09-11 上海华虹宏力半导体制造有限公司 多晶硅薄膜成膜方法
CN111864008A (zh) * 2019-04-15 2020-10-30 江苏顺风光电科技有限公司 P型异质结全背电极接触晶硅光伏电池制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447389A (zh) * 2002-03-25 2003-10-08 联华电子股份有限公司 制作多晶硅薄膜的方法
JP2011166021A (ja) * 2010-02-12 2011-08-25 Shin-Etsu Chemical Co Ltd 太陽電池の製造方法及び太陽電池
CN105261670A (zh) * 2015-08-31 2016-01-20 湖南红太阳光电科技有限公司 晶体硅电池的低压扩散工艺
CN105374900A (zh) * 2015-10-14 2016-03-02 横店集团东磁股份有限公司 一种制备单晶硅表面钝化电池的方法
CN109285897A (zh) * 2018-09-21 2019-01-29 天合光能股份有限公司 一种高效钝化接触晶体硅太阳电池及其制备方法
CN111864008A (zh) * 2019-04-15 2020-10-30 江苏顺风光电科技有限公司 P型异质结全背电极接触晶硅光伏电池制备方法
CN110760925A (zh) * 2019-11-15 2020-02-07 常州时创能源科技有限公司 Pecvd淀积非晶硅薄膜的方法及其应用
CN111416017A (zh) * 2020-03-26 2020-07-14 泰州中来光电科技有限公司 一种钝化接触太阳电池制备方法
CN111653474A (zh) * 2020-05-19 2020-09-11 上海华虹宏力半导体制造有限公司 多晶硅薄膜成膜方法
CN111640825A (zh) * 2020-06-16 2020-09-08 东方日升(常州)新能源有限公司 N型接触钝化太阳电池制造方法及提高良率的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883443A (zh) * 2022-03-28 2022-08-09 普乐新能源科技(徐州)有限公司 poly-Si绕镀去除方法及在TopCon电池制备的应用
CN116344672A (zh) * 2023-03-10 2023-06-27 天合光能股份有限公司 隧穿氧化层的制备方法、太阳能电池及其制备方法

Similar Documents

Publication Publication Date Title
CN110197855B (zh) 用于Topcon电池制作的poly-Si绕镀的去除方法
CN111029438B (zh) 一种n型钝化接触太阳能电池的制备方法
CN115621333B (zh) 双面隧穿氧化硅钝化的背接触太阳能电池及其制备方法
CN110164759B (zh) 一种区域性分层沉积扩散工艺
CN116525708A (zh) 正面宽带隙掺杂的联合钝化背接触太阳电池及其制备方法
CN114597267B (zh) 一种TOPCon电池及其制备方法
CN114373831A (zh) 一种隧穿氧化层、n型双面太阳能晶硅电池及制备方法
CN115000246B (zh) P型钝化接触电池制备方法及钝化接触电池
CN117117044B (zh) 一种联合钝化背接触电池及其一次退火制备方法
CN114335237B (zh) 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
CN115332366A (zh) 一种背钝化接触异质结太阳电池及其制备方法
CN115863480A (zh) 背面多种元素掺杂的N型TOPCon太阳能电池的制备方法
CN111952153A (zh) 隧穿氧化层的制备方法、太阳能电池及其制备方法
CN118099230B (zh) 具有特定第二半导体层的背接触电池及其制备和光伏组件
CN112466960A (zh) 太阳能电池结构及其制备方法
CN114583016A (zh) 一种TOPCon电池及其制备方法
CN117133834A (zh) 一种联合钝化背接触电池的短流程制备方法及其应用
CN111261751A (zh) 一种单面非晶硅的沉积方法
CN117199186B (zh) 一种N-TOPCon电池的制作方法
CN116190498A (zh) 制备隧穿氧化层和非晶硅薄膜的方法及TOPCon电池
CN113193082A (zh) 一种TOPCon太阳能电池的制备方法
CN117457777A (zh) 一种太阳能电池及其制备方法与应用
CN115832109A (zh) 一种太阳电池及其制备方法
CN114606478B (zh) 一种管式pecvd制备超薄氧化硅层及钝化接触结构的方法、钝化接触结构
CN111477696B (zh) 一种基于钝化接触的太阳能电池片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination