CN113828310A - FeOOH/Cu2O复合微球光催化剂及其制备方法 - Google Patents

FeOOH/Cu2O复合微球光催化剂及其制备方法 Download PDF

Info

Publication number
CN113828310A
CN113828310A CN202111193031.XA CN202111193031A CN113828310A CN 113828310 A CN113828310 A CN 113828310A CN 202111193031 A CN202111193031 A CN 202111193031A CN 113828310 A CN113828310 A CN 113828310A
Authority
CN
China
Prior art keywords
feooh
composite microsphere
preparation
microsphere photocatalyst
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111193031.XA
Other languages
English (en)
Other versions
CN113828310B (zh
Inventor
邹欣伟
张风頔
王国斌
田玉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Science and Technology
Original Assignee
Taiyuan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Science and Technology filed Critical Taiyuan University of Science and Technology
Priority to CN202111193031.XA priority Critical patent/CN113828310B/zh
Priority claimed from CN202111193031.XA external-priority patent/CN113828310B/zh
Publication of CN113828310A publication Critical patent/CN113828310A/zh
Application granted granted Critical
Publication of CN113828310B publication Critical patent/CN113828310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

FeOOH/Cu2O复合微球光催化剂及其制备方法,属于光催化剂技术领域,FeOOH纳米针与Cu2O纳米颗粒复合形成实心微球光催化剂,其中FeOOH与Cu2O的质量比为(0.2‑30)/100,其制备方法包括以下步骤:制备FeOOH粉体→制备纳米Cu2O分散液→将FeOOH粉体与纳米Cu2O分散液混合,搅拌后离心分离,将所得固体用去离子水和无水乙醇反复洗涤数次后置于烘箱中干燥,制得FeOOH/Cu2O复合微球光催化剂。本发明所得复合微球光催化剂具有光吸收波长范围广、稳定性更好、量子效率更高且活性更高等优势,其制备方法简单、操作方便,有利于推广应用。

Description

FeOOH/Cu2O复合微球光催化剂及其制备方法
技术领域
本发明属于光催化剂技术领域,具体涉及一种FeOOH/Cu2O复合微球光催化剂及其制备方法。
背景技术
氧化亚铜(Cu2O)是典型的p型半导体材料,禁带宽度较低,约2.1eV,在可见光照射下可激发形成光生电子和空穴对而具备良好的光催化性能,避免传统宽禁带光催化材料(ZnO,TiO2等)不能有效利用可见光的缺陷,因此,其具有太阳光利用效率高,且无二次污染,价格低廉,制备简单等优良特点,是一种很有前途的新型光催化材料。然而,Cu2O光催化剂还存在光生电荷对容易再复合和在潮湿环境中容易被氧化成CuO等一些问题。
羟基氧化铁(FeOOH)是铁氧化物中重要的一个组成部分,它在自然界中存在多种晶形,常以α-FeOOH、β-FeOOH、γ-FeOOH和δ-FeOOH晶型出现,这四种晶型结构可以相互转化,其结构、颜色及稳定性等物理性质都存在差异。FeOOH的热稳定性较差,其中α-FeOOH稳定性相对较好。一般来讲,FeOOH在升温至150℃-200℃时会出现会出现脱水现象,在加热到270℃-300℃时,FeOOH会迅速脱水变为铁红。FeOOH的能带宽度在2.2eV左右,作为光催化材料其光响应波长约为560nm,和Cu2O一样对太阳光谱的利用范围较大在可见光下就可以进行光催化反应。研究表明针铁矿和水合氧化铁类铁矿物具有较好的吸附性能,在有氧化剂存在的条件下进行类 Fenton反应,使土壤中的污染物质通过催化氧化作用而降解。
研究表明将具有不同能级结构的两种或者多种半导体复合可以提高材料的整体光催化活性。不同半导体材料的复合可以有效地提高材料内部产生的光生电荷的分离效果,还可以拓展材料的光谱响应范围。公开号为CN 104941644 B的专利中采用了电化学沉积技术附加退火处理的方式在ZnO、TiO2等n型半导体材料的纳米结构(纳米线,纳米棒和纳米管等)上生长出树叶状氧化亚铜,同时在ZnO、TiO2等表面生成Cu2O纳米颗粒,最终制备得到Cu2O/ZnO异质结复合光催化剂,光催化性能得到了大幅度改善。另有文献(DOI:10.1039/c4dt03417a)报道采用微波水热法制备出Cu2O/Cu异质结空心球复合光催化剂,大幅度提高了表面吸附性能,还促进了光生电荷的分离,从而提高了光催化性能。由此可见,并非随意的两种或多种半导体之间复合可以提高光催化材料的光催化性能,只有具有合适的能级结构半导体进行复合才能促进电荷的有效分离而提高光催化性能。同时,半导体材料复合的方式及形貌结构也是影响光催化性能的重要因素。
发明内容
本发明的目的在于提供一种羟基氧化铁和氧化亚铜构成的复合微球光催化剂及其制备方法,与传统光催化剂相比,本发明所得复合微球光催化剂具有光吸收波长范围广、稳定性更好、量子效率更高且活性更高等优势,其可以有效地增强光生电荷的分离,提高光催化降解污染物效率,尤其是在不能采用紫外光照射的情况下;多孔的微球结构可以大大增强催化剂的吸附能力而改善光催化性能,同时该复合微球光催化剂合成方法简单、操作方便,有利于推广应用。
为实现上述目的,本发明采用的技术方案如下:
FeOOH/Cu2O复合微球光催化剂,FeOOH纳米针与Cu2O纳米颗粒复合形成实心微球光催化剂,其中FeOOH与Cu2O的质量比为(0.2-30)/100。
进一步地,所述FeOOH纳米针的平均直径为1nm~3nm、长度为30nm~80nm;所述Cu2O纳米颗粒的平均粒径为2nm~3nm;所述实心微球光催化剂的平均直径为500nm~800nm。
进一步地,所述FeOOH为α-FeOOH。
进一步地,所述实心微球光催化剂具有介孔结构。
FeOOH/Cu2O复合微球光催化剂的制备方法,包括以下步骤:
S1、制备FeOOH粉体:
S1-1、将铁盐与铵盐按摩尔比为1:(0.5-2)混合研磨10min-60min,混合研磨后加入所述铁盐和铵盐总质量0.5-3倍的水打成浆体,然后对所得浆体搅拌10min-60min后过滤,得到滤饼;
S1-2、加入滤饼质量0.5-3倍的水配制成浆液,向浆液中通入氧化性气体进行反应,同时控制浆液的pH值保持在7.5~10,当通气时间达到10min-60min或者当检测到浆液中Fe2+/Fe小于5%时停止通入氧化性气体,然后对浆液进行抽滤得到FeOOH,将所得FeOOH进行干燥制得FeOOH粉体,将FeOOH粉体研磨10min-60min后备用;
S2、制备纳米Cu2O分散液:
首先,将铜盐溶液和分散剂加入烧杯搅拌均匀;然后,在磁力搅拌下加入碱溶液继续搅拌10min-40min;最后,加入酸性溶液继续搅拌10min-40min;其中,分散剂的加入量为铜盐溶液质量的0.1%-0.8%,铜盐溶液、酸性溶液和碱溶液的摩尔浓度比为1:(0.8-3):2,制得纳米Cu2O分散液;
S3、将步骤S1制得的FeOOH粉体与步骤S2制得的纳米Cu2O分散液混合,其中FeOOH粉体的质量占纳米Cu2O分散液质量的0.1%-2%,搅拌10min-40min,然后将混合液离心分离,将离心分离所得固体用去离子水和无水乙醇反复洗涤数次后置于烘箱中,60℃下干燥2 h,制得FeOOH/Cu2O复合微球光催化剂。
进一步地,在所述步骤S1-1中,铁盐为硝酸铁、硫酸铁或者硫酸亚铁中的一种,铵盐为碳酸氢铵或者碳酸铵。
进一步地,在所述步骤S1-2中,氧化性气体为空气、氧气、臭氧中的任意一种。
进一步地,在所述步骤S2中,铜盐为氯化铜、硫酸铜或者硝酸铜中的一种,碱性溶液为氢氧化钠,酸性溶液为抗坏血酸溶液或者柠檬酸溶液,分散剂为聚乙二醇或者聚乙烯吡咯烷酮。
与现有技术相比本发明的有益效果为:
1、FeOOH和Cu2O复合构成异质结构,可以促进光生电荷的分离,抑制光生电荷的复合,从而提高了光催化效率;
2、FeOOH和Cu2O均具有较低的禁带宽度,使得复合微球光催化剂的光吸收波长范围更宽,可以更有效的利用太阳光;
3、FeOOH纳米针和Cu2O纳米颗粒构成的球形多孔结构具有大的比表面积,有利于对污染物的吸附并提高光催化反应效率;
4、FeOOH/Cu2O复合微球是靠FeOOH纳米针较强吸附性和Cu2O纳米颗粒之间的相互吸附而自发形成,不需要加入其他模板剂;
5、本发明简单易行,且原料在自然界储量丰富、廉价。
附图说明
图1 是实施例1中制备的单一的FeOOH纳米粉体的扫描电镜照片;
图2 是实施例1中制备的单一Cu2O粉体的扫描电镜照片;
图3 是实施例1中制备所得FeOOH/Cu2O复合微球光催化剂的扫描电镜照片;
图4 是实施例1中制备的FeOOH/Cu2O复合微球光催化剂的X射线衍射分析图谱;
图5 是实施例1、实施例2和实施例3中所制备的FeOOH/Cu2O复合微球光催化剂在可见光下对甲基橙降解率曲线图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件。另外,对于本领域技术人员而言,在不偏离本发明的实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种修改或改进,均属于本发明要求保护的范围。
实施例1
FeOOH/Cu2O复合微球光催化剂的制备方法,包括以下步骤:
S1、制备FeOOH粉体:
S1-1、将27.8 g七水硫酸亚铁(FeSO4·7H2O)与15.8 g碳酸氢铵(NH4HCO3)混合研磨10min,混合研磨后加入30g水打成浆体,然后对所得浆体搅拌10min后过滤,得到滤饼;
S1-2、加入滤饼质量0.5倍的水配制成浆液,向浆液中通入10min臭氧气体进行氧化反应,同时控制浆液的pH值保持在9.0,然后对浆液进行抽滤得到FeOOH,将所得FeOOH进行干燥制得FeOOH粉体,将FeOOH粉体研磨10min后备用,所述FeOOH为α-FeOOH;
S2、制备纳米Cu2O分散液:
首先,将20 mL的0.5 mol∙L−1硫酸铜溶液和0.1 g聚乙二醇2000加入烧杯中搅拌均匀;然后,在磁力搅拌下将40 mL的0.5 M氢氧化钠溶液加入到上述溶液中,搅拌30 min;最后,加入浓度为0.1mol∙L−1的抗坏血酸溶液50 mL,继续搅拌30 min,制得纳米Cu2O分散液;
S3、将步骤S1制得的FeOOH粉体0.1g与步骤S2制得的纳米Cu2O分散液混合,搅拌15min,然后将混合液离心分离,将离心分离所得固体用去离子水和无水乙醇反复洗涤数次后置于烘箱中,60℃下干燥2 h,制得FeOOH/Cu2O复合微球光催化剂,实心复合微球光催化剂具有介孔结构。
对本实施例1制得的样品进行扫描电镜(SEM)测试分析,对比图1、图2和图3中可以看出,FeOOH加入到Cu2O分散液中促使形成了形貌完好的微球,微球由FeOOH纳米针和Cu2O纳米颗粒复合形成实心微球光催化剂,而单一的FeOOH和Cu2O不能形成球形粉体。进一步地,所述FeOOH纳米针的平均直径为1nm~3nm、长度为30nm~80nm;所述Cu2O纳米颗粒的平均粒径为2nm~3nm;所述实心微球光催化剂的平均直径为500nm~800nm。
图4对FeOOH/Cu2O复合微球样品进行X射线衍射(XRD)分析所得图谱,经过与PDF标准卡片比对,发现所得只有Cu2O的衍射峰而没有FeOOH的衍射峰,这与加入的FeOOH的量相对较少有关系。
实施例2
FeOOH/Cu2O复合微球光催化剂的制备方法,包括以下步骤:
S1、制备FeOOH粉体:
S1-1、将40.0 g硫酸铁(Fe2(SO4)3)与14.4 g碳酸铵((NH4)2CO3)混合研磨60min,混合研磨后加入60g水打成浆体,然后对所得浆体搅拌20min后过滤,得到滤饼;
S1-2、加入滤饼质量2倍的水配制成浆液,向浆液中通入20min空气进行氧化反应,同时控制浆液的pH值保持在10.0,当检测到浆液中Fe2+/Fe小于4%时停止反应,然后对浆液进行抽滤得到FeOOH,将所得FeOOH进行干燥制得FeOOH粉体,将FeOOH粉体研磨10min后备用,所述FeOOH为α-FeOOH;
S2、制备纳米Cu2O分散液:
首先,将20 mL的0.5 mol∙L−1硝酸铜溶液和0.05 g聚乙烯吡咯烷酮加入烧杯中搅拌均匀;然后,在磁力搅拌下将40 mL的0.5 M氢氧化钠溶液加入到上述溶液中,搅拌30min;最后,加入浓度为0.2mol∙L−1的柠檬酸溶液50 mL,继续搅拌30 min,制得纳米Cu2O分散液;
S3、将步骤S1制得的FeOOH粉体0.5 g与步骤S2制得的纳米Cu2O分散液混合,搅拌40 min,然后将混合液离心分离,将离心分离所得固体用去离子水和无水乙醇反复洗涤数次后置于烘箱中,60℃下干燥2 h,制得FeOOH/Cu2O复合微球光催化剂。
实施例3
FeOOH/Cu2O复合微球光催化剂的制备方法,包括以下步骤:
S1、制备FeOOH粉体:
S1-1、将27.8 g七水硫酸亚铁(FeSO4·7H2O)与9.6 g碳酸铵((NH4)2CO3)混合研磨40min,混合研磨后加入60 g水打成浆体,然后对所得浆体搅拌60 min后过滤,得到滤饼;
S1-2、加入滤饼质量3倍的水配制成浆液,向浆液中通入15min氧气进行反应,同时控制浆液的pH值保持在7.5,通入氧气40 min后停止反应,然后对浆液进行抽滤得到FeOOH,将所得FeOOH进行干燥制得FeOOH粉体,将FeOOH粉体研磨10min后备用,所述FeOOH为α-FeOOH;
S2、制备纳米Cu2O分散液:
首先,将20 mL的0.5 mol∙L−1氯化铜溶液和0.2 g聚乙二醇1000加入烧杯中搅拌均匀;然后,在磁力搅拌下将40 mL的0.5 M氢氧化钠溶液加入到上述溶液中,搅拌10 min;最后,加入浓度为0.5 mol∙L−1的柠檬酸溶液60 mL,继续搅拌10 min,制得纳米Cu2O分散液;
S3、将步骤S1制得的FeOOH粉体0.05 g与步骤S2制得的纳米Cu2O分散液混合,搅拌10 min,然后将混合液离心分离,将离心分离所得固体用去离子水和无水乙醇反复洗涤数次后置于烘箱中,60℃下干燥2 h,制得FeOOH/Cu2O复合微球光催化剂。
图5 是实施例1、实施例2和实施例3中所制备的FeOOH/Cu2O复合微球光催化剂在可见光下对甲基橙降解率曲线图,由图5可以看出实施例1所得FeOOH/Cu2O复合微球光催化剂在可见光下对甲基橙有最好的降解效率。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

1.FeOOH/Cu2O复合微球光催化剂,其特征在于:FeOOH纳米针与Cu2O纳米颗粒复合形成实心微球光催化剂,其中FeOOH与Cu2O的质量比为(0.2-30)/100。
2.根据权利要求1所述的FeOOH/Cu2O复合微球光催化剂,其特征在于:所述FeOOH纳米针的平均直径为1nm~3nm、长度为30nm~80nm;所述Cu2O纳米颗粒的平均粒径为2nm~3nm;所述实心微球光催化剂的平均直径为500nm~800nm。
3.根据权利要求1或2所述的FeOOH/Cu2O复合微球光催化剂,其特征在于:所述FeOOH为α-FeOOH。
4.根据权利要求1或2所述的FeOOH/Cu2O复合微球光催化剂,其特征在于:所述实心微球光催化剂具有介孔结构。
5.如权利要求1所述FeOOH/Cu2O复合微球光催化剂的制备方法,其特征在于包括以下步骤:
S1、制备FeOOH粉体:
S1-1、将铁盐与铵盐按摩尔比为1:(0.5-2)混合研磨10min-60min,混合研磨后加入所述铁盐和铵盐总质量0.5-3倍的水打成浆体,然后对所得浆体搅拌10min-60min后过滤,得到滤饼;
S1-2、加入滤饼质量0.5-3倍的水配制成浆液,向浆液中通入氧化性气体进行反应,同时控制浆液的pH值保持在7.5~10,当通气时间达到10min-60min或者当检测到浆液中Fe2+/Fe小于5%时停止通入氧化性气体,然后对浆液进行抽滤得到FeOOH,将所得FeOOH进行干燥制得FeOOH粉体,将FeOOH粉体研磨10min-60min后备用;
S2、制备纳米Cu2O分散液:
首先,将铜盐溶液和分散剂加入烧杯搅拌均匀;然后,在磁力搅拌下加入碱性溶液继续搅拌10min-40min;最后,加入酸性溶液继续搅拌10min-40min;其中,分散剂的加入量为铜盐溶液质量的0.1%-0.8%,铜盐溶液、酸性溶液和碱性溶液的摩尔浓度比为1:(0.8-3):2,制得纳米Cu2O分散液;
S3、将步骤S1制得的FeOOH粉体与步骤S2制得的纳米Cu2O分散液混合,其中FeOOH粉体的质量占纳米Cu2O分散液质量的0.1%-2%,搅拌10min-40min,然后将混合液离心分离,将离心分离所得固体用去离子水和无水乙醇反复洗涤数次后置于烘箱中,60℃下干燥2 h,制得FeOOH/Cu2O复合微球光催化剂。
6.根据权利要求5所述的FeOOH/Cu2O复合微球光催化剂的制备方法,其特征在于:在所述步骤S1-1中,铁盐为氯化铁、硝酸铁、硫酸铁或者硫酸亚铁中的一种,铵盐为碳酸氢铵或者碳酸铵。
7.根据权利要求5所述的FeOOH/Cu2O复合微球光催化剂的制备方法,其特征在于:在所述步骤S1-2中,氧化性气体为空气、氧气、臭氧中的任意一种。
8.根据权利要求5所述的FeOOH/Cu2O复合微球光催化剂的制备方法,其特征在于:在所述步骤S2中,铜盐为氯化铜、硫酸铜或者硝酸铜中的一种,碱性溶液为氢氧化钠,酸性溶液为抗坏血酸溶液或者柠檬酸溶液,分散剂为聚乙二醇或者聚乙烯吡咯烷酮。
CN202111193031.XA 2021-10-13 FeOOH/Cu2O复合微球光催化剂及其制备方法 Active CN113828310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111193031.XA CN113828310B (zh) 2021-10-13 FeOOH/Cu2O复合微球光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111193031.XA CN113828310B (zh) 2021-10-13 FeOOH/Cu2O复合微球光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN113828310A true CN113828310A (zh) 2021-12-24
CN113828310B CN113828310B (zh) 2024-07-05

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888821A (zh) * 2022-11-21 2023-04-04 苏州大学 一种复合棉织物及其制备方法与其在偏位双光源下降解有机污染物中的应用
CN117696100A (zh) * 2024-02-06 2024-03-15 太原科技大学 一种g-C3N4/ FeOOH /Cu2O纳米异质结光催化剂及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485985A (zh) * 2008-01-17 2009-07-22 中国科学院生态环境研究中心 一种新型高效多相光芬顿催化剂CuOx-FeOOH的研制方法
CN101767830A (zh) * 2008-12-30 2010-07-07 北京三聚环保新材料股份有限公司 含无定形羟基氧化铁的物料的制备及其再生方法
CN104437495A (zh) * 2014-12-23 2015-03-25 河北工业大学 一种分级α-Fe2O3/TiO2中空球双功能光催化剂及其应用
CN108101116A (zh) * 2017-11-24 2018-06-01 福州大学 一种羟基氧化铁的制备方法及其应用
JP2018130695A (ja) * 2017-02-17 2018-08-23 地方独立行政法人青森県産業技術センター 光触媒凝集体及びその製造方法
CN108654642A (zh) * 2018-05-02 2018-10-16 长江大学 可见光响应的高效复合光催化剂Ag2O/α-FeOOH的制备方法
CN108970613A (zh) * 2018-07-17 2018-12-11 福州大学 一种羟基氧化铁改性的二氧化钛复合光催化剂及其制备方法与应用
CN112570024A (zh) * 2020-12-28 2021-03-30 青岛科技大学 一种Ag/AgCl/IL/FeOOH/AC光催化材料及其制备与应用
CN113318768A (zh) * 2021-06-23 2021-08-31 北京中环鑫汇科技有限公司 一种复合光催化剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485985A (zh) * 2008-01-17 2009-07-22 中国科学院生态环境研究中心 一种新型高效多相光芬顿催化剂CuOx-FeOOH的研制方法
CN101767830A (zh) * 2008-12-30 2010-07-07 北京三聚环保新材料股份有限公司 含无定形羟基氧化铁的物料的制备及其再生方法
CN104437495A (zh) * 2014-12-23 2015-03-25 河北工业大学 一种分级α-Fe2O3/TiO2中空球双功能光催化剂及其应用
JP2018130695A (ja) * 2017-02-17 2018-08-23 地方独立行政法人青森県産業技術センター 光触媒凝集体及びその製造方法
CN108101116A (zh) * 2017-11-24 2018-06-01 福州大学 一种羟基氧化铁的制备方法及其应用
CN108654642A (zh) * 2018-05-02 2018-10-16 长江大学 可见光响应的高效复合光催化剂Ag2O/α-FeOOH的制备方法
CN108970613A (zh) * 2018-07-17 2018-12-11 福州大学 一种羟基氧化铁改性的二氧化钛复合光催化剂及其制备方法与应用
CN112570024A (zh) * 2020-12-28 2021-03-30 青岛科技大学 一种Ag/AgCl/IL/FeOOH/AC光催化材料及其制备与应用
CN113318768A (zh) * 2021-06-23 2021-08-31 北京中环鑫汇科技有限公司 一种复合光催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIAO ZHOU ET AL.: "FeOOH as hole transfer layer to retard the photocorrosion of Cu2O for enhanced photoelctrochemical performance", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 260, pages 118213 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888821A (zh) * 2022-11-21 2023-04-04 苏州大学 一种复合棉织物及其制备方法与其在偏位双光源下降解有机污染物中的应用
CN117696100A (zh) * 2024-02-06 2024-03-15 太原科技大学 一种g-C3N4/ FeOOH /Cu2O纳米异质结光催化剂及其制备方法和应用
CN117696100B (zh) * 2024-02-06 2024-04-16 太原科技大学 一种g-C3N4/ FeOOH /Cu2O纳米异质结光催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Jiang et al. A novel direct Z-scheme heterojunction BiFeO3/ZnFe2O4 photocatalyst for enhanced photocatalyst degradation activity under visible light irradiation
Cui et al. Bi-based visible light-driven nano-photocatalyst: the design, synthesis, and its application in pollutant governance and energy development
Zhang et al. Spatially separated catalytic sites supplied with the CdS–MoS 2–In 2 O 3 ternary dumbbell S-scheme heterojunction for enhanced photocatalytic hydrogen production
Yao et al. Microwave-assisted hydrothermal synthesis of broadband Yb3+/Er3+ co-doped BiOI/Bi2O4 photocatalysts with synergistic effects of upconversion and direct Z-scheme heterojunction
CN102671683B (zh) 一种纳米片自组装C掺杂(BiO)2CO3微球可见光催化剂的制备方法
US10933406B2 (en) Method of preparing large-size high-porosity Fe-doped photocatalytic porous magnetic microspheres and uses thereof
Ke et al. Novel visible-light-driven direct Z-scheme Zn3V2O8/Ag3PO4 heterojunctions for enhanced photocatalytic performance
CN109012731B (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用
CN109939643A (zh) α-Fe2O3掺杂生物炭的制备方法及其应用
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN110787790B (zh) 海胆状金属氧化物多孔光催化材料及其制备方法和应用
CN106390986A (zh) 一种钒酸铋/钛酸锶复合光催化剂的制备方法
Sun et al. CdS quantum dots modified surface oxygen vacancy defect ZnO1-x-TiO2-x solid solution sphere as Z-Scheme heterojunctions for efficient visible light-driven photothermal-photocatalytic performance
CN111054419B (zh) 一种用于CO2还原的半导体/g-C3N4光催化剂及其制备方法
CN106975509B (zh) 一种氮、铁共掺杂钒酸铋可见光催化剂的制备方法及应用
Zhang et al. Raspberry-like TiO 2 hollow spheres consisting of small nanocrystals towards efficient NO removal
CN102451762B (zh) 环化聚丙烯腈复合多金属氧化物的制备方法
An et al. The multiple roles of rare earth elements in the field of photocatalysis
CN113828310B (zh) FeOOH/Cu2O复合微球光催化剂及其制备方法
CN113828310A (zh) FeOOH/Cu2O复合微球光催化剂及其制备方法
CN114260008B (zh) 一种纳米氧化铈基复合材料的制备方法及其应用
Xue et al. Construction of Cu 2+-doped CeO 2 nanocrystals hierarchical hollow structure and its enhanced photocatalytic performance
CN115845832A (zh) ZIF-8衍生的ZnO/BiVO4异质结复合物的制备方法与应用
CN113145099A (zh) 铋负载的钛酸铋/钛酸钙复合光催化剂及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant