CN113816414A - 一种超细纳米碳酸钡及其制备方法 - Google Patents

一种超细纳米碳酸钡及其制备方法 Download PDF

Info

Publication number
CN113816414A
CN113816414A CN202111274644.6A CN202111274644A CN113816414A CN 113816414 A CN113816414 A CN 113816414A CN 202111274644 A CN202111274644 A CN 202111274644A CN 113816414 A CN113816414 A CN 113816414A
Authority
CN
China
Prior art keywords
hydroxide octahydrate
alcoholic solution
barium hydroxide
carbonate
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111274644.6A
Other languages
English (en)
Inventor
胡新龙
戴书云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Basic Electronic Materials Co ltd
Original Assignee
Fujian Basic Electronic Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Basic Electronic Materials Co ltd filed Critical Fujian Basic Electronic Materials Co ltd
Priority to CN202111274644.6A priority Critical patent/CN113816414A/zh
Publication of CN113816414A publication Critical patent/CN113816414A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/186Strontium or barium carbonate
    • C01F11/188Barium carbonate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明涉及功能陶瓷原材料技术领域,尤其涉及一种超细纳米碳酸钡及其制备方法。所述超细纳米碳酸钡的制备方法包括以下步骤:A)将醇溶液和八水氢氧化钡混合,得到八水氢氧化钡的醇溶液;B)将所述八水氢氧化钡的醇溶液和碳酸二甲酯搅拌反应,pH值≤8时,停止搅拌,加入氨水静置,得到混合料液;C)将所述混合料液固液分离,干燥后,得到超细纳米碳酸钡。本发明利用醇与水的混合溶液作为反应介质,将钡源与碳酸二甲酯在常温常压下一步反应合成类球形超细纳米碳酸钡粉体,粉体的粒径较小,粉体的纯度较高;同时,可以避免二次高温热处理,简化步骤,节约能源。

Description

一种超细纳米碳酸钡及其制备方法
技术领域
本发明涉及功能陶瓷原材料技术领域,尤其涉及一种超细纳米碳酸钡及其制备方法。
背景技术
碳酸钡粉体广泛地应用于合成钛酸钡,碳酸钡粉体的物性与结构很大程度上会影响到钛酸钡的后端应用,而应用于MLCC的钛酸钡粉体一般被期望为类球形。现有技术中使用乙醇、甲醇及异丙醇与水的混合溶液作为溶剂,很难对碳酸钡的晶粒外形加以控制,产出的碳酸钡一般为针棒状或不规则形状,并不符合要求。
中国专利CN101177293公开了一种纳米碳酸钡的制备方法,其无法在常温常压下一步得到高纯碳酸钡粉体,为了提高纯度,需要进行二次高温热处理,不仅步骤繁琐、消耗能源,而且在高温二次热处理中会导致晶粒的进一步长大,其晶粒尺寸分布在150~310nm之间。此外,现有技术得到的碳酸钡的晶粒形状多为不规则形状,这些缺陷均会严重影响碳酸钡粉体的后端应用。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种超细纳米碳酸钡及其制备方法,本发明制备的超细纳米碳酸钡粉体呈类球状,粉体的粒径较小,粉体纯度较高。
本发明提供了一种超细纳米碳酸钡的制备方法,包括以下步骤:
A)将醇溶液和八水氢氧化钡混合,得到八水氢氧化钡的醇溶液;
B)将所述八水氢氧化钡的醇溶液和碳酸二甲酯搅拌反应,pH值≤8时,停止搅拌,加入氨水静置,得到混合料液;
C)将所述混合料液固液分离,干燥后,得到超细纳米碳酸钡。
优选的,步骤A)中,所述醇溶液中的醇包括乙二醇或丙三醇;
所述醇溶液中的溶剂为水;
所述醇溶液中,醇与水的体积比为0.4~15:1。
优选的,步骤A)中,所述八水氢氧化钡的醇溶液中,八水氢氧化钡的质量浓度为3%~6%。
优选的,步骤B)中,将所述八水氢氧化钡的醇溶液和碳酸二甲酯搅拌反应包括:
在所述八水氢氧化钡的醇溶液中加入碳酸二甲酯,搅拌反应;
所述碳酸二甲酯加入的速率为1~50g/min。
优选的,步骤B)中,所述碳酸二甲酯和八水氢氧化钡的摩尔比为0.5~2:1。
优选的,步骤B)中,所述搅拌反应在常温常压下进行。
优选的,步骤B)中,pH值为7~8时,停止搅拌。
优选的,步骤B)中,所述搅拌后的溶液中,氨水的加入量为1vol%~15vol%。
优选的,步骤C)中,所述固液分离的方法为离心;
将所述混合料液固液分离后,还包括:
将所述固液分离后的物料进行洗涤;
所述洗涤包括水洗和乙醇清洗。
本发明还提供了一种上文所述的制备方法制备的超细纳米碳酸钡。
本发明提供了一种超细纳米碳酸钡的制备方法,包括以下步骤:A)将醇溶液和八水氢氧化钡混合,得到八水氢氧化钡的醇溶液;B)将所述八水氢氧化钡的醇溶液和碳酸二甲酯搅拌反应,pH值≤8时,停止搅拌,加入氨水静置,得到混合料液;C)将所述混合料液固液分离,干燥后,得到超细纳米碳酸钡。本发明利用醇与水的混合溶液作为反应介质,将钡源与碳酸二甲酯在常温常压下一步反应合成类球形超细纳米碳酸钡粉体,粉体的粒径较小,粉体的纯度较高;同时,可以避免二次高温热处理,简化步骤,节约能源。
附图说明
图1为本发明实施例1的超细纳米碳酸钡在50k下的SEM图;
图2为本发明实施例1的超细纳米碳酸钡在100k下的SEM图;
图3为本发发明对比例1的纳米碳酸钡的SEM图。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种超细纳米碳酸钡的制备方法,包括以下步骤:
A)将醇溶液和八水氢氧化钡混合,得到八水氢氧化钡的醇溶液;
B)将所述八水氢氧化钡的醇溶液和碳酸二甲酯搅拌反应,pH值≤8时,停止搅拌,加入氨水静置,得到混合料液;
C)将所述混合料液固液分离,干燥后,得到超细纳米碳酸钡。
步骤A)中:
在本发明的某些实施例中,所述醇溶液中的醇包括乙二醇或丙三醇;所述醇溶液中的溶剂为水。
在本发明的某些实施例中,所述醇溶液中,醇与水的体积比为0.4~15:1。在某些实施例中,所述醇溶液中,醇与水的体积比为15:1、9:1、2.3:1或0.43:1。
本发明对所述醇溶液的制备方法并无特殊的限制,采用本领域技术人员熟知的溶液配制方法即可。
本发明中,所述八水氢氧化钡为钡源。在本发明的某些实施例中,所述八水氢氧化钡的醇溶液中,八水氢氧化钡的质量浓度为3%~6%。在某些实施例中,所述八水氢氧化钡的醇溶液中,八水氢氧化钡的质量浓度为6%、3%或4%。
步骤B)中:
在本发明的某些实施例中,将所述八水氢氧化钡的醇溶液和碳酸二甲酯搅拌反应包括:
在所述八水氢氧化钡的醇溶液中加入碳酸二甲酯,搅拌反应。
在本发明的某些实施例中,所述碳酸二甲酯加入的速率为1~50g/min。在某些实施例中,所述碳酸二甲酯加入的速率为3g/min、9g/min或1g/min。本发明进一步限定碳酸二甲酯加入的速率,可进一步调节产物的粒径和产量。
在本发明的某些实施例中,所述搅拌反应在常温常压下进行。
本发明中,所述碳酸二甲酯为碳源。在本发明的某些实施例中,所述碳酸二甲酯和八水氢氧化钡的摩尔比为0.5~2:1。在某些实施例中,所述碳酸二甲酯和八水氢氧化钡的摩尔比为1:1、0.5:1或2:1。
在本发明的某些实施例中,pH值为7~8时,停止搅拌。
在本发明的某些实施例中,所述搅拌的转速为180~220rpm。
在本发明的某些实施例中,所述搅拌后的溶液中,氨水的加入量为1vol%~15vol%。在某些实施例中,所述搅拌后的溶液中,氨水的加入量为1vol%、5vol%、10vol%或3vol%。
在本发明的某些实施例中,所述氨水的浓度为25wt%~30wt%。在本发明的某些实施例中,所述氨水的浓度为28wt%。
本发明中,所述搅拌后的溶液中添加1vol%~15vol%的氨水可以使碳酸钡浆液絮凝,完成碳酸钡的固液分离。
本发明对加入氨水后静置的时间不做特别限定,加入氨水主要起絮凝作用,静置的作用是为了等待碳酸钡纳米颗粒沉淀。
步骤C)中:
在本发明的某些实施例中,所述固液分离的方法为离心。
在本发明的某些实施例中,将所述混合料液固液分离后,还包括:
将所述固液分离后的物料进行洗涤。
在本发明的某些实施例中,所述洗涤包括水洗和乙醇清洗。在某些实施例中,所述水洗的次数为2~3次,所述乙醇清洗的次数为1~2次。
在本发明的某些实施例中,所述干燥为真空干燥。在某些实施例中,所述真空干燥的温度为60~70℃。在某些实施例中,所述真空干燥的温度为60℃或70℃。
本发明提供的超细纳米碳酸钡的制备方法中无需添加乳化剂、无需二次高温热处理,无需煅烧。
本发明对上文采用的原料来源并无特殊的限制,可以为一般市售。
本发明还提供了一种上文所述的制备方法制备的超细纳米碳酸钡。本发明制备的超细纳米碳酸钡呈类球状。
本发明制备的超细纳米碳酸钡的晶粒尺寸较小。在本发明的某些实施例中,所述超细纳米碳酸钡的晶粒尺寸不大于55nm。在某些实施例中,所述超细纳米碳酸钡的晶粒尺寸在30~45nm、35~50nm、40~55nm或40~50nm。
本发明利用醇与水的混合溶液作为反应介质,将钡源与碳酸二甲酯在常温常压下一步反应合成类球形超细纳米碳酸钡粉体,粉体的粒径较小,粉体的纯度较高;同时,可以避免二次高温热处理,简化步骤,节约能源。
为了进一步说明本发明,下面结合实施例对本发明提供的一种超细纳米碳酸钡及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
1)将468.75mL乙二醇与31.25mL水混合,得到乙二醇溶液,加入八水氢氧化钡进行溶解,得到质量浓度为6%的八水氢氧化钡的醇溶液;
2)以3g/min的速率将碳酸二甲酯加入所述八水氢氧化钡的醇溶液中,碳酸二甲酯与八水氢氧化钡的摩尔比为1:1,在常温常压下搅拌反应,pH值为7~8时停止搅拌,加入氨水(所述搅拌后的溶液中,氨水的加入量为1vol%)静置,得到混合料液;
3)将所述混合料液离心分离,并将离心分离后的物料用水洗涤2次,加入乙醇清洗2次,60℃真空干燥后,得到纯度为99.9%的超细纳米碳酸钡。
本实施例对得到的超细纳米碳酸钡进行扫描电镜分析,结果如图1和图2所示。图1为本发明实施例1的超细纳米碳酸钡在50k下的SEM图。图2为本发明实施例1的超细纳米碳酸钡在100k下的SEM图。由图1和2可知,所得超细纳米碳酸钡的晶粒尺寸较小,大致分布在30~45nm,形状为类球形,且分散性良好。
实施例2
1)将450mL乙二醇与50mL水混合,得到乙二醇溶液,加入八水氢氧化钡进行溶解,得到质量浓度为3%的八水氢氧化钡的醇溶液;
2)以9g/min的速率将碳酸二甲酯加入所述八水氢氧化钡的醇溶液中,碳酸二甲酯与八水氢氧化钡的摩尔比为0.5:1,在常温常压下搅拌反应,pH值为7~8时停止搅拌,加入氨水(所述搅拌后的溶液中,氨水的加入量为5vol%)静置,得到混合料液;
3)将所述混合料液离心分离,并将离心分离后的物料用水洗涤2次,加入乙醇清洗2次,60℃真空干燥后,得到纯度为99.7%的超细纳米碳酸钡。
将所述超细纳米碳酸钡进行扫描电镜分析,实验结果表明,所述超细纳米碳酸钡的晶粒尺寸为35~50nm。
实施例3
1)将350mL乙二醇与150mL水混合,得到乙二醇溶液,加入八水氢氧化钡进行溶解,得到质量浓度为4%的八水氢氧化钡的醇溶液;
2)以1g/min的速率将碳酸二甲酯加入所述八水氢氧化钡的醇溶液中,碳酸二甲酯与八水氢氧化钡的摩尔比为1:1,在常温常压下搅拌反应,pH值为7~8时停止搅拌,加入氨水(所述搅拌后的溶液中,氨水的加入量为10vol%)静置,得到混合料液;
3)将所述混合料液离心分离,并将离心分离后的物料用水洗涤2次,加入乙醇清洗2次,70℃真空干燥后,得到纯度为99.8%的超细纳米碳酸钡。
将所述超细纳米碳酸钡进行扫描电镜分析,实验结果表明,所述超细纳米碳酸钡的晶粒尺寸为40~55nm。
实施例4
1)将150mL丙三醇与350mL水混合,得到乙二醇溶液,加入八水氢氧化钡进行溶解,得到质量浓度为3%的八水氢氧化钡的醇溶液;
2)以9g/min的速率将碳酸二甲酯加入所述八水氢氧化钡的醇溶液中,碳酸二甲酯与八水氢氧化钡的摩尔比为2:1,在常温常压下搅拌反应,pH值为7~8时停止搅拌,加入氨水(所述搅拌后的溶液中,氨水的加入量为15vol%)静置,得到混合料液;
3)将所述混合料液离心分离,并将离心分离后的物料用水洗涤2次,加入乙醇清洗2次,60℃真空干燥后,得到纯度为99.8%的超细纳米碳酸钡。
将所述超细纳米碳酸钡进行扫描电镜分析,实验结果表明,所述超细纳米碳酸钡的晶粒尺寸为40~50nm。
对比例1
1)将50mL乙醇与50mL水混合,得到乙醇溶液;将乳化剂Tween-80和所述乙醇溶液混合,再加入碳酸甲酯;乳化剂的质量占所述乙醇溶液质量的4%,碳酸甲酯的体积占所述乙醇溶液体积的1%;
2)加入氢氧化钡粉末,氢氧化钡与碳酸酯的摩尔比为1:1,搅拌,待混合溶液的pH值为7~8时停止搅拌;
3)将步骤2)得到的混合溶液进行离心分离,固体用等体积的水洗涤3次,然后,真空干燥,得到纳米碳酸钡。经检测,所述纳米碳酸钡的纯度为98.8%。
将所述纳米碳酸钡进行扫描电镜分析,结果如图3所示。图3为本发发明对比例1的纳米碳酸钡的SEM图。由图3可知,对比例1合成的碳酸钡颗粒尺寸较大,呈现针棒状,且均匀性较差。实验结果表明,所述纳米碳酸钡的晶粒尺寸为80~100nm。
对比上述实施例和对比例可知,本发明制备的超细纳米碳酸钡的晶粒尺寸较小,不超过55nm,超细纳米碳酸钡的纯度较高,不低于99.7%。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种超细纳米碳酸钡的制备方法,包括以下步骤:
A)将醇溶液和八水氢氧化钡混合,得到八水氢氧化钡的醇溶液;
B)将所述八水氢氧化钡的醇溶液和碳酸二甲酯搅拌反应,pH值≤8时,停止搅拌,加入氨水静置,得到混合料液;
C)将所述混合料液固液分离,干燥后,得到超细纳米碳酸钡。
2.根据权利要求1所述的制备方法,其特征在于,步骤A)中,所述醇溶液中的醇包括乙二醇或丙三醇;
所述醇溶液中的溶剂为水;
所述醇溶液中,醇与水的体积比为0.4~15:1。
3.根据权利要求1所述的制备方法,其特征在于,步骤A)中,所述八水氢氧化钡的醇溶液中,八水氢氧化钡的质量浓度为3%~6%。
4.根据权利要求1所述的制备方法,其特征在于,步骤B)中,将所述八水氢氧化钡的醇溶液和碳酸二甲酯搅拌反应包括:
在所述八水氢氧化钡的醇溶液中加入碳酸二甲酯,搅拌反应;
所述碳酸二甲酯加入的速率为1~50g/min。
5.根据权利要求1所述的制备方法,其特征在于,步骤B)中,所述碳酸二甲酯和八水氢氧化钡的摩尔比为0.5~2:1。
6.根据权利要求1所述的制备方法,其特征在于,步骤B)中,所述搅拌反应在常温常压下进行。
7.根据权利要求1所述的制备方法,其特征在于,步骤B)中,pH值为7~8时,停止搅拌。
8.根据权利要求1所述的制备方法,其特征在于,步骤B)中,所述搅拌后的溶液中,氨水的加入量为1vol%~15vol%。
9.根据权利要求1所述的制备方法,其特征在于,步骤C)中,所述固液分离的方法为离心;
将所述混合料液固液分离后,还包括:
将所述固液分离后的物料进行洗涤;
所述洗涤包括水洗和乙醇清洗。
10.权利要求1~9任意一项制备方法制备的超细纳米碳酸钡。
CN202111274644.6A 2021-10-29 2021-10-29 一种超细纳米碳酸钡及其制备方法 Pending CN113816414A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111274644.6A CN113816414A (zh) 2021-10-29 2021-10-29 一种超细纳米碳酸钡及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111274644.6A CN113816414A (zh) 2021-10-29 2021-10-29 一种超细纳米碳酸钡及其制备方法

Publications (1)

Publication Number Publication Date
CN113816414A true CN113816414A (zh) 2021-12-21

Family

ID=78917665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111274644.6A Pending CN113816414A (zh) 2021-10-29 2021-10-29 一种超细纳米碳酸钡及其制备方法

Country Status (1)

Country Link
CN (1) CN113816414A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2024572A1 (de) * 1969-05-21 1971-02-11 Continental Oil Company, Ponca City, OkIa (VStA) Verfahren zur Herstellung hochbasischer. bariumhaltiger Dispersionen
CN101177293A (zh) * 2007-10-30 2008-05-14 华南理工大学 一种纳米碳酸钡的制备方法
CN102649578A (zh) * 2012-05-18 2012-08-29 山东银贝科技有限公司 一种高纯电子级碳酸钡的生产方法
CN103754917A (zh) * 2013-12-13 2014-04-30 绵阳市远达新材料有限公司 一种高纯碳酸钡的制备方法
CN105753031A (zh) * 2016-02-03 2016-07-13 西南大学 单分散哑铃形碳酸钡颗粒的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2024572A1 (de) * 1969-05-21 1971-02-11 Continental Oil Company, Ponca City, OkIa (VStA) Verfahren zur Herstellung hochbasischer. bariumhaltiger Dispersionen
CN101177293A (zh) * 2007-10-30 2008-05-14 华南理工大学 一种纳米碳酸钡的制备方法
CN102649578A (zh) * 2012-05-18 2012-08-29 山东银贝科技有限公司 一种高纯电子级碳酸钡的生产方法
CN103754917A (zh) * 2013-12-13 2014-04-30 绵阳市远达新材料有限公司 一种高纯碳酸钡的制备方法
CN105753031A (zh) * 2016-02-03 2016-07-13 西南大学 单分散哑铃形碳酸钡颗粒的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贾陆军: "碳酸二乙酯水解合成碳酸钡粒子及形貌控制", 《中国粉体技术》 *

Similar Documents

Publication Publication Date Title
CN111168083A (zh) 一种纳米银粉的制备方法
CN111097922A (zh) 一种纳米银颗粒及其制备方法和用途
CN111204790B (zh) 基于反相微乳液制备亚微米级球形碳酸钙的方法
JP2007176789A (ja) 炭酸バリウム粉末及びその製造方法
CN113036115A (zh) 级配高镍三元复合材料及其制备方法、锂二次电池
JP2010254533A (ja) 炭酸ストロンチウム粒子粉末の製造方法
CN110014168A (zh) 一种纳米银颗粒及其制备方法
CN108190935B (zh) 一种条片状碳酸钙超细颗粒的制备方法
CN113816414A (zh) 一种超细纳米碳酸钡及其制备方法
KR101773622B1 (ko) 대략 구상인 탄산바륨 및 대략 구상인 탄산바륨의 제조 방법
CN104610783B (zh) 一种透明氢氧化铝液相分散体及制备方法与应用
CN111940758B (zh) 一种多元醇还原法制备球形钌粉的方法
US9920005B2 (en) Method for crystallization of 2-amino-2-[2-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]ethyl]-1,3-propanediol hydrochloride
CN109575469A (zh) Pvc热稳定剂专用乙酰丙酮钙的制备方法
CN110078116B (zh) 一种钙钛矿CsPbBr3量子点及其制备方法和应用
CN115196970B (zh) 一种高流动性AlON球形粉体的制备方法
KR20130116671A (ko) 콜로이드 산화세륨 제조방법
JP2012153537A (ja) 針状炭酸ストロンチウム粒子の製造方法、及び、針状炭酸ストロンチウム粒子
CN114436305A (zh) 一种板状勃姆石厚度控制方法
CN114853049A (zh) 一种高稳定性纳米碳酸钙的制备方法
JP2013028509A (ja) アルカリ土類金属炭酸塩の製造方法、チタン酸バリウムおよびチタン酸ストロンチウム
CN104449708B (zh) 一种室温下合成高发光强度钨酸钙微晶的制备方法
CN109133161A (zh) 一种钛酸锶纳米颗粒的制备方法
JP2017128629A (ja) ヒドロキシプロピルセルロースの製造方法
CN117510910A (zh) 一种可再分散的纳米纤维素粉末及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211221

RJ01 Rejection of invention patent application after publication