CN113809778A - 一种海上直驱风机风电并网的稳定性评估方法及装置 - Google Patents

一种海上直驱风机风电并网的稳定性评估方法及装置 Download PDF

Info

Publication number
CN113809778A
CN113809778A CN202111199373.2A CN202111199373A CN113809778A CN 113809778 A CN113809778 A CN 113809778A CN 202111199373 A CN202111199373 A CN 202111199373A CN 113809778 A CN113809778 A CN 113809778A
Authority
CN
China
Prior art keywords
direct
wind power
drive
state space
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111199373.2A
Other languages
English (en)
Inventor
李强
任必兴
孙蓉
贾勇勇
周前
汪成根
李群
李海峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Jiangsu Electric Power Co Ltd
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
State Grid Jiangsu Electric Power Co Ltd
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Jiangsu Electric Power Co Ltd, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical State Grid Jiangsu Electric Power Co Ltd
Priority to CN202111199373.2A priority Critical patent/CN113809778A/zh
Publication of CN113809778A publication Critical patent/CN113809778A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Wind Motors (AREA)

Abstract

本申请公开了一种海上直驱风机风电并网的稳定性评估方法及装置,所述方法包括:构建直驱风机系统化状态空间模型;获取并网风电场的线性化状态空间模型;获取并网风电场外送线路部分网络阻抗矩阵的特征值;以及外送线路部分网络阻抗矩阵的特征值对应的特征向量;获取外送线路部分网络阻抗矩阵的特征向量矩阵;获取直驱风机风电并网的线性化状态空间模型;根据所述直驱风机风电并网的线性化状态空间模型,以及所述外送线路部分网络阻抗矩阵的特征向量矩阵,构建海上直驱风机风电并网的聚合模型;评估海上直驱风机风电并网的稳定性。本申请考虑到小干扰因素给海上直驱风机风电并网带来的影响,评估结果更准确,计算量小,效率高。

Description

一种海上直驱风机风电并网的稳定性评估方法及装置
技术领域
本申请涉及到风电并网稳定性检验方面,尤其是一种海上直驱风机风电并网的稳定性评估方法及装置。
背景技术
随着海上风电的开发与建设愈见被国家重视,海上风电接入对电力系统稳定性的影响也获得的广泛的关注,目前海上风电项目主要采用以直驱风机为代表的全功率变换风电机组,相比较与以双馈风机为代表的部分功率变换风电机组,直驱风机换流器与交流电网之间的功率交换更大,动态交互作用及其影响往往更强,对电力系统电磁振荡稳定性的影响更大。因此,有必要对大规模海上直驱风电场小干扰稳定性进行检验。
参见图3所示,海上风电场有N台型号相同的直驱风机并网构成,通常风电机组有个端口电压,经过箱式变压器升压至中压,通过35kV集电网络汇集到风电场的升压变电站的低压侧,即汇流母线A,经过风电场升压变电站升压后,通过汇流母线C接入陆上主电网。现有技术中,通常构建风电场全阶模型,再利用参数辨识法,根据等值风电场在并网点的动态响应数据,对等值风机参数进行辨识,求得同一工况或同一外部扰动作用下等值风机与被等值风电场,再评估海上直驱风机风电并网的稳定性。
这种方法在构建风电并网的等值模型时,没有考虑到小干扰因素对直驱风机风电并网稳定性的影响,小干扰因素一是风电功率的接入会改变电力系统原有的潮流分布特性;二是风电机组与风电机组之间的动态交互作用;三是风电机组与交流电网之间的动态交互作用。这种方法在每次风电场或风电机组工况发生变换时,需要重新建立风电场小信号模型进行分析,计算量大,效率低。
发明内容
为了解决现有技术中评估海上直驱风机风电并网的稳定性时,没有考虑到小干扰因素,从而影响评估结果的准确性时,本申请公开了一种海上直驱风机风电并网的稳定性评估方法及装置。
本申请第一方面公开了一种海上直驱风机风电并网的稳定性评估方法,包括:
构建直驱风机系统化状态空间模型;
获取并网风电场的线性化状态空间模型;
获取并网风电场的网络阻抗矩阵,所述并网风电场的网络阻抗矩阵包括内部网络阻抗矩阵和外送线路部分网络阻抗矩阵;
获取所述外送线路部分网络阻抗矩阵的特征值,以及所述外送线路部分网络阻抗矩阵的特征值对应的特征向量;
获取所述外送线路部分网络阻抗矩阵的特征向量矩阵;
获取直驱风机风电并网的线性化状态空间模型;
根据所述直驱风机风电并网的线性化状态空间模型,以及所述外送线路部分网络阻抗矩阵的特征向量矩阵,构建海上直驱风机风电并网的聚合模型;
根据所述海上直驱风机风电并网的聚合模型,评估海上直驱风机风电并网的稳定性。
可选的,所述构建直驱风机系统化状态空间模型包括:
获取每个直驱风机的电压、电流和状态向量,构建每个直驱风机的线性化状态空间模型;
根据每个直驱风机的线性化状态空间模型,构建直驱风机系统化状态空间模型。
可选的,所述获取并网风电场的线性化状态空间模型包括:
获取并网风电场的节点阻抗矩阵,构建并网风电场的网络方程;
根据所述直驱风机系统化状态空间模型中每个直驱风机的电流,获取并网风电场的输出电流;
根据所述并网风电场的输出电流和所述直驱风机系统化状态空间模型,获取并网风电场的线性化状态空间模型。
可选的,所述获取直驱风机风电并网的线性化状态空间模型包括:
获取并网风电场的网络阻抗矩阵,获取所述网络阻抗矩阵的特征值,以及获取所述网络阻抗矩阵的特征值对应的特征向量;
根据所述网络阻抗矩阵的特征值所对应的特征向量,获取特征向量矩阵;
获取所述直驱风机系统化状态空间模型的电压与所述特征向量矩阵之间的关系,以及直驱风机系统化状态空间模型的电流与所述特征向量矩阵之间的关系,以及所述直驱风机系统化状态空间模型的状态向量与所述特征向量矩阵之间的关系;
获取直驱风机风电并网的线性化状态空间模型;所述直驱风机风电并网的线性化状态空间模型为根据所述直驱风机系统化状态空间模型的电压与所述特征向量矩阵之间的关系,以及直驱风机系统化状态空间模型的电流与所述特征向量矩阵之间的关系,以及所述直驱风机系统化状态空间模型的状态向量与所述特征向量矩阵之间的关系获取。
可选的,所述根据所述网络阻抗矩阵的特征值所对应的特征向量,获取特征向量矩阵之后,所述方法还包括:
获取所述特征向量矩阵中任意两个不同元素之间的关系;所述任意两个不同元素为任意两个不同直驱风机。
本申请第二方面公开了一种海上直驱风机风电并网的稳定性评估装置,所述装置应用于所述一种海上直驱风机风电并网的稳定性评估方法,包括:
风机模型构建模块,用于构建直驱风机系统化状态空间模型;
风电场模型构建模块,用于获取并网风电场的线性化状态空间模型;
网络阻抗矩阵获取模块,用于获取并网风电场的网络阻抗矩阵,所述并网风电场的网络阻抗矩阵包括内部网络阻抗矩阵和外送线路部分网络阻抗矩阵;
数据获取模块,用于获取所述外送线路部分网络阻抗矩阵的特征值,以及所述外送线路部分网络阻抗矩阵的特征值对应的特征向量;
特征向量矩阵获取模块,用于获取所述外送线路部分网络阻抗矩阵的特征向量矩阵;
风电并网模型获取模块,用于获取直驱风机风电并网的线性化状态空间模型;
聚合模型构建模块,用于根据所述直驱风机风电并网的线性化状态空间模型,以及所述外送线路部分网络阻抗矩阵的特征向量矩阵,构建海上直驱风机风电并网的聚合模型;
稳定性评估模块,用于根据所述海上直驱风机风电并网的聚合模型,评估海上直驱风机风电并网的稳定性。
可选的,所述风机模型构建模块包括:
单个风机模型构建单元,用于获取每个直驱风机的电压、电流和状态向量,构建每个直驱风机的线性化状态空间模型;
风机模型构建单元,用于根据每个直驱风机的线性化状态空间模型,构建直驱风机系统化状态空间模型。
可选的,所述风电场模型构建模块包括:
网络方程构建单元,用于获取并网风电场的节点阻抗矩阵,构建并网风电场的网络方程;
输出电流获取单元,用于根据所述直驱风机系统化状态空间模型中每个直驱风机的电流,获取并网风电场的输出电流;
风电场模型构建单元,用于根据所述并网风电场的输出电流和所述直驱风机系统化状态空间模型,获取并网风电场的线性化状态空间模型。
可选的,所述风电并网模型获取模块包括:
数据获取单元,用于获取并网风电场的网络阻抗矩阵,获取所述网络阻抗矩阵的特征值,以及获取所述网络阻抗矩阵的特征值对应的特征向量;
特征向量矩阵获取单元,用于根据所述网络阻抗矩阵的特征值所对应的特征向量,获取特征向量矩阵;
关系获取单元,用于获取所述直驱风机系统化状态空间模型的电压与所述特征向量矩阵之间的关系,以及直驱风机系统化状态空间模型的电流与所述特征向量矩阵之间的关系,以及所述直驱风机系统化状态空间模型的状态向量与所述特征向量矩阵之间的关系;
风电并网模型获取单元,用于获取直驱风机风电并网的线性化状态空间模型;所述直驱风机风电并网的线性化状态空间模型为根据所述直驱风机系统化状态空间模型的电压与所述特征向量矩阵之间的关系,以及直驱风机系统化状态空间模型的电流与所述特征向量矩阵之间的关系,以及所述直驱风机系统化状态空间模型的状态向量与所述特征向量矩阵之间的关系获取。
可选的,所述特征向量矩阵获取单元之后还包括:
风机关系获取单元,用于获取所述特征向量矩阵中任意两个不同元素之间的关系;所述任意两个不同元素为任意两个不同直驱风机。
本申请公开了一种海上直驱风机风电并网的稳定性评估方法及装置,所述方法包括:构建直驱风机系统化状态空间模型;获取并网风电场的线性化状态空间模型;获取并网风电场外送线路部分网络阻抗矩阵;获取所述外送线路部分网络阻抗矩阵的特征值,以及所述外送线路部分网络阻抗矩阵的特征值对应的特征向量;获取所述外送线路部分网络阻抗矩阵的特征向量矩阵;获取直驱风机风电并网的线性化状态空间模型;根据所述直驱风机风电并网的线性化状态空间模型,以及所述外送线路部分网络阻抗矩阵的特征向量矩阵,构建海上直驱风机风电并网的聚合模型;评估海上直驱风机风电并网的稳定性。本申请考虑到小干扰因素给海上直驱风机风电并网带来的影响,将直驱风电场的线性化状态模型近似解耦为多个相互独立的等效子系统,各等效子系统可以看作由一台并网直驱风机构成,对多个等效子系统进行聚合,根据聚合模型评估海上直驱风机风电并网的稳定性,评估结果更准确,计算量小,效率高。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例公开的一种海上直驱风机风电并网的稳定性评估方法的流程示意图;
图2为本申请实施例公开的一种海上直驱风机风电并网的稳定性评估装置的结构示意图;
图3为本申请实施例公开的一种现有技术中直驱风机风电并网的模拟示意图;
图4为本申请实施例公开的一种直驱风机风电并网的线性化状态模型示意图;
图5为本申请实施例公开的一种海上直驱风机风电并网的聚合模型示意图;
图6为本申请实施例公开的一种100台直驱风机风电并网的示意图;
图7为本申请实施例公开的一种100台直驱风机风电场振荡模式计算结果示意图;
图8为本申请实施例公开的100台直驱风机风电场振荡模式又一种计算结果示意图;
图9为本申请实施例公开的100台直驱风机风电场振荡模式又一种计算结果示意图;
图10为本申请实施例公开的100台直驱风机风电场振荡模式又一种计算结果示意图。
具体实施方式
为了解决现有技术中评估海上直驱风机风电并网的稳定性时,没有考虑到小干扰因素,从而影响评估结果的准确性时,本申请公开了一种海上直驱风机风电并网的稳定性评估方法及装置。
本申请第一实施例公开了一种海上直驱风机风电并网的稳定性评估方法,包括:
获取每个直驱风机的电压、电流和状态向量,构建每个直驱风机的线性化状态空间模型。由N台直驱风机组成的并网直驱风电场中,直驱风机i的线性化状态空间模型表示为:
Figure BDA0003304340070000041
其中,△Xi为直驱风机i的状态向量;△Vi=[△Vix △Viy]T,△Ii=[△Iix △Iiy]T,Vix+jViy和Iix+jIiy分别表示公共x-y坐标系下直驱风机i的端电压和输出电流;Ai、Bi和Ci分别表示直驱风机i的线性化状态空间矩阵、控制矩阵和输出矩阵。
根据每个直驱风机的线性化状态空间模型,构建直驱风机系统化状态空间模型。
Figure BDA0003304340070000042
其中,△X=[△X1 T △X2 T K △XN T]T,△V=[△V1 T △V2 T K △VN T]T,△I=[△I1 T△I2 T K △IN T]T;diag[Ai]、diag[Bi]和diag[Ci]分别表示对角线元素为Ai、Bi和Ci的分块对角矩阵(i=1,2,K,N)。
获取并网风电场的节点阻抗矩阵Zw,构建并网风电场的网络方程。采用节点阻抗矩阵的表示形式,并网风电场的网络方程为:
△V=Zw△I+△VCN; (3)
其中,△VCN=[△VC T △VC T K △VC T]T,△VC=[△Vcx △Vcy]T
根据所述直驱风机系统化状态空间模型中每个直驱风机的电流,获取并网风电场的输出电流。
Figure BDA0003304340070000051
其中,△IC=[△Icx △Icy]T,Icx+jIcy表示交流电网公共x-y坐标系下风电场向外部交流系统注入的电流。
根据所述并网风电场的输出电流和所述直驱风机系统化状态空间模型,获取并网风电场的线性化状态空间模型。将式(2)至式(4)联立,消去中间变量可得图1所示海上并网直驱风电场的线性化状态空间模型为:
Figure BDA0003304340070000052
其中,Aw=diag[Ai]+diag[Bi]Zwdiag[Ci],
Figure BDA0003304340070000053
Cw=[C1 C2 K CN]。
获取并网风电场的网络阻抗矩阵,获取所述网络阻抗矩阵的特征值,以及获取所述网络阻抗矩阵的特征值对应的特征向量。
若忽略线路电阻,那么获取并网风电场的网络阻抗矩阵相当于获取并网风电场的网络电抗矩阵,以下推导中网络阻抗矩阵均由网络电抗矩阵代替,式(3)中的并网风电场节点阻抗矩阵可表示为如下形式:
Figure BDA0003304340070000054
其中,
Figure BDA0003304340070000055
Figure BDA0003304340070000056
表示克罗内克乘积,
Figure BDA0003304340070000057
为并网风电场网络电抗矩阵。
根据节点阻抗矩阵的性质,式(6)中的并网风电场网络电抗矩阵Xw为一实对称矩阵,因此有如下相似对角化变换成立:
UTXwU=diag[λi]; (7)
其中,λi表示矩阵Xw的特征值,U=[u1 u2 K uN],ui表示与λi对应的矩阵Xw的特征向量(i=1,2,...,N)。
根据所述网络电抗矩阵的特征值所对应的特征向量,获取特征向量矩阵。
获取所述直驱风机系统化状态空间模型的电压与所述特征向量矩阵之间的关系,以及直驱风机系统化状态空间模型的电流与所述特征向量矩阵之间的关系,以及所述直驱风机系统化状态空间模型的状态向量与所述特征向量矩阵之间的关系;。
根据式(7)所示对角化变换,可定义如下变量变换,
△X=Un△Y △V=U2△VY △I=U2△IY; (8)
其中,
Figure BDA0003304340070000063
Εn为n×n的单位矩阵,Ε2为2×2的单位矩阵;n为一台直驱风机线性化模型的阶数,由于风机型号相同,各风机模型阶数相同。
获取特征向量矩阵中任意两个不同元素之间的关系。所述任意两个不同元素为任意两个不同直驱风机。
根据任意两个不同直驱风机稳态运行点的差异,以及所述特征向量矩阵中任意两个不同元素之间的关系,进行计算。
获取直驱风机风电并网的线性化状态空间模型;所述直驱风机风电并网的线性化状态空间模型为根据所述直驱风机系统化状态空间模型的电压与所述特征向量矩阵之间的关系,以及直驱风机系统化状态空间模型的电流与所述特征向量矩阵之间的关系,以及所述直驱风机系统化状态空间模型的状态向量与所述特征向量矩阵之间的关系获取。
具体的,将式(6)和式(8)代入式(3),根据克罗内克乘积的性质可得,
Figure BDA0003304340070000061
其中,
Figure BDA0003304340070000062
uki为ui中的第k个元素(i=1,2,...,N,k=1,2,...,N)。
式(9)可进一步写为:
△VYi=λiE△IYi+ui△VC; (10)
其中,i=1,2,...,N。
将式(8)代入式(2)可得,
Figure BDA0003304340070000071
式(11)中,
Figure BDA0003304340070000072
Figure BDA0003304340070000073
Figure BDA0003304340070000074
根据实对称矩阵的性质,有:UT=U-1,因此,
Figure BDA0003304340070000075
考虑到,在风电场内各风机型号相同的条件下,风机k和风机j线性化模型的差异源自其稳态运行点的差异(k,j=1,2,K,N;k≠j),即矩阵Ak和Aj形式相同、但其中与稳态运行点相关的元素数值会具有一定差异;因此,由式(12)和式(13),可作进一步分析如下:
由式(12),矩阵Un Tdiag[Ai]Un为一分块矩阵、且各分块上的元素为矩阵Ai的加权求和(i=1,2,K,N)。
由式(13),在进行加权求和时,非对角线元素上加权系数起抵消作用,而对角线元素可看作矩阵Ai的加权平均值(k=1,2,K,N)。因此,在矩阵Ai形式相同、仅部分数值具有一定差异的条件下,相对于对角线元素,非对角线元素的影响可以忽略,即矩阵Un Tdiag[Ai]Un可看作一对角线元素占优的分块矩阵,从而有:
Figure BDA0003304340070000081
同理有,
Figure BDA0003304340070000082
Figure BDA0003304340070000083
由式(4)和式(8),
Figure BDA0003304340070000084
由式(10)、式(14)和式(15),在风电场内直驱风机型号相同的条件下,图1所示N机海上直驱风电场的线性化状态空间模型可近似解耦为N个相互独立的等效子系统,且第i个等效子系统的线性化状态空间模型为,
Figure BDA0003304340070000085
△VYi=λiE△IYi+ui△VC; (16.b)
其中,i=1,2,...,N,
Figure BDA0003304340070000086
△Ici=ui△IYi
式(16)也可写为如下形式,
Figure BDA0003304340070000087
其中,Aci=AEiiBEiECEi,Bci=uiBEi,Cci=uiCEi
由式(16)和式(17),对于图1所示海上并网直驱风电场,在各风电机组型号相同的条件下,该N机直驱风电场的线性化状态空间模型可近似解耦为N个相互独立的等效子系统,且各等效子系统可看作由一台并网直驱风机构成,其中直驱风机的线性化状态空间模型为原风电场内所有直驱风机线性化状态空间模型的加权平均值,由此实现了对原风电场小干扰稳定性的解耦分析。
获取并网风电场的网络阻抗矩阵,所述并网风电场的网络阻抗矩阵包括内部网络阻抗矩阵和外送线路部分网络阻抗矩阵。
获取所述外送线路部分网络阻抗矩阵的特征值,以及所述外送线路部分网络阻抗矩阵的特征值对应的特征向量。
获取所述外送线路部分网络阻抗矩阵的特征向量矩阵。
根据所述直驱风机风电并网的线性化状态空间模型,以及所述外送线路部分网络阻抗矩阵的特征向量矩阵,构建海上直驱风机风电并网的聚合模型。
根据所述海上直驱风机风电并网的聚合模型,评估海上直驱风机风电并网的稳定性。
具体的,由式(16)或式(17),图3所示直驱风电场的小信号模型可表示为图4所示形式。图3中,以汇流母线A为参考节点,风电场集电网络的节点阻抗矩阵可写为如下形式,
△V=Zw1△I+△VAN。 (18)
其中,△VAN=[△VA T △VA T K △VA T]T,△VA=[△Vax △Vay]T,Vax+jVay,Zw1为图3所示并网风电场集电网络部分的节点阻抗矩阵,且根据电力网络分析理论,Zw1具有如下表示形式,
Figure BDA0003304340070000091
其中,
Figure BDA0003304340070000092
i=1,2,...,N,j=1,2,...,N。
对于图3中的风电外送线路,有,
△VA=zL△IC+△VC。 (20)
其中,
Figure BDA0003304340070000093
由式(18)至式(20),式(3)中的并网风电场节点阻抗矩阵可表示为如下形式,
Figure BDA0003304340070000101
由式(19)、式(20)和式(21),式(6)中的矩阵Xw可进一步写为如下形式,
Xw=Xw1+XL。 (22)
其中,
Figure BDA0003304340070000102
为风电场内部集电网络部分对应的网络电抗矩阵;
Figure BDA0003304340070000103
为风电外送线路部分对应的网络电抗矩阵。
令λLi表示式(22)中矩阵XL的特征值,uLi表示与λLi对应的矩阵XL的特征向量(i=1,2,...,N),则有:
λLi=0;i=1,2,...,N-1λLN=NxL; (23.a)
Figure BDA0003304340070000104
其中,
Figure BDA0003304340070000105
i=1,2,...,N。
考虑到风电场内部的集电网络主要用于功率汇集,相对风电外送线路阻抗而言,集电网络阻抗的影响一般很小,可以忽略。因此,结合节点阻抗矩阵的形成原则,由式(26),风电场网络电抗矩阵Xw可看作由XL对应部分主导,因此,对于Xw有如下关系成立,
λi≈0;i=1,2,...,N-1λN≈NxL; (24.a)
Figure BDA0003304340070000106
根据式(24)和图4,并网风电场整体的动态输出特性一般可由图2或式(16)和式(17)中的第N个等效子系统反映,由此可建立海上并网直驱风电场的聚合模型如图5所示,其线性化状态空间表示形式为,
Figure BDA0003304340070000111
△VYN=λNE△IYN+uN△VC△IcN=uN△IYN; (25.b)
其中,
Figure BDA0003304340070000112
以上所得并网风电场聚合模型可看作由一台并网聚合直驱风机构成,其中聚合直驱风机的线性化状态空间模型为原风电场内所有直驱风机线性化状态空间模型的加权平均值,聚合直驱风机与交流电网之间连接线路电抗为风电场网络电抗矩阵Xw的最大特征值λN。由此,获得了一种海上并网直驱风电场线性化模型的聚合方法。
由于聚合模型中集中体现了风电场与交流电网之间的动态交互作用,图3所示并网风电场的主导振荡模式通常体现在聚合模型之中,据此可采用聚合模型,对风电场小干扰稳定性进行检验。
本申请在获取直驱风机风电并网的线性化状态空间模型之后,还可以通过一下方法判断直驱风机风电并网的稳定性,包括:根据所述直驱风机风电并网的线性化模型,获取空间矩阵。
获取所述空间矩阵的特征值、特征向量和参与因子。
评估海上直驱风机风电并网的稳定性。
本申请公开了一种海上直驱风机风电并网的稳定性评估方法及装置,所述方法包括:构建直驱风机系统化状态空间模型;获取并网风电场的线性化状态空间模型;获取并网风电场外送线路部分网络阻抗矩阵;获取所述外送线路部分网络阻抗矩阵的特征值,以及所述外送线路部分网络阻抗矩阵的特征值对应的特征向量;获取所述外送线路部分网络阻抗矩阵的特征向量矩阵;获取直驱风机风电并网的线性化状态空间模型;根据所述直驱风机风电并网的线性化状态空间模型,以及所述外送线路部分网络阻抗矩阵的特征向量矩阵,构建海上直驱风机风电并网的聚合模型;评估海上直驱风机风电并网的稳定性。本申请考虑到小干扰因素给海上直驱风机风电并网带来的影响,将直驱风电场的线性化状态模型近似解耦为多个相互独立的等效子系统,各等效子系统可以看作由一台并网直驱风机构成,对多个等效子系统进行聚合,根据聚合模型评估海上直驱风机风电并网的稳定性,评估结果更准确,计算量小,效率高。
本申请第二实施例公开了一种海上直驱风机风电并网的稳定性评估装置,所述装置应用于所述一种海上直驱风机风电并网的稳定性评估方法,包括:
风机模型构建模块,用于构建直驱风机系统化状态空间模型。
风电场模型构建模块,用于获取并网风电场的线性化状态空间模型。
网络阻抗矩阵获取模块,用于获取并网风电场的网络阻抗矩阵,所述并网风电场的网络阻抗矩阵包括内部网络阻抗矩阵和外送线路部分网络阻抗矩阵。
数据获取模块,用于获取所述外送线路部分网络阻抗矩阵的特征值,以及所述外送线路部分网络阻抗矩阵的特征值对应的特征向量。
特征向量矩阵获取模块,用于获取所述外送线路部分网络阻抗矩阵的特征向量矩阵。
风电并网模型获取模块,用于获取直驱风机风电并网的线性化状态空间模型。
聚合模型构建模块,用于根据所述直驱风机风电并网的线性化状态空间模型,以及所述外送线路部分网络阻抗矩阵的特征向量矩阵,构建海上直驱风机风电并网的聚合模型。
稳定性评估模块,用于根据所述海上直驱风机风电并网的聚合模型,评估海上直驱风机风电并网的稳定性。
进一步的,所述风机模型构建模块包括:
单个风机模型构建单元,用于获取每个直驱风机的电压、电流和状态向量,构建每个直驱风机的线性化状态空间模型。
风机模型构建单元,用于根据每个直驱风机的线性化状态空间模型,构建直驱风机系统化状态空间模型。
进一步的,所述风电场模型构建模块包括:
网络方程构建单元,用于获取并网风电场的节点阻抗矩阵,构建并网风电场的网络方程。
输出电流获取单元,用于根据所述直驱风机系统化状态空间模型中每个直驱风机的电流,获取并网风电场的输出电流。
风电场模型构建单元,用于根据所述并网风电场的输出电流和所述直驱风机系统化状态空间模型,获取并网风电场的线性化状态空间模型。
进一步的,所述风电并网模型获取模块包括:
数据获取单元,用于获取并网风电场的网络阻抗矩阵,获取所述网络阻抗矩阵的特征值,以及获取所述网络阻抗矩阵的特征值对应的特征向量。
特征向量矩阵获取单元,用于根据所述网络阻抗矩阵的特征值所对应的特征向量,获取特征向量矩阵。
关系获取单元,用于获取所述直驱风机系统化状态空间模型的电压与所述特征向量矩阵之间的关系,以及直驱风机系统化状态空间模型的电流与所述特征向量矩阵之间的关系,以及所述直驱风机系统化状态空间模型的状态向量与所述特征向量矩阵之间的关系。
风电并网模型获取单元,用于获取直驱风机风电并网的线性化状态空间模型;所述直驱风机风电并网的线性化状态空间模型为根据所述直驱风机系统化状态空间模型的电压与所述特征向量矩阵之间的关系,以及直驱风机系统化状态空间模型的电流与所述特征向量矩阵之间的关系,以及所述直驱风机系统化状态空间模型的状态向量与所述特征向量矩阵之间的关系获取。
进一步的,所述特征向量矩阵获取单元之后还包括:
风机关系获取单元,用于获取所述特征向量矩阵中任意两个不同元素之间的关系;所述任意两个不同元素为任意两个不同直驱风机。
下面通过具体实施例来说明本申请的有益效果。参见图6所示的由100台直驱风机构成的直驱风电场,其中各直驱风机额定容量4MW(标幺值0.04p.u.)。考虑风速空间分布差异,各直驱风机稳态功率输出在0.025p.u.至0.04之间均匀变化,风电场内部风电机组之间连接线路阻抗为(0.001+j0.015)p.u.,风电外送线路电抗(xL)为0.15p.u.。下面采用本申请计算方法对图6所示并网直驱风电场小干扰稳定性进行检验。
首先,建立各直驱风机的线性化状态空间模型,得到矩阵Ak、Bk和Ck;建立并网风电场节点阻抗矩阵Zw和网络电抗矩阵Xw,并计算矩阵Xw的特征值和特征向量,得到λi和uik(i=1,2,...,N,k=1,2,...,N)。
然后,根据式(17),建立各等效子系统的线性化状态空间矩阵Aci,并计算其特征值,得到风电场振荡模式在复平面上的分布情况如图7、8、9中十字叉所示。其中图7为网侧换流器d轴电流内环模式,图8为网侧换流器q轴电流内环模式,图9为网侧换流器直流电压外环模式,图10为锁相环模式。
最后,作为对比验证,根据式(5),建立图6所示示例并网风电场的全阶线性化状态空间模型,得到矩阵Aw,并计算其特征值,得到风电场振荡模式在复平面上的分布情况如图7、8、9中黑色空心圆所示。
从图7、8、9可以看出,采用本申请计算方法所得风电场振荡模式,与由全阶模型所得结果基本一致,验证了本申请计算方法在并网风电场小干扰稳定性检验中的有效性。
此外,图10中十字叉所示为由第N个等效子系统(聚合模型)所得振荡模式,可以看出发明中所提并网直驱风电场聚合模型可有效反映原风电场的主导振荡模式。下面在风电外送线路电抗xL由0.164增大至0.214的过程中,采用聚合模型和全阶模型对风电场进行模式分析,得到风电场主导振荡模式的计算结果如表1所示。
表1风电场模式分析结果
Figure BDA0003304340070000131
从表1可以看出,采用聚合模型和全阶模型所得风电场主导振荡模式的结果基本一致,验证了发明中所提海上并网直驱风电场线性化状态空间模型聚合方法的有效性。
本申请将直驱风电场的线性化状态模型近似解耦为多个相互独立的等效子系统,考虑到了小干扰因素对海上直驱风机风电并网的稳定性的影响的同时,提高了计算效率高。
以上结合具体实施方式和范例性实例对本申请进行了详细说明,不过这些说明并不能理解为对本申请的限制。本领域技术人员理解,在不偏离本申请精神和范围的情况下,可以对本申请技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本申请的范围内。本申请的保护范围以所附权利要求为准。

Claims (10)

1.一种海上直驱风机风电并网的稳定性评估方法,其特征在于,包括:
构建直驱风机系统化状态空间模型;
获取并网风电场的线性化状态空间模型;
获取并网风电场的网络阻抗矩阵,所述并网风电场的网络阻抗矩阵包括内部网络阻抗矩阵和外送线路部分网络阻抗矩阵;
获取所述外送线路部分网络阻抗矩阵的特征值,以及所述外送线路部分网络阻抗矩阵的特征值对应的特征向量;
获取所述外送线路部分网络阻抗矩阵的特征向量矩阵;
获取直驱风机风电并网的线性化状态空间模型;
根据所述直驱风机风电并网的线性化状态空间模型,以及所述外送线路部分网络阻抗矩阵的特征向量矩阵,构建海上直驱风机风电并网的聚合模型;
根据所述海上直驱风机风电并网的聚合模型,评估海上直驱风机风电并网的稳定性。
2.根据权利要求1所述的一种海上直驱风机风电并网的稳定性评估方法,其特征在于,所述构建直驱风机系统化状态空间模型包括:
获取每个直驱风机的电压、电流和状态向量,构建每个直驱风机的线性化状态空间模型;
根据每个直驱风机的线性化状态空间模型,构建直驱风机系统化状态空间模型。
3.根据权利要求2所述的一种海上直驱风机风电并网的稳定性评估方法,其特征在于,所述获取并网风电场的线性化状态空间模型包括:
获取并网风电场的节点阻抗矩阵,构建并网风电场的网络方程;
根据所述直驱风机系统化状态空间模型中每个直驱风机的电流,获取并网风电场的输出电流;
根据所述并网风电场的输出电流和所述直驱风机系统化状态空间模型,获取并网风电场的线性化状态空间模型。
4.根据权利要求3所述的一种海上直驱风机风电并网的稳定性评估方法,其特征在于,所述获取直驱风机风电并网的线性化状态空间模型包括:
获取并网风电场的网络阻抗矩阵,获取所述网络阻抗矩阵的特征值,以及获取所述网络阻抗矩阵的特征值对应的特征向量;
根据所述网络阻抗矩阵的特征值所对应的特征向量,获取特征向量矩阵;
获取所述直驱风机系统化状态空间模型的电压与所述特征向量矩阵之间的关系,以及直驱风机系统化状态空间模型的电流与所述特征向量矩阵之间的关系,以及所述直驱风机系统化状态空间模型的状态向量与所述特征向量矩阵之间的关系;
获取直驱风机风电并网的线性化状态空间模型;所述直驱风机风电并网的线性化状态空间模型为根据所述直驱风机系统化状态空间模型的电压与所述特征向量矩阵之间的关系,以及直驱风机系统化状态空间模型的电流与所述特征向量矩阵之间的关系,以及所述直驱风机系统化状态空间模型的状态向量与所述特征向量矩阵之间的关系获取。
5.根据权利要求4所述的一种海上直驱风机风电并网的稳定性评估方法,其特征在于,所述根据所述网络阻抗矩阵的特征值所对应的特征向量,获取特征向量矩阵之后,所述方法还包括:
获取所述特征向量矩阵中任意两个不同元素之间的关系;所述任意两个不同元素为任意两个不同直驱风机。
6.一种海上直驱风机风电并网的稳定性评估装置,所述装置应用于权利要求1-5任一项所述的一种海上直驱风机风电并网的稳定性评估方法,其特征在于,包括:
风机模型构建模块,用于构建直驱风机系统化状态空间模型;
风电场模型构建模块,用于获取并网风电场的线性化状态空间模型;
网络阻抗矩阵获取模块,用于获取并网风电场的网络阻抗矩阵,所述并网风电场的网络阻抗矩阵包括内部网络阻抗矩阵和外送线路部分网络阻抗矩阵;
数据获取模块,用于获取所述外送线路部分网络阻抗矩阵的特征值,以及所述外送线路部分网络阻抗矩阵的特征值对应的特征向量;
特征向量矩阵获取模块,用于获取所述外送线路部分网络阻抗矩阵的特征向量矩阵;
风电并网模型获取模块,用于获取直驱风机风电并网的线性化状态空间模型;
聚合模型构建模块,用于根据所述直驱风机风电并网的线性化状态空间模型,以及所述外送线路部分网络阻抗矩阵的特征向量矩阵,构建海上直驱风机风电并网的聚合模型;
稳定性评估模块,用于根据所述海上直驱风机风电并网的聚合模型,评估海上直驱风机风电并网的稳定性。
7.根据权利要求6所述的一种海上直驱风机风电并网的稳定性评估装置,其特征在于,所述风机模型构建模块包括:
单个风机模型构建单元,用于获取每个直驱风机的电压、电流和状态向量,构建每个直驱风机的线性化状态空间模型;
风机模型构建单元,用于根据每个直驱风机的线性化状态空间模型,构建直驱风机系统化状态空间模型。
8.根据权利要求7所述的一种海上直驱风机风电并网的稳定性评估装置,其特征在于,所述风电场模型构建模块包括:
网络方程构建单元,用于获取并网风电场的节点阻抗矩阵,构建并网风电场的网络方程;
输出电流获取单元,用于根据所述直驱风机系统化状态空间模型中每个直驱风机的电流,获取并网风电场的输出电流;
风电场模型构建单元,用于根据所述并网风电场的输出电流和所述直驱风机系统化状态空间模型,获取并网风电场的线性化状态空间模型。
9.根据权利要求8所述的一种海上直驱风机风电并网的稳定性评估装置,其特征在于,所述风电并网模型获取模块包括:
数据获取单元,用于获取并网风电场的网络阻抗矩阵,获取所述网络阻抗矩阵的特征值,以及获取所述网络阻抗矩阵的特征值对应的特征向量;
特征向量矩阵获取单元,用于根据所述网络阻抗矩阵的特征值所对应的特征向量,获取特征向量矩阵;
关系获取单元,用于获取所述直驱风机系统化状态空间模型的电压与所述特征向量矩阵之间的关系,以及直驱风机系统化状态空间模型的电流与所述特征向量矩阵之间的关系,以及所述直驱风机系统化状态空间模型的状态向量与所述特征向量矩阵之间的关系;
风电并网模型获取单元,用于获取直驱风机风电并网的线性化状态空间模型;所述直驱风机风电并网的线性化状态空间模型为根据所述直驱风机系统化状态空间模型的电压与所述特征向量矩阵之间的关系,以及直驱风机系统化状态空间模型的电流与所述特征向量矩阵之间的关系,以及所述直驱风机系统化状态空间模型的状态向量与所述特征向量矩阵之间的关系获取。
10.根据权利要求9所述的一种海上直驱风机风电并网的稳定性评估装置,其特征在于,所述特征向量矩阵获取单元之后还包括:
风机关系获取单元,用于获取所述特征向量矩阵中任意两个不同元素之间的关系;所述任意两个不同元素为任意两个不同直驱风机。
CN202111199373.2A 2021-10-14 2021-10-14 一种海上直驱风机风电并网的稳定性评估方法及装置 Pending CN113809778A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111199373.2A CN113809778A (zh) 2021-10-14 2021-10-14 一种海上直驱风机风电并网的稳定性评估方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111199373.2A CN113809778A (zh) 2021-10-14 2021-10-14 一种海上直驱风机风电并网的稳定性评估方法及装置

Publications (1)

Publication Number Publication Date
CN113809778A true CN113809778A (zh) 2021-12-17

Family

ID=78937580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111199373.2A Pending CN113809778A (zh) 2021-10-14 2021-10-14 一种海上直驱风机风电并网的稳定性评估方法及装置

Country Status (1)

Country Link
CN (1) CN113809778A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417050A (zh) * 2019-07-23 2019-11-05 华北电力大学 一种并联结构大型风电场等值计算方法
CN110429648A (zh) * 2019-08-12 2019-11-08 南京理工大学 考虑风速随机波动的小干扰稳定裕度概率评估方法
CN111737919A (zh) * 2020-06-26 2020-10-02 西安热工研究院有限公司 一种适用于次同步振荡分析的直驱式风电场分群方法
CN111884259A (zh) * 2020-08-04 2020-11-03 浙江大学 一种考虑系统小干扰稳定特性的场站级风电机组自适应等值方法
CN112018812A (zh) * 2020-08-26 2020-12-01 四川大学 一种海上风电场低次背景谐波放大风险评估方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417050A (zh) * 2019-07-23 2019-11-05 华北电力大学 一种并联结构大型风电场等值计算方法
CN110429648A (zh) * 2019-08-12 2019-11-08 南京理工大学 考虑风速随机波动的小干扰稳定裕度概率评估方法
CN111737919A (zh) * 2020-06-26 2020-10-02 西安热工研究院有限公司 一种适用于次同步振荡分析的直驱式风电场分群方法
CN111884259A (zh) * 2020-08-04 2020-11-03 浙江大学 一种考虑系统小干扰稳定特性的场站级风电机组自适应等值方法
CN112018812A (zh) * 2020-08-26 2020-12-01 四川大学 一种海上风电场低次背景谐波放大风险评估方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙元存;刘三明;王致杰;曹天行;刘剑;: "大规模风电接入对电力系统动态特性影响的研究", 系统仿真技术, no. 02 *
董文凯等: "用于振荡稳定性分析的并网风电场动态模型研究", 中国电机工程学报, pages 1 - 14 *

Similar Documents

Publication Publication Date Title
Gong et al. DQ-frame impedance measurement of three-phase converters using time-domain MIMO parametric identification
CN112149280B (zh) 含svg的新能源的多馈入系统电网强度获得方法
CN110556871B (zh) 基于结构保持方法的大规模光伏发电系统聚合等值方法
CN108880300B (zh) 一种基于双闭环控制的双馈风机整流器阻抗计算方法
CN109802406A (zh) 一种分析柔性直流输电接入系统谐振稳定性的方法
CN111884259B (zh) 一种考虑系统小干扰稳定特性的场站级风电机组等值方法
CN105676022A (zh) 一种长线路风电场并网谐振信息提取方法
CN113258607B (zh) 基于不同渗透下的光伏发电系统动态离散等值模型建立方法
CN111009921A (zh) 基于奈奎斯特稳定判据的双馈风机并网系统振荡分析方法
Zhou et al. Small-signal stability assessment of heterogeneous grid-following converter power systems based on grid strength analysis
CN109638871B (zh) 考虑风电接入的大规模交直流混联系统主网划分方法
CN114884094A (zh) 一种风电场阻抗特性监测方法、系统、设备和介质
Liu et al. Stability region analysis of grid-tied voltage sourced converters using variable operating point impedance model
Rao et al. Wideband impedance online identification of wind farms based on combined data-driven and knowledge-driven
CN113852120A (zh) 一种新能源发电最大并网容量的确定方法及系统
CN113809778A (zh) 一种海上直驱风机风电并网的稳定性评估方法及装置
CN116384032A (zh) 一种适用于风电经lcc-hvdc送出系统的阻尼路径分析方法
CN109494764A (zh) 一种电力电子多馈入电力系统小干扰稳定性评估方法
CN114046870B (zh) 一种电力系统宽频振荡的广域监测方法
CN109586300A (zh) 一种获取风电潮流模型中潮流变量变化区间的方法及系统
CN114792984A (zh) 一种次/超同步振荡源的快速定位方法
CN114465280A (zh) 一种新能源并网系统动态等效建模方法
Gao et al. Improved extended kalman filter based dynamic equivalent method of DFIG wind farm cluster
Luhtala et al. Adaptive method for control tuning of grid-connected inverter based on grid measurements during start-up
CN112202211A (zh) 一种基于模态分析法的多vsg并网功频振荡评估方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination